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MONOMIAL RESOLUTIONS SUPPORTED BY
SIMPLICIAL TREES

SARA FARIDI

ABSTRACT. We explore resolutions of monomial ideals
supported by simplicial trees. We argue that, since simplicial
trees are acyclic, the criterion of Bayer, Peeva and Sturmfels
for checking whether a simplicial complex supports a free
resolution of a monomial ideal reduces to checking that
certain induced subcomplexes are connected. We then use
results of Peeva and Velasco to show that every simplicial
tree appears as the Scarf complex of a monomial ideal and
hence supports a minimal resolution. We also provide a way
to construct smaller Scarf ideals than those constructed by
Peeva and Velasco.

1. Introduction. Simplicial trees [5] were first introduced as a
generalization of graph trees and in the context of studying normal
ideals. It became increasingly clear that the combinatorics of simplicial
trees mimics that of graph trees quite nicely. As a result, many
Cohen-Macaulay type properties known for edge ideals of graphs were
generalized for facet ideals of trees ([6, 7]), and a “cycle theory” for
simplicial trees was developed ([3, 4]).

The purpose of this paper is to demonstrate that simplicial trees
have the potential to be used as an effective tool in resolutions of
monomial ideals. As first noted by Taylor [11], given an ideal I in
a polynomial ring R minimally generated by monomials m1, . . . ,mq,
a free resolution of I can be given by the simplicial chain complex
of a simplex with q vertices. Most often, Taylor’s resolution is not
minimal. Bayer, Peeva and Sturmfels [1] refined Taylor’s construction:
they provided a criterion to check whether the simplicial chain complex
of any simplicial complex on q vertices is a (minimal) free resolution of
I (Theorem 3.1).

If ∆ is a simplicial complex with q vertices, the criterion of Bayer,
Peeva and Sturmfels determines if ∆ supports a free resolution of I
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based on whether certain subcomplexes of ∆ are acyclic. The goal of
this note is to point out that if the simplicial complex ∆ being con-
sidered is a simplicial tree (Definition 2.3), then all that needs to be
checked is that these subcomplexes are connected. We accomplish this
by proving that simplicial trees are acyclic (Theorem 2.9), and every
induced subcomplex of a simplicial tree is a simplicial forest (Theo-
rem 2.5).

We then use a result of Peeva and Velasco [9] to conclude that
every simplicial tree supports a minimal resolution of a monomial ideal.
Peeva and Velasco’s result is that every simplicial complex (other than
the boundary of a simplex) is the Scarf complex of some monomial
ideal, and they give a specific method to build such an ideal. We refine
their result to describe ideals minimally resolved by a Scarf complex,
and therefore by a given simplicial tree, and compare them to such
ideals described by Phan [10].

2. Simplicial trees and some of their properties.

Definition 2.1 (Simplicial complex). A simplicial complex ∆ over a
set of vertices V = {v1, . . . , vn} is a collection of subsets of V , with the
property that {vi} ∈ ∆ for all i, and if F ∈ ∆ then all subsets of F are
also in ∆. An element of ∆ is called a face of ∆, and the dimension of
a face F of ∆ is defined as |F | − 1, where |F | is the number of vertices
of F . The faces of dimensions 0 and 1 are called vertices and edges,
respectively, and dim ∅ = −1. The maximal faces of ∆ under inclusion
are called facets of ∆. The dimension of the simplicial complex ∆ is
the maximal dimension of its facets. A subcollection of ∆ is a simplicial
complex whose facets are also facets of ∆; in other words a simplicial
complex generated by a subset of the set of facets of ∆.

Suppose ∆ is a simplicial complex with facets F1, . . . , Fq. The
simplicial complex obtained by removing the facet Fi from ∆ is the
simplicial complex

∆ \ ⟨Fi⟩ = ⟨F1, . . . , F̂i, . . . , Fq⟩.

Definition 2.2 ([5] leaf, joint). A facet F of a simplicial complex
is called a leaf if either F is the only facet of ∆ or for some facet
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G ∈ ∆ \ ⟨F ⟩ we have
F ∩ (∆ \ ⟨F ⟩) ⊆ G.

