JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL IN A TWO DIMENSIONAL REGULAR LOCAL RING

Eero Hyry, Tarmo Järvilehto

19th July 2006

Outline

(1) Multiplier ideals and Jumping numbers
(2) Preliminaries on simple complete ideals
(3) Main Results

A general set-up for multiplier ideals

- (A, \mathfrak{m}) a regular local ring
- $I \subset A$ an ideal
- $f: X \rightarrow \operatorname{Spec} A$ a log-resolution of I, i.e., a projective birational morphism with X regular and $I \mathcal{O}_{X}=\mathcal{O}_{X}(-D)$ where D is an effective Cartier divisor such that
$D+$ exceptional (f) has simple normal crossing support
- $K_{X}=\operatorname{div} \mathcal{J}_{X / A}$ the relative canonical divisor

A general set-up for multiplier ideals

- (A, \mathfrak{m}) a regular local ring
- $I \subset A$ an ideal
- $f: X \rightarrow \operatorname{Spec} A$ a log-resolution of I, i.e., a projective
birational morphism with X regular and $I \mathcal{O}_{X}=\mathcal{O}_{X}(-D)$
where D is an effective Cartier divisor such that
$D+$ exceptional (f) has simple normal crossing support
- $K_{X}=\operatorname{div} \mathcal{J}_{X / A}$ the relative canonical divisor

A GENERAL SET-UP FOR MULTIPLIER IDEALS

- (A, \mathfrak{m}) a regular local ring
- $I \subset A$ an ideal
- $f: X \rightarrow \operatorname{Spec} A$ a log-resolution of I, i.e., a projective birational morphism with X regular and $I \mathcal{O}_{X}=\mathcal{O}_{X}(-D)$ where D is an effective Cartier divisor such that
$D+$ exceptional (f) has simple normal crossing support

A GENERAL SET-UP FOR MULTIPLIER IDEALS

- (A, \mathfrak{m}) a regular local ring
- $I \subset A$ an ideal
- $f: X \rightarrow \operatorname{Spec} A$ a log-resolution of I, i.e., a projective birational morphism with X regular and $I \mathcal{O}_{X}=\mathcal{O}_{X}(-D)$ where D is an effective Cartier divisor such that
$D+$ exceptional (f) has simple normal crossing support
- $K_{X}=\operatorname{div} \mathcal{J}_{X / A}$ the relative canonical divisor

Multiplier ideals

Definition

Let $c \geq 0$ be a rational number. The multiplier ideal with coefficient c is

$$
\mathcal{J}(c l)=\Gamma\left(X, \mathcal{O}_{X}\left(K_{X}-\lfloor c D\rfloor\right)\right)
$$

where \rfloor denotes the round-down of a divisor.

Multiplier ideals

Definition

Let $c \geq 0$ be a rational number. The multiplier ideal with coefficient c is

$$
\mathcal{J}(c l)=\Gamma\left(X, \mathcal{O}_{X}\left(K_{X}-\lfloor c D\rfloor\right)\right)
$$

where \rfloor denotes the round-down of a divisor.

Observation

$$
c<c^{\prime} \Rightarrow \mathcal{J}\left(c^{\prime} l\right) \subset \mathcal{J}(c l)
$$

An elementary lemma

Lemma (Ein-LaZarsfeld-Smith-Varolin)

There exists an inreasing discrete sequence $0=c_{0}<c_{1}<c_{2}<\ldots$ of rational numbers characterized by the properties that

$$
\mathcal{J}(c l)=\mathcal{J}\left(c_{i} l\right) \quad \text { for } c \in\left[c_{i}, c_{i+1}[\right.
$$

while

$$
\mathcal{J}\left(c_{i+1} l\right) \subsetneq \mathcal{J}\left(c_{i} I\right)
$$

for all i.

Jumping numbers

Definition

The numbers c_{1}, c_{2}, \ldots are called the jumping numbers of I.

$$
\begin{aligned}
c_{1} & =\sup \{c \in \mathbb{Q} \mid \mathcal{J}(c l)=A\} \\
& =\operatorname{lct}(I) \\
& =\text { the log-canonical threshold of } I
\end{aligned}
$$

JUMPING NUMBERS

Definition

The numbers c_{1}, c_{2}, \ldots are called the jumping numbers of I.

