THE BETTI NUMBERS OF STANLEY-REISNER IDEALS OF SIMPLICIAL TREES

Sara Faridi*

Abstract

We provide a simple method to compute the Betti numbers of the Stanley-Reisner ideal of a simplicial tree and its Alexander dual.

Keywords: resolution, monomial ideal, simplicial tree, Stanley-Reisner ideal

Simplicial trees [F1] are a class of flag complexes initially studied for the properties of their facet ideals. In this short note we give a short and straightforward method to compute the Betti numbers of their Stanley-Reisner ideals.

The *Betti numbers* of a homogeneous ideal I in a polynomial ring R over a field are the ranks of the free modules appearing in a minimal free resolution

$$0 \to \bigoplus_d R(-d)^{\beta_{p,d}} \to \cdots \to \bigoplus_d R(-d)^{\beta_{0,d}} \to I \to 0$$

of I. Here R(-d) denotes the graded free module obtained by shifting the degrees of elements in R by d. The numbers $\beta_{i,d}$, which we shall refer to as the ith \mathbb{N} -graded Betti numbers of degree d of I, are independent of the choice of the graded minimal finite free resolution.

Definition 1 (simplicial complex). A simplicial complex Δ over a set of vertices $V = \{v_1, \ldots, v_n\}$ is a collection of subsets of V, with the property that $\{v_i\} \in \Delta$ for all i, and if $F \in \Delta$ then all subsets of F are also in Δ . An element of Δ is called a face of Δ . The maximal faces of Δ under inclusion are called facets of Δ . A subcollection of Δ is a simplicial complex whose facets are also facets of Δ ; in other words a simplicial complex generated by a subset of the set of facets of Δ . $A \subseteq V$, the induced subcomplex of Δ on A, denoted by Δ_A , is defined as $\Delta_A = \{F \in \Delta \mid F \subseteq A\}$.

^{*}Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada, faridi@mathstat.dal.ca, +1(902)-494-2658. Research supported by NSERC.

Definition 2. Let Δ be a simplicial complex with vertex set x_1, \ldots, x_n and $R = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k. The Stanley-Reisner ideal of Δ is defined as I_{Δ} $(\prod_{x_i \in F} x_i \mid F \notin \Delta).$

Definition 3 ([F1] leaf, joint). A facet F of a simplicial complex is called a *leaf* if either F is the only facet of Δ or for some facet $G \neq F$ of Δ we have $F \cap H \subseteq G$ for all other facets H of Δ . Such a facet G is called a *joint* of F.

Definition 4 ([F1] tree, forest). A connected simplicial complex Δ is a *tree* if every nonempty subcollection of Δ has a leaf. If Δ is not necessarily connected, but every subcollection has a leaf, then Δ is called a *forest*.

Theorem 5 ([F2] Theorem 2.5). An induced subcomplex of a simplicial tree is a simplicial forest.

Definition 6 (link). Let Δ be a simplicial complex over a vertex set V and let F be a face of Δ . The *link* of F is defined as $lk_{\Delta}(F) = \{G \in \Delta \mid F \cap G = \emptyset \& F \cup G \in \Delta\}$.

Lemma 7 (A link in a tree is a forest). If Δ is a tree and F is a face of Δ , then $\operatorname{lk}_{\Delta}(F)$ is a forest.

Proof. Suppose $\text{lk } \Delta(F) = \langle G_1, \dots, G_s \rangle$ where G_i is a subset of a facet $F_i = F \cup G$ of Δ . Now suppose $\Gamma = \langle G_{a_1}, \dots, G_{a_r} \rangle$ is a subcollection of lk $\Delta(F)$. We need to show that Γ has a leaf. Let $\langle F_{a_1}, \dots, F_{a_r} \rangle$ be the corresponding subcollection of Δ , which must have a leaf, say F_{a_1} and a joint, say F_{a_2} . Then we have $F_{a_i} \cap F_{a_1} \subseteq F_{a_2}$ for $i = 3, \ldots, r$. But since $F_{a_i} = F \cup G_{a_i}$ and $F \cap G_{a_i} = \emptyset$ for all i, we must have $G_{a_i} \cap G_{a_1} \subseteq G_{a_2}$ for $i = 3, \ldots, r$ which means that G_{a_1} is a leaf of Γ .