Such a facet G is called a joint of F .

Equivalently, a facet F is a leaf of ∆ if F ∩ (∆ \ ⟨F ⟩) is a face of
∆ \ ⟨F ⟩.

Note that it follows immediately from the definition above that a leaf
F must contain at least one free vertex ; namely, a vertex that belongs
to no other facet of ∆ but F .

Definition 2.3 ([5] tree, forest). A connected simplicial complex ∆
is a tree if every nonempty subcollection of ∆ has a leaf. If ∆ is not
necessarily connected, but every subcollection has a leaf, then ∆ is
called a forest.

Definition 2.4 (induced subcomplex). Suppose ∆ is a simplicial
complex over a vertex set V , and let X ⊆ V . The induced subcomplex
on X , denoted by ∆X , is defined as

∆X = {F ∈ ∆ | F ⊆ X}.

Theorem 2.5. An induced subcomplex of a simplicial tree is a simpli-
cial forest.

Proof. Let ∆ = ⟨F1, . . . , Fq⟩ be a simplicial tree, and suppose
X = {x1, . . . , xs} is a subset of the vertex set of ∆. We would like
to show that ∆X is a forest. The facets of ∆X are clearly a subset of
{F1 ∩ X , . . . , Fq ∩ X}. Let Γ be a subcollection of ∆X consisting of
facets Fα1

∩ X , . . . , Fαr
∩ X . We need to show Γ has a leaf. Since ∆

is a tree, the corresponding subcollection Fα1 , . . . , Fαr of ∆ has a leaf
Fαi with joint Fαj . So, for every h ∈ {1, . . . , r} \ {i}, we have

Fαi ∩ Fαh
⊆ Fαj

which implies that

(Fαi ∩ X ) ∩ (Fαh
∩ X ) ⊆ (Fαj ∩ X ).

So Fαi ∩ X is a leaf of Γ, and therefore ∆X is a forest. �



350 SARA FARIDI

One property of simplicial trees that we will need is that they are
acyclic. While this can be shown via a direct calculation of homological
cycles and boundaries, we show more: simplicial trees are collapsible,
hence contractible, and therefore acyclic. We refer the reader to [2] for
more details on these concepts.

Definition 2.6 (Collapsible simplicial complex). Let ∆ be a simplicial
complex and F ′ a maximal proper face of exactly one facet F of ∆.
The complex Γ = ∆ \ {F, F ′} is said to be obtained from ∆ using an
elementary collapse. If a sequence of elementary collapses reduces ∆
to a single point, then ∆ is called collapsible.

Below we use the phrase “∆ collapses to ∆′” to imply that the
complex ∆′ can be obtained from ∆ via a sequence of elementary
collapses.

Proposition 2.7. Let ∆ be a simplex with facet F , and let F ′ be a
proper nonempty face of F . Then ∆ collapses to ⟨F ′⟩. In particular,
every simplex is collapsible.

Proof. Suppose F = {x1, . . . , xn}. We use induction on n. The
case n = 2 is clear, since F ′ would be a point, say {x1}, and the edge
{x1, x2} clearly collapses to {x1}.

Suppose n > 2, and let F1, . . . , Fn be the maximal proper faces of F
where, for each i, Fi = F \ {xi}. Suppose, without loss of generality,
F ′ ⊂ Fn. We perform the following elementary collapse on ∆:

∆ \ {F, F1} = ⟨F2, . . . , Fn⟩. �

Claim 2.8. For i ≥ 2, there is a series of elementary collapses taking
the complex ⟨Fi, . . . , Fn⟩ to the complex ⟨Fi+1, . . . , Fn⟩.