REmARK

$$
\begin{aligned}
c_{1} & =\sup \{c \in \mathbb{Q} \mid \mathcal{J}(c l)=A\} \\
& =\operatorname{lct}(I) \\
& =\text { the log-canonical threshold of } I
\end{aligned}
$$

Notation and terminology

- $(A, \mathfrak{m}, \mathbb{k})$ a two-dimensional regular local ring with $\mathbb{k}=\overline{\mathbb{k}}$
- $I \subset A$ a simple complete \mathfrak{m}-primary ideal
- C an analytically irreducible plane curve

$$
\begin{aligned}
& \text { SIMPLE } I \text { is not a product of two proper ideals } \\
& \text { COMPLETE } I \text { is integrally closed i.e. } I=\bar{I} \text {, where }
\end{aligned}
$$

$$
\text { PLAIN CURVE Spec } A /(f) \text { where } f \in \mathfrak{m}
$$

Notation and terminology

- $(A, \mathfrak{m}, \mathbb{k})$ a two-dimensional regular local ring with $\mathbb{k}=\overline{\mathbb{k}}$
- $I \subset A$ a simple complete m-primary ideal
- C an analytically irreducible plane curve

SIMPLE I is not a product of two proper ideals
COMPLETE I is integrally closed i.e. $I=\bar{T}$, where

Notation and terminology

- $(A, \mathfrak{m}, \mathbb{k})$ a two-dimensional regular local ring with $\mathbb{k}=\overline{\mathbb{k}}$
- $I \subset A$ a simple complete \mathfrak{m}-primary ideal
- C an analytically irreducible plane curve

SIMPLE I is not a product of two proper ideals COMPLETE I is integrally closed i.e. $I=\bar{I}$, where

$$
\bar{I}=\left\{x \in A \mid x^{n}+\sum_{i=1}^{n} a_{i} x^{n-i}=0, a_{i} \in I^{i}\right\}
$$

Notation and terminology

- $(A, \mathfrak{m}, \mathbb{k})$ a two-dimensional regular local ring with $\mathbb{k}=\overline{\mathbb{k}}$
- $I \subset A$ a simple complete \mathfrak{m}-primary ideal
- C an analytically irreducible plane curve

SIMPLE I is not a product of two proper ideals COMPLETE I is integrally closed i.e. $I=\bar{I}$, where

$$
\bar{I}=\left\{x \in A \mid x^{n}+\sum_{i=1}^{n} a_{i} x^{n-i}=0, a_{i} \in I^{i}\right\}
$$

Plain curve $\operatorname{Spec} A /(f)$ where $f \in \mathfrak{m}$

Simple ideals and plane curves

ZARISKI'S POINT OF VIEW:
 Complete ideals are "linear system of curves" satisfying "infinitely near base conditions".

> A complete ideal is simple iff a general element is analytically irreducible.

Simple ideals and plane curves

Complete ideals are "linear system of curves"
 satisfying "infinitely near base conditions"

Theorem (ZARISki)
A complete ideal is simple iff a general element is analytically irreducible.

Questions

- What are the jumping numbers of a simple complete ideal?
- How these are related to the jumping numbers of the curve determined by a general element?
- What are the jumping numbers of an analytically irreducible plane curve?

Questions

- What are the jumping numbers of a simple complete ideal?
- How these are related to the jumping numbers of the curve determined by a general element?
- What are the jumping numbers of an analytically irreducible plane curve?

Questions

- What are the jumping numbers of a simple complete ideal?
- How these are related to the jumping numbers of the curve determined by a general element?
- What are the jumping numbers of an analytically irreducible plane curve?

Simple ideals and simple sequences

FACT

simple complete ideals \leftrightarrow finite simple sequences
$\operatorname{Spec} A=X_{1} \leftarrow X_{2} \leftarrow \ldots \leftarrow X_{n} \leftarrow X_{n+1}=X$
$X_{i+1}=$ the blow-up of X_{i} at a closed point $x_{i} \in E_{i-1}$
$E_{i}=$ the exceptional divisor of $X_{i+1} \rightarrow X_{i}$
Now
$x_{i}=$ the unique point on X_{i} where the transform of I has positive order

Simple ideals and valuations

FACT

simple complete ideals \leftrightarrow divisorial valuations

$$
I \mapsto v:=\operatorname{ord}_{E_{n}}=\mathfrak{m}_{X_{n}, x_{n}} \text {-adic valuation }
$$

Multiplicity sequence

Definition

The multiplicity sequence of I is $\left(m_{1}, \ldots, m_{n}\right)$ where $m_{i}=$ the order of the transform of I at x_{i}

Note that $m_{n}=1$, because I is the unique simple complete ideal whose transform at x_{n} is $\mathfrak{m}_{X_{n}, x_{n}}$.