We will combine the above two facts with Hochster's formula for Betti numbers of the ideal and its dual [BCP].

Theorem 8 ([BCP]). Let k be a field and Δ a simplicial complex over vertex set V. Then

$$\beta_{i,j}(I_{\Delta}) = \sum_{A \subseteq V, |A|=j} \dim_k \widetilde{H}_{j-i-2}(\Delta_A; k) \tag{1}$$

$$\beta_{i,j}(I_{\Delta}) = \sum_{A \subseteq V, |A| = j} \dim_k \widetilde{H}_{j-i-2}(\Delta_A; k)$$

$$\beta_{i,j}(I_{\Delta}^{\vee}) = \sum_{A \subseteq V, |A| = j} \dim_k \widetilde{H}_{i-1}(\operatorname{lk}_{\Delta}(V \setminus A; k)).$$
(2)

If Δ is a tree, the following theorem shows how to find Betti numbers of I_{Δ} , and along the way also gives a proof of the fact that I_{Δ} has a linear resolution. This last statement is not unknown, it follows also from Fröberg's characterizations of edge ideals with linear resolutions [Fr] along with observations in [HHZ], and is also proved in [CF].

Theorem 9. Let Δ be a simplicial tree with vertex set V. Then Δ is a flag complex, I_{Δ} has a linear resolution, and the Betti numbers of I_{Δ} can be computed by

$$\beta_{i,j}(I_{\Delta}) = \begin{cases} \sum_{A \subseteq V, \ |A| = j} (number \ of \ connected \ components \ of \ \Delta_A - 1) & j = i + 2 \\ 0 & otherwise. \end{cases}$$

Proof. By (1) we know that we are looking at the reduced homology modules of Δ_A for various $A \subseteq V$. For a given A, we know that Δ_A is a forest, and every connected component is a tree and therefore acyclic ([F2] Theorem 2.9). Therefore, for each such A the only possible nonzero reduced homology is the 0th one, that is when |A| - i - 2 = 0 or |A| = i + 2. The formula now just follows.

In particular, β_0 is only positive in degree 2, which implies that Δ is a flag complex, and the fact that the resolution is linear is evident from the way the Betti numbers grow.

Theorem 10. Let Δ be a simplicial tree with vertex set V of cardinality n. Then the I_{Δ}^{\vee} has projective dimension I, and its Betti numbers are

$$\beta_{i,j}(I^{\vee}_{\Delta}) = \begin{cases} & \textit{number of facets of } \Delta \textit{ of cardinality } n-j & i=0 \\ \\ & \sum_{A\subseteq V, \; |A|=j} (\textit{number of connected components of } \operatorname{lk}_{\Delta}(V\setminus A)-1) & i=1 \\ \\ & 0 & \textit{otherwise}. \end{cases}$$

Proof. This follows from (2). Note that in this case we are looking at the homology modules of $\text{lk }_{\Delta}(V \setminus A)$ for $A \subseteq V$. By Lemma 7 $\text{lk }_{\Delta}(V \setminus A)$ is a forest, and so since all the connected components are acyclic, we only have possible homology in degrees -1 (if the link is empty) and 0.

The case i=1 is the 0th homology, and we are counting the numbers of connected components minus 1, which is straightforward.

In the case i=0, we are counting only those $A \subset V$ where $\operatorname{lk}_{\Delta}(V \setminus A) = \{\emptyset\}$, or equivalently $V \setminus A$ is a facet of Δ . So the formula for the case i=0 follows.

References

- [BCP] D. Bayer, H. Charalambous, and S. Popescu, *Extremal Betti numbers and Applications to Monomial Ideals*, J. Alg. 221 (1999), 497–512.
- [CF] E. Connon, S. Faridi, *Chorded complexes and a necessary condition for a monomial ideal to have a linear resolution*, arXiv:1209.5089.

- [F1] S. Faridi, *The facet ideal of a simplicial complex*, Manuscripta Mathematica 109, 159–174 (2002).
- [F2] S. Faridi, Monomial resolutions supported by simplicial trees, arXiv:1202.0750.
- [Fr] R. Fröberg, *On Stanley-Reisner rings*, Topics in Algebra, Part 2 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 57–70.
- [HHZ] J. Herzog, T. Hibi, X. Zheng, *Diracs theorem on chordal graphs and Alexander duality*, European J. Combin. 25 (2004), 949960.