Proof of Claim 2.8. If i = 2, then the complex ∆2 = ⟨F2, . . . , Fn⟩
has F2 ∩ F1 as a maximal proper face of F2 (note that F2 ∩ F1 =
{x3, . . . , xn} ̸⊂ Fi if i > 2). Now we do the elementary collapse

∆2 \ {F2, F1 ∩ F2} = ⟨F3, . . . , Fn⟩,

and we are done.
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Now suppose that we have arrived at ∆i = ⟨Fi, . . . , Fn⟩. In what
follows we will repeatedly use two basic observations.

(i) The maximal proper subfaces of a face Fi1,...,ik = Fi1 ∩ Fi2 ∩
. . . ∩ Fik are of the form

Fi1,...,ik,j = Fi1 ∩ Fi2 ∩ . . . ∩ Fik ∩ Fj

where j /∈ {i1, . . . , ik} ⊆ {1, . . . , n}.
(ii) Suppose n ≥ i1 > i2 > · · · > is ≥ 1 and n ≥ j1 > j2 > · · · >

jt ≥ 1. Then we have

Fi1,...,is ⊆ Fj1,...,jt ⇐⇒ {i1, . . . , is} ⊇ {j1, . . . , jt}.

So the maximal proper faces of Fi that are not contained in any of
Fi+1, . . . , Fn are

F1,i, F2,i, . . . , Fi−1,i.

Let ∆i+1 = ⟨Fi+1, . . . , Fn⟩. Using (i) and (ii) above we perform the
repeated elementary collapses

∆i,1 = ∆i\{Fi, Fi,1} = ⟨Fi,2, . . . , Fi,i−1⟩ ∪∆i+1

∆i,2,1 = ∆i,1\{Fi,2, Fi,2,1} = ⟨Fi,3, . . . , Fi,i−1⟩ ∪∆i+1

∆i,3,1 = ∆i,2,1\{Fi,3, Fi,3,1} = ⟨Fi,3,2, Fi,4, . . . , Fi,i−1⟩ ∪∆i+1

∆i,3,2,1 = ∆i,3,1\{Fi,3,2, Fi,3,2,1} = ⟨Fi,4, . . . , Fi,i−1⟩ ∪∆i+1

∆i,4,1 = ∆i,3,2,1\{Fi,4, Fi,4,1}=⟨Fi,4,2, Fi,4,3, Fi,5, . . . , Fi,i−1⟩∪∆i+1

...
∆i,...,1 = ∆i,i−1,i−2,...,3,1\{Fi,...,2, Fi,...,1} = ∆i+1. �

It now follows from repeated applications of Claim 2.8 that ∆
collapses to ∆n = ⟨Fn⟩, which is a simplex on n − 1 vertices. If
F ′ = Fn, we are done, and if not, the induction hypothesis implies
that ∆n collapses to ⟨F ′⟩ via a series of elementary collapses.

Theorem 2.9. Simplicial trees are collapsible, and therefore con-
tractible and acyclic.

Proof. We prove this by induction on the number q of facets of a
simplicial tree ∆. If q = 1, the statement follows from Proposition 2.7.
Suppose q > 1, and let F be a leaf of ∆ with joint G. Let F ′ = F ∩G.
We know by Proposition 2.7 that ⟨F ⟩ reduces to ⟨F ′⟩ via a series of
elementary collapses. Moreover, the faces being eliminated in each
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of the collapses are not faces of ∆ \ ⟨F ⟩, since they are not faces of
F ′ = F ∩∆ \ ⟨F ⟩. Therefore, all the elementary collapses that reduce
⟨F ⟩ to ⟨F ′⟩ are elementary collapses on ∆ that reduce ∆ to ∆\⟨F ⟩. The
latter is a tree with q− 1 facets and hence collapsible by the induction
hypothesis.

All collapsible complexes are contractible so the rest of the statement
follows directly. �

3. Resolutions by trees. We now review monomial resolutions as
described by Bayer, Peeva and Sturmfels [1] and show how simplicial
trees fit in that picture. The construction in [1] considers a monomial
ideal I in a polynomial ring S over a field, where I is minimally
generated by monomials m1, . . . ,mt. If ∆ is a simplicial complex on t
vertices, one can label each vertex of ∆ with one of the generators of
m1, . . . ,mt and each face with the least common multiple of the labels
of its vertices. If m is a monomial in S, let ∆m be the subcomplex of
∆ induced on the vertices of ∆ whose labels divide m.