Multiplicity sequence

Definition
 The multiplicity sequence of I is $\left(m_{1}, \ldots, m_{n}\right)$ where
 $m_{i}=$ the order of the transform of I at x_{i}

Remark

Note that $m_{n}=1$, because I is the unique simple complete ideal whose transform at x_{n} is $\mathfrak{m}_{X_{n}, x_{n}}$.

Proximity

Definition

x_{i} is proximate to x_{j} iff $x_{i} \in E_{j}$ and $j<i$.

$$
\bullet_{x_{j}} \quad \leftarrow \oint_{x_{j+1}}^{E_{j}} \quad \leftarrow \ldots \leftarrow \quad e_{x_{i}}^{E_{j}} E_{i-1}
$$

- Clearly x_{i} is proximate to x_{i-1} if $i>1$
- If x_{i} is proximate to x_{j} with $j<i-1$, then x_{i} is satellite to x_{j}.
- If x_{i} is a satellite but x_{i+1} not, then x_{i} is a terminal satellite.

Proximity

Definition

x_{i} is proximate to x_{j} iff $x_{i} \in E_{j}$ and $j<i$.

- Clearly x_{i} is proximate to x_{i-1} if $i>1$.
- If x_{i} is proximate to x_{j} with $j<i-1$, then x_{i} is satellite to x_{j}.
- If x_{i} is a satellite but x_{i+1} not, then x_{i} is a terminal satellite.

Proximity

Definition

x_{i} is proximate to x_{j} iff $x_{i} \in E_{j}$ and $j<i$.

- Clearly x_{i} is proximate to x_{i-1} if $i>1$.
- If x_{i} is proximate to x_{j} with $j<i-1$, then x_{i} is satellite to x_{j}.
- If x_{i} is a satellite but x_{i+1} not, then x_{i} is a terminal satellite.

Proximity

Definition

x_{i} is proximate to x_{j} iff $x_{i} \in E_{j}$ and $j<i$.

- Clearly x_{i} is proximate to x_{i-1} if $i>1$.
- If x_{i} is proximate to x_{j} with $j<i-1$, then x_{i} is satellite to x_{j}.
- If x_{i} is a satellite but x_{i+1} not, then x_{i} is a terminal satellite.

Terminal satellites

FACT

If x_{i+1}, \ldots, x_{j} are the points proximate to x_{i}, then

$$
m_{i}=m_{i+1}+\ldots+m_{j}
$$

Moreover, $m_{i+1}=\ldots=m_{j-1} \geq m_{j}$ and $m_{i}>m_{j-1}=m_{j}$ iff x_{j} is a terminal satellite.

- Also set $\gamma_{0}=1$ and $\gamma_{g+1}=n$.

Terminal satellites

FACT

If x_{i+1}, \ldots, x_{j} are the points proximate to x_{i}, then

$$
m_{i}=m_{i+1}+\ldots+m_{j}
$$

Moreover, $m_{i+1}=\ldots=m_{j-1} \geq m_{j}$ and $m_{i}>m_{j-1}=m_{j}$ iff x_{j} is a terminal satellite.

- Let $x_{\gamma_{1}}, \ldots, x_{\gamma_{g}}$ be the terminal satellites $\neq x_{n}$.
- Also set $\gamma_{0}=1$ and $\gamma_{g+1}=n$.

DUAL GRAPH

Definition

The dual graph of the resolution $X \rightarrow$ Spec A has the exceptional divisors $E_{1}, \ldots, E_{n} \subset X$ as vertices. The vertices E_{i} and E_{j} are connected by an edge iff $E_{i} \cap E_{j} \neq \emptyset$.

The stars are $E_{\gamma_{1}}, \ldots, E_{\gamma_{g}}$:

The main Result

Theorem

The jumping numbers of I are

- for $\nu=0, \ldots, g-1$ and $s, t, k \in \mathbb{N}$

- for $s, t \in \mathbb{N}$

$$
\frac{s+1}{m_{\gamma_{g}}}+\frac{t+1}{\left(m_{1}^{2}+\ldots+m_{n}^{2}\right): m_{\gamma_{g}}}
$$

The main Result

Theorem

The jumping numbers of I are

- for $\nu=0, \ldots, g-1$ and $s, t, k \in \mathbb{N}$
where

$$
c+\frac{k}{m_{\gamma_{\nu+1}}}
$$

$$
c=\frac{s+1}{m_{\gamma_{\nu}}}+\frac{t+1}{\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}}} \leq \frac{1}{m_{\gamma_{\nu+1}}}
$$