Theorem 3.1 (Bayer, Peeva, Sturmfels [1]). Let ∆ be a simpli-
cial complex labeled by monomials m1, . . . ,mt ∈ S, and let I =
(m1, . . . ,mt) be the ideal in S generated by the vertex labels. The chain
complex C(∆) = C(∆;S) of ∆ is a free resolution of S/I if and only
if the induced subcomplex ∆m is empty or acyclic for every monomial
m ∈ S. Moreover, C(∆) is a minimal free resolution if and only if
mA ̸= mA′ for every proper subface A′ of a face A.

Note that we can determine whether C(∆) is a resolution just by
checking the vanishing condition for monomials that are least common
multiples of sets of vertex labels.

Combinatorially, what Theorem 3.1 is saying is that the Betti vector
of S/I is bounded by the f -vector of an eligible ∆:

β(S/I) = (β0(S/I), . . . , βq(S/I))(3.1)

≤ (f0(∆), . . . , fq(∆)) = f(∆)

with equality holding if some extra conditions are satisfied.

We now turn our attention back to simplicial trees. If the ∆ under
consideration in Theorem 3.1 is a tree, then we can show the following.
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Theorem 3.2 (Resolutions via simplicial trees). Let ∆ be a simplicial
tree labeled by monomials m1, . . . ,mt ∈ S, and let I = (m1, . . . ,mt)
be the ideal in S generated by the vertex labels. The chain complex
C(∆) = C(∆;S) is a free resolution of S/I if and only if the induced
subcomplex ∆m is connected for every monomial m.

Proof. By Theorem 2.5, every induced subcomplex of ∆ is a forest.
By Theorem 2.9, forests are acyclic in all but possibly the 0th reduced
homology, that is, they may not be connected. This proves the
theorem. �

The strength of Theorem 3.2 is in that it reduces the question of
whether a simplicial complex resolves an ideal to checking whether
some of its induced subcomplexes are connected.

One type of question one could then ask is, given a tree ∆, what
ideals could it resolve? Our first example displays this line of question-
ing.

Example 3.3. Let ∆ be the simplicial tree below on 4 vertices, which
we have labeled with monomials m1, . . . ,m4.
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The only induced subcomplex of ∆ that is not connected is the one
induced on the vertices labeled m1 and m3, so by Theorem 3.2, for
I = (m1,m2,m3,m4) to be resolved by ∆, we need to have

m2 | lcm(m1,m3) or m4 | lcm(m1,m3).

A more concrete example using the same complex comes next.
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Example 3.4. The ideal I = (xy2, yz, xz2, zu) can be resolved by ∆.

���
���
���
���
���

���
���
���
���
�����

��
��
�� ��

����

��

xy

xz
2

2
zu

2 yz

xy  zu

However, β(S/I) = (4, 4, 1) � (4, 5, 2) = f(∆), so the resolution is not
minimal. We try to make it minimal by removing the faces with equal
labels.
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Note that the resulting complex is also a simplicial tree satisfying the
conditions of Theorem 3.2 and whose f -vector is (4, 4, 1). It therefore
minimally resolves S/I.

4. Scarf complexes and Scarf ideals. We now come to the
question of which monomial ideals can be (minimally) resolved by a
simplicial tree. It is known from work of Velasco [12] that there are
classes of monomial ideals whose minimal resolutions are not supported
by any simplicial complex. However, most simplicial complexes, and all
simplicial trees do appear as Scarf complexes of some monomial ideal.
Given a monomial ideal, its Scarf complex is a subcomplex of its Taylor
complex with the same labeling and with the added condition that, if a
face has the same label as another face, neither face can appear in the
Scarf complex. The last simplicial complex appearing in Example 3.4
is a Scarf complex of the ideal I in that example.

By construction, if the Scarf complex resolves an ideal, it does so
minimally. Moreover most simplicial complexes appear as the Scarf
complex of some monomial ideal.

Theorem 4.1 ([9], [10]). Let ∆ be a simplicial complex on r vertices.

(i) ∆ is the Scarf complex of a monomial ideal if and only if ∆ is
not the boundary of a simplex on r vertices.
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(ii) ∆ minimally resolves a monomial ideal if and only if ∆ is
acyclic.

Since simplicial trees are acyclic, it immediately follows that:

Corollary 4.2. Every simplicial tree is the Scarf complex of a mono-
mial ideal I and supports a minimal resolution of I.

An ideal (minimally) resolved by its Scarf complex is called a Scarf
ideal. Given an eligible simplicial complex ∆ with vertices labeled
1, . . . , n, Peeva and Velasco in [9] build a Scarf ideal J∆ using the
following steps. Define a variable xσ corresponding to each face σ of
∆. In the polynomial ring generated by all these variables, define the
ideal J∆ whose generators are enumerated by the vertices of ∆, and
for every given vertex v of ∆, the corresponding monomial generator is
the product of all xσ where v /∈ σ. In short,

(4.1) J∆ =

(∏
σ∈∆

v/∈σ

xσ | v = 1, . . . , n

)
= (m1, . . . ,mn).

The ideal J∆ defined above is generated by rather large monomials.
In what follows, we will demonstrate that one can shave off some
variables in each monomial to reduce the size of the generator and
still have a Scarf ideal of ∆.

Suppose ∆ is a simplicial complex with vertices labeled 1, . . . , n.
And, for each vertex v, let A∆(v) be the set of facets of ∆ that do not
contain v, and let B∆(v) be the set of facets of ∆ that do contain v.
With variables labeled as

J ′
∆ = (m′

1, . . . ,m
′
n)

where

m′
v =

√√√√ ∏
G∈B∆(v)

xG\{v}
∏

F∈A∆(v)

(
xF

∏
σ⊂F

|σ|=|F |−1

xσ

)
(4.2)

for v = 1, . . . , n,
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and for a monomial m by
√
m, we mean the square-free monomial

which is the product of all variables dividing m. It is clear that the
m′

v | mv for all v.

Proposition 4.3. Let ∆ be a simplicial complex which is not the
boundary of an n-simplex, and let J ′

∆ be the ideal described in (4.2).

(i) ∆ is the Scarf complex for J ′
∆.

(ii) If ∆ is acyclic (and in particular if ∆ is a simplicial tree), then
J ′
∆ is a Scarf ideal.

Proof. We first show that J ′
∆ has no redundant generators. Suppose

that we have m′
i | m′

j and i ̸= j.

Clearly, A∆(i) ⊆ A∆(j). If G ∈ B∆(i), then G \ {i} can only be a
maximal proper face of a facet in A∆(j); otherwise, H = {j}∪G\{i} ∈
B∆(j) and i /∈ H. Therefore, H ∈ A∆(i) ⊆ A∆(j), which is a
contradiction since j ∈ H. In particular, G ∈ A∆(j).

We have shown that

A∆(i) ∪B∆(i) ⊆ A∆(j).

This implies that all facets of ∆ belong to A∆(j), and hence j is not
in any facet of ∆; a contradiction.

So we can label the vertices of ∆ with the monomials m′
1, . . . ,m

′
n,

where the labeling is consistent with m1, . . . ,mn as in (4.1). Next, we
have to make sure that ∆ is a Scarf complex of J ′

∆. For this purpose
and what follows, the next claim will be useful.

Claim 4.4. Suppose σ = {u1, . . . , us} and τ = {v1, . . . , vt} are two
faces of the simplex on {1, . . . , n}. Then

lcm(m′
u1
, . . . ,m′

us
) = lcm(m′

v1
, . . . ,m′

vt
) ⇐⇒ lcm(mu1

, . . . ,mus
)

= lcm(mv1 , . . . ,mvt).