- for $s, t \in \mathbb{N}$

The main Result

Theorem

The jumping numbers of I are

- for $\nu=0, \ldots, g-1$ and $s, t, k \in \mathbb{N}$
where

$$
\begin{gathered}
c+\frac{k}{m_{\gamma_{\nu+1}}} \\
c=\frac{s+1}{m_{\gamma_{\nu}}}+\frac{t+1}{\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}}} \leq \frac{1}{m_{\gamma_{\nu+1}}}
\end{gathered}
$$

- for $s, t \in \mathbb{N}$

$$
\frac{s+1}{m_{\gamma_{g}}}+\frac{t+1}{\left(m_{1}^{2}+\ldots+m_{n}^{2}\right): m_{\gamma_{g}}}
$$

REmARKs

- $\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}} \in \mathbb{N}$
- Jumping numbers are periodic with period one (a general fact).
$-1+\frac{1}{v(/)}$ is the least jumping greater than one (note that $\left.v(I)=m_{1}^{2}+\ldots+m_{n}^{2}\right)$.
- Every integer greater than one is a jumping number (but one is not a jumping number).

REmARKs

- $\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}} \in \mathbb{N}$
- Jumping numbers are periodic with period one (a general fact).
- $1+\frac{1}{v(I)}$ is the least jumping greater than one (note that $\left.v(I)=m_{1}^{2}+\ldots+m_{n}^{2}\right)$.
- Every integer greater than one is a jumping number (but one is not a jumping number).

REmARKs

- $\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}} \in \mathbb{N}$
- Jumping numbers are periodic with period one (a general fact).
- $1+\frac{1}{v(I)}$ is the least jumping greater than one (note that $\left.v(I)=m_{1}^{2}+\ldots+m_{n}^{2}\right)$.
- Every integer greater than one is a jumping number (but one is not a jumping number).

REmARKs

- $\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}} \in \mathbb{N}$
- Jumping numbers are periodic with period one (a general fact).
- $1+\frac{1}{v(I)}$ is the least jumping greater than one (note that $\left.v(I)=m_{1}^{2}+\ldots+m_{n}^{2}\right)$.
- Every integer greater than one is a jumping number (but one is not a jumping number).

The monomial case

Example

Suppose that $g=0$ (i.e. I is monomial with respect to some regular parameters). The jumping numbers of I are then

$$
\frac{s+1}{\operatorname{ord}(I)}+(t+1) \frac{\operatorname{ord}(I)}{v(I)} \quad(s, t \in \mathbb{N})
$$

The structure of the set $\mathcal{H}(I)$

Notation

- Set $\mathcal{H}(I)=\{$ jumping numbers of $I\}$
- Set $\xi_{\nu}:=\frac{1}{m_{\gamma_{\nu}}}+\frac{1}{\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}}}$

$(\nu=0, \ldots, g)$

$$
\xi_{\nu} \in \mathcal{H}(I) \quad(\nu=0, \ldots, g)
$$

The structure of the set $\mathcal{H}(I)$

Notation

- Set $\mathcal{H}(I)=\{$ jumping numbers of $I\}$
- Set $\xi_{\nu}:=\frac{1}{m_{\gamma_{\nu}}}+\frac{1}{\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}}} \quad(\nu=0, \ldots, g)$

The structure of the set $\mathcal{H}(I)$

Notation

- Set $\mathcal{H}(I)=\{$ jumping numbers of $I\}$
- Set $\xi_{\nu}:=\frac{1}{m_{\gamma_{\nu}}}+\frac{1}{\left(m_{1}^{2}+\ldots+m_{\gamma_{\nu+1}}^{2}\right): m_{\gamma_{\nu}}} \quad(\nu=0, \ldots, g)$

Proposition

$$
\xi_{\nu} \in \mathcal{H}(I) \quad(\nu=0, \ldots, g)
$$

The structure of the set $\mathcal{H}(I)$

Proposition
 - $\xi_{\nu}=\min \left\{\xi \in \mathcal{H}(I) \left\lvert\, \xi \geq \frac{1}{m_{\gamma_{\nu}}}\right.\right\} \quad(\nu=0, \ldots, g)$
 - $\frac{1}{m_{\gamma_{0}}}<\xi_{0}<\frac{1}{m_{\gamma_{1}}}<\xi_{1}<\ldots<\frac{1}{m_{\gamma_{g}}}<\xi_{g}$
 - $\frac{1}{m_{\gamma_{\nu}}} \notin \mathcal{H}(I)(\nu=0, \ldots, g+1)$

The structure of the set $\mathcal{H}(I)$

> Proposition
> - $\xi_{\nu}=\min \left\{\xi \in \mathcal{H}(I) \left\lvert\, \xi \geq \frac{1}{m_{\gamma_{\nu}}}\right.\right\} \quad(\nu=0, \ldots, g)$
> - $\frac{1}{m_{\gamma_{0}}}<\xi_{0}<\frac{1}{m_{\gamma_{1}}}<\xi_{1}<\ldots<\frac{1}{m_{\gamma_{g}}}<\xi_{g}$
> $\frac{1}{m_{\gamma_{\nu}}} \notin \mathcal{H}(I) \quad(\nu=0, \ldots, g+1)$

The structure of the set $\mathcal{H}(I)$

Proposition

$$
\text { - } \xi_{\nu}=\min \left\{\xi \in \mathcal{H}(I) \left\lvert\, \xi \geq \frac{1}{m_{\gamma_{\nu}}}\right.\right\} \quad(\nu=0, \ldots, g)
$$

- $\frac{1}{m_{\gamma_{0}}}<\xi_{0}<\frac{1}{m_{\gamma_{1}}}<\xi_{1}<\ldots<\frac{1}{m_{\gamma_{g}}}<\xi_{g}$
- $\frac{1}{m_{\gamma_{\nu}}} \notin \mathcal{H}(I)(\nu=0, \ldots, g+1)$

Jumping numbers of Plane curves

Theorem

Let C be an analytically irreducible plane curve whose strict transform intersects transversally at x_{n} every exceptional divisor going through x_{n}. The set of jumping numbers of C is then

$$
\mathcal{H}(C)=\{\xi+k \mid \xi \in \mathcal{H}(I) \cup\{1\}, 0<\xi \leq 1, k \in \mathbb{N}\} .
$$

Conversely,

Jumping numbers of Plane curves

Theorem

Let C be an analytically irreducible plane curve whose strict transform intersects transversally at x_{n} every exceptional divisor going through x_{n}. The set of jumping numbers of C is then

$$
\mathcal{H}(C)=\{\xi+k \mid \xi \in \mathcal{H}(I) \cup\{1\}, 0<\xi \leq 1, k \in \mathbb{N}\} .
$$

Conversely,

$$
\mathcal{H}(I)=(\mathcal{H}(C) \backslash\{1\}) \cup\left\{\left.1+\frac{k+1}{v(I)} \right\rvert\, k \in \mathbb{N}\right\} .
$$

REmARKs

- This applies to a curve determined by a general element of I.
- This yields a formula for the jumping numbers of an arbitrary analytically irreducible plane curve.
- Note that 1 is always a jumping number of a plane curve.

REmarks

- This applies to a curve determined by a general element of I.
- This yields a formula for the jumping numbers of an arbitrary analytically irreducible plane curve.
- Note that 1 is always a jumping number of a plane curve.

REmARKs

- This applies to a curve determined by a general element of I.
- This yields a formula for the jumping numbers of an arbitrary analytically irreducible plane curve.
- Note that 1 is always a jumping number of a plane curve.

Jumping numbers determine the order

Theorem

Let $\xi<\psi<\zeta$ be the three smallest jumping numbers. Then

$$
\operatorname{ord}(I)= \begin{cases}\frac{5}{3 \xi} & \text { if } 6 \xi=10 \psi-5 \zeta \\ \frac{1}{2 \xi-\psi} & \text { if } 6 \xi \neq 10 \psi-5 \zeta\end{cases}
$$

Moreover,

- $\xi>1$ iff ord $(/)=1$
- $\xi<1<\zeta$ implies ord $(I)=2$

Jumping numbers determine the order

Theorem

Let $\xi<\psi<\zeta$ be the three smallest jumping numbers. Then

$$
\operatorname{ord}(I)= \begin{cases}\frac{5}{3 \xi} & \text { if } 6 \xi=10 \psi-5 \zeta \\ \frac{1}{2 \xi-\psi} & \text { if } 6 \xi \neq 10 \psi-5 \zeta\end{cases}
$$

Moreover,

- $\xi>1$ iff $\operatorname{ord}(I)=1$
- $\xi<1<\zeta$ implies $\operatorname{ord}(I)=2$