Proof of Claim 4.4. For ease of argument, we label the above lcms
from the left to the right with the symbols M ′

σ, M ′
τ , Mσ and Mτ ,

respectively. Now suppose M ′
σ = M ′

τ . Then it follows directly that
Mσ = Mτ . Conversely, suppose Mσ = Mτ . Then, in particular, we
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have
s∪

i=1

A∆(ui) =
t∪

i=1

A∆(vi)

so all the factors xF where F is a facet of ∆ are the same in both
monomials M ′

σ and M ′
τ , as well as all xσ for maximal proper faces σ

of such F . So we only have to worry about terms of the form xG\{j}
for a facet G of ∆ that contains j. Suppose xG\{uh} | M ′

σ. If xG

appears in M ′
σ, we are done, as G \ {uh} is a maximal proper face of

G which appears as a label in M ′
τ as well. If not, we conclude that

u1, . . . , us, v1, . . . , vt ∈ G, which means that σ and τ are both faces
of ∆ with the same lcms; a contradiction, as ∆ is a Scarf complex of
J∆. �

The statement we just proved implies that ∆ is the Scarf complex
of J ′

∆, as it is the Scarf complex of J∆.

We now show that, if ∆ is acyclic, then it supports a (minimal)
resolution of J ′

∆. So we need to show that, for any set of vertices
u1, . . . , us of ∆, the induced subcomplex on the vertex set

X = {j | m′
j | lcm(m′

u1
, . . . ,m′

us
)}

is acyclic. Notice that

lcm(m′
j | j ∈ X ) = lcm(m′

u1
, . . . ,m′

us
)

which, by Claim 4.4, is equivalent to

lcm(mj | j ∈ X ) = lcm(mu1
, . . . ,mus)

and
X = {j | mj | lcm(mu1 , . . . ,mus)}.

So the induced subcomplex ∆X is the same under both labelings (by
J∆ and J ′

∆), and is therefore acyclic. �

Note that Claim 4.4 shows that J∆ and J ′
∆ have isomorphic lcm lat-

tices, which in fact by itself implies that the two ideals have isomorphic
minimal resolutions [8], giving an alternate proof.

Remark 4.5. Using the lattice coming from the face poset of a
simplicial complex ∆, Phan [10] described a “minimal” monomial ideal



358 SARA FARIDI

P∆ resolved by ∆. The generators of P∆ are monomials labeled with
“meet irreducible” elements of this lattice, that is, all faces of ∆ that
are not intersections of two other faces of ∆. It is straightforward to
show that every such face is a facet or a maximal proper face of a facet.
It follows that the minimal generators of P∆ divide the m′

v described
in (4.2).

We demonstrate all this via an example.

Example 4.6. For the complex ∆ below, β(J∆) = (4, 4, 1) = β(J ′
∆) =

f(∆).

��
��
��
��

����
��

��
��
��
��

3
4

1
2

J∆=(x2x3x4x23x24x34x234,x1x3x4x34,x1x2x4x12x24,x1x2x3x12x23)

↓
J ′
∆ = (x2x23x24x34x234, x1x34, x1x2x12x24, x1x2x12x23)

↓
P∆ = (x23x24x34x234, x1x34, x1x12x24, x1x12x23)

Computational evidence has shown that many ideals “in-between”
J∆ and J ′

∆ can be resolved by ∆, though not all of them, as indicated
in Example 4.8. Given a vertex v of ∆, we know that

(4.3) mv =
∏
σ∈∆

v/∈σ

xσ = m′′
vm

′
v,

where, by m′′
v , we are denoting the product of the xσ that does not

appear in m′
v. We show below that the Scarf complexes of these in-

between ideals contain ∆ as a subcomplex, but our discussion further
down demonstrates that these Scarf complexes could be larger than ∆.

Proposition 4.7. Let ∆ be a simplicial complex on n vertices which is
not the boundary of a simplex. For a vertex v of ∆, let the monomials
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mv, m
′
v and m′′

v be as defined in (4.1), (4.2) and (4.3), respectively, and
suppose hv is a monomial such that hv | m′′

v . Let I be the monomial
ideal

I = (h1m
′
1, . . . , hnm

′
n).