Jumping numbers determine the order

Theorem

Let $\xi<\psi<\zeta$ be the three smallest jumping numbers. Then

$$
\operatorname{ord}(I)= \begin{cases}\frac{5}{3 \xi} & \text { if } 6 \xi=10 \psi-5 \zeta \\ \frac{1}{2 \xi-\psi} & \text { if } 6 \xi \neq 10 \psi-5 \zeta\end{cases}
$$

Moreover,

- $\xi>1$ iff $\operatorname{ord}(I)=1$
- $\xi<1<\zeta$ implies $\operatorname{ord}(I)=2$

Jumping numbers determine the order

Example

- If the multiplicity sequence $=(2,1,1)$, then
$\xi=\frac{5}{6}, \psi=\frac{7}{6}$ and $\zeta=\frac{8}{6}$ so that

$$
6 \xi=10 \psi-5 \zeta
$$

- If the multiplicity sequence $=(3,1,1,1)$, then $\xi=\frac{7}{12}, \psi=\frac{10}{12}$ and $\zeta=\frac{11}{12}$ so that

$$
6 \xi \neq 10 \%-5 \zeta .
$$

Jumping numbers determine The order

Example

- If the multiplicity sequence $=(2,1,1)$, then

- If the multiplicity sequence $=(3,1,1,1)$, then

$$
\begin{aligned}
& \xi=\frac{7}{12}, \psi=\frac{10}{12} \text { and } \zeta=\frac{11}{12} \text { so that } \\
& 6 \xi \neq 10 \psi-5 \zeta .
\end{aligned}
$$

Jumping numbers determine multiplicities

Corollary

The jumping numbers and the multiplicity sequence are equivalent data. In particular, for an analytically irreducible plane curve, the equisingularity class is determined by the jumping numbers.

In fact, already ξ_{0}, \ldots, ξ_{g} determine the rest of the jumping numbers.

Jumping numbers determine multiplicities

Corollary

The jumping numbers and the multiplicity sequence are equivalent data. In particular, for an analytically irreducible plane curve, the equisingularity class is determined by the jumping numbers.

REMARK

In fact, already ξ_{0}, \ldots, ξ_{g} determine the rest of the jumping numbers.

The starting point of the proof

Definition

Let $J \subset A$ be any ideal. The log-canonical threshold of I w.r.t. J is

$$
\operatorname{lct}(I ; J)=\inf \{c>0 \mid \mathcal{J}(c l) \nsupseteq J\} .
$$

The starting point of the proof

Definition

Let $J \subset A$ be any ideal. The log-canonical threshold of I w.r.t. J is

$$
\operatorname{Ict}(I ; J)=\inf \{c>0 \mid \mathcal{J}(c l) \nsupseteq J\} .
$$

Remark

$$
\operatorname{Ict}(I ; A)=\operatorname{Ict}(I)
$$

Jumping numbers As LC-THRESHOLDS

Notation
For $R=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}^{n}$, set

$$
J_{R}=\prod_{i=1}^{n} p_{i}^{r_{i}}
$$

where $I=p_{n} \subset p_{n-1} \subset \ldots \subset p_{1}=\mathfrak{m}$ denote the simple v-ideals.

Jumping numbers As LC-THRESHOLDS

Notation
For $R=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}^{n}$, set

$$
J_{R}=\prod_{i=1}^{n} p_{i}^{r_{i}}
$$

where $I=p_{n} \subset p_{n-1} \subset \ldots \subset p_{1}=\mathfrak{m}$ denote the simple v-ideals.

LEmMA

$$
\mathcal{H}(I)=\left\{\operatorname{lct}\left(I ; J_{R}\right) \mid R \in \mathbb{N}^{n}\right\}
$$

EARLIER WORK ON PLANE CURVES (OVER \mathbb{C})

- Igusa (1977) and Kuwata (1999): the log-canonical threshold
- Vaquié (1994):

Jumping numbers \Leftrightarrow the Hodge spectrum

- Saito (2000): the Hodge spectrum

Earlier work on plane curves (OVER \mathbb{C})

- Igusa (1977) and Kuwata (1999): the log-canonical threshold
- Vaquié (1994):

Jumping numbers \Leftrightarrow the Hodge spectrum

- Saito (2000): the Hodge spectrum

Earlier work on plane curves (OVER \mathbb{C})

- Igusa (1977) and Kuwata (1999): the log-canonical threshold
- Vaquié (1994):

Jumping numbers \Leftrightarrow the Hodge spectrum

- Saito (2000): the Hodge spectrum