Then the Scarf complex Γ of I has n vertices and contains ∆ as a
subcomplex.

Proof. First, we have to show that I has no redundant generators.
Consider two monomials him

′
i and hjm

′
j for some i ̸= j. We have

proved before that m′
i - m′

j , so there are two possibilities:

(i) There is F ∈ A∆(i) such that F /∈ A∆(j) (therefore j ∈ F ), in
which case xF - mj , and therefore him

′
i - hjm

′
j ; a contradiction.

(ii) A∆(i) ⊆ A∆(j), in which case there is G ∈ B∆(i) such
xG\{i} - m′

j , so G /∈ A∆(j), and therefore j ∈ G, which implies
that j ∈ G \ {i}. So xG\{i} - mj , and therefore him

′
i - hjm

′
j .

This shows that h1m
′
1, . . . , hnm

′
n is a minimal generating set for I.

Let Γ be the Scarf complex of I, and suppose σ = {u1, . . . , us} and
τ = {v1, . . . , vt} are two faces of the simplex on {1, . . . , n} with the
same labels:

lcm(hu1m
′
u1
, . . . , husm

′
us
) = lcm(hv1m

′
v1
, . . . , hvtm

′
vt).

Suppose ui /∈ {v1, . . . , vt} for some i. Then we have huim
′
ui

|
lcm(hv1m

′
v1
, . . . , hvtm

′
vt). So all variables labeled by facets in A∆(ui),

their maximal proper faces, and by G \ {ui} for G ∈ B∆(ui) already
appear in lcm(hv1m

′
v1
, . . . , hvtm

′
vt
) | lcm(mv1 , . . . ,mvt). Therefore,

mui | lcm(mv1 , . . . ,mvt) =⇒ lcm(mui ,mv1 , . . . ,mvt)

= lcm(mv1 , . . . ,mvt).

Since ∆ is the Scarf complex for J∆, this implies that τ /∈ ∆. Similarly,
we have σ /∈ ∆. This proves that the Scarf complex Γ of I contains
∆. �

Below is an example demonstrating that Γ may not be equal to ∆,
even though they are quite often equal.
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Example 4.8. For the complex ∆ below,

�
�
�
�

��
��
��
��
��

��
��
��
��

����

  3

  2   5
  1

  4

we have J∆ = (m1, . . . ,m5) and J ′
∆ = (m′

1, . . . ,m
′
5), where

m1 = x2x3m
′
1 m′

1 = x23x24x34x234x4x5x45

m2 = x1x3m
′
2 m′

2 = x13x34x4x5x45

m3 = x1x2m
′
3 m′

3 = x12x24x4x5x45

m4 = x1x2x3m
′
4 m′

4 = x12x13x23x123x5

m5 = x1x2x3m
′
5 m′

5 = x12x13x23x123x24x34x234x4

In this case, β(S/J∆) = β(S/J ′
∆) = f(∆) = (5, 6, 2) as expected

(though J∆ and J ′
∆ have different graded Betti numbers).

Now consider the ideal I = (m′
1,m

′
2,m

′
3, x1m

′
4,m

′
5). We have

β(S/I) = (5, 7, 3) and the (acyclic) Scarf complex of I is

�
�
�
�

��

����
��
��
��
��

��
��
��
��

  3

  2   5
  1

  4

which contains ∆ as a subcomplex.

It is worth noting that only very low degree choices of hv will give
strictly larger Scarf complexes. That is, given an acyclic simplicial
complex, one can find a whole class of Scarf ideals for it by making
appropriate (large enough) choices for the monomials hv.

There are many questions that naturally follow from this work,
answers to which would greatly contribute to understanding monomial
resolutions. For example, can one describe classes of monomial ideals
resolved by a given tree? What roles do localization, removal of
facets and other such operations that preserve forests play on Scarf
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ideals? Can one describe classes of complexes (trees) resolving a given
monomial ideal?

Acknowledgments. We gratefully acknowledge comments by the
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