JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL IN A TWO DIMENSIONAL REGULAR LOCAL RING

Eero Hyry, Tarmo Järvilehto

19th July 2006

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

OUTLINE

1 Multiplier ideals and jumping numbers

2 Preliminaries on simple complete ideals

イロト イポト イヨト イヨト

A GENERAL SET-UP FOR MULTIPLIER IDEALS

• (A, \mathfrak{m}) a regular local ring

- $I \subset A$ an ideal
- f: X → Spec A a log-resolution of I, i.e., a projective birational morphism with X regular and IO_X = O_X(-D) where D is an effective Cartier divisor such that D + exceptional(f) has simple normal crossing support
- $K_X = \operatorname{div} \mathcal{J}_{X/A}$ the relative canonical divisor

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A GENERAL SET-UP FOR MULTIPLIER IDEALS

- (A, \mathfrak{m}) a regular local ring
- $I \subset A$ an ideal
- f: X → Spec A a log-resolution of I, i.e., a projective birational morphism with X regular and IO_X = O_X(-D) where D is an effective Cartier divisor such that D + exceptional(f) has simple normal crossing support
- $K_X = \operatorname{div} \mathcal{J}_{X/A}$ the relative canonical divisor

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A GENERAL SET-UP FOR MULTIPLIER IDEALS

- (A, \mathfrak{m}) a regular local ring
- $I \subset A$ an ideal
- f: X → Spec A a log-resolution of I, i.e., a projective birational morphism with X regular and IO_X = O_X(-D) where D is an effective Cartier divisor such that D + exceptional(f) has simple normal crossing support
- $K_X = \operatorname{div} \mathcal{J}_{X/A}$ the relative canonical divisor

イロト 不得 トイヨト イヨト 二日

A GENERAL SET-UP FOR MULTIPLIER IDEALS

- (A, \mathfrak{m}) a regular local ring
- $I \subset A$ an ideal
- f: X → Spec A a log-resolution of I, i.e., a projective birational morphism with X regular and IO_X = O_X(-D) where D is an effective Cartier divisor such that D + exceptional(f) has simple normal crossing support
- $K_X = \operatorname{div} \mathcal{J}_{X/A}$ the relative canonical divisor

MULTIPLIER IDEALS

DEFINITION

Let $c \ge 0$ be a rational number. The multiplier ideal with coefficient c is

$$\mathcal{J}(cI) = \Gamma(X, \mathcal{O}_X(K_X - \lfloor cD \rfloor))$$

where [] denotes the round-down of a divisor.

OBSERVATION

$$c < c' \Rightarrow \mathcal{J}(c'I) \subset \mathcal{J}(cI)$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

(日) (圖) (E) (E) (E)

MULTIPLIER IDEALS

DEFINITION

Let $c \ge 0$ be a rational number. The multiplier ideal with coefficient c is

$$\mathcal{J}(cI) = \Gamma(X, \mathcal{O}_X(K_X - \lfloor cD \rfloor))$$

where [] denotes the round-down of a divisor.

OBSERVATION

$$c < c' \Rightarrow \mathcal{J}(c'I) \subset \mathcal{J}(cI)$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

(日) (圖) (E) (E) (E)

AN ELEMENTARY LEMMA

LEMMA (EIN-LAZARSFELD-SMITH-VAROLIN)

There exists an inreasing discrete sequence $0 = c_0 < c_1 < c_2 < ...$ of rational numbers characterized by the properties that

$$\mathcal{J}(cl) = \mathcal{J}(c_i l)$$
 for $c \in [c_i, c_{i+1}[$

while

$$\mathcal{J}(c_{i+1}I) \subsetneq \mathcal{J}(c_iI)$$

for all i.

(4 冊) (4 日) (4 日)

JUMPING NUMBERS

DEFINITION

The numbers c_1, c_2, \ldots are called the jumping numbers of *I*.

Remark

$$c_1 = \sup\{c \in \mathbb{Q} \mid \mathcal{J}(cl) = A\}$$
$$= \operatorname{lct}(l)$$
$$= the \ log-canonical \ threshold \ of$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

イロト イポト イヨト イヨト

JUMPING NUMBERS

DEFINITION

The numbers c_1, c_2, \ldots are called the jumping numbers of *I*.

Remark

$$c_1 = \sup\{c \in \mathbb{Q} \mid \mathcal{J}(cI) = A\}$$

= lct(I)
= the log-canonical threshold of

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

イロト イポト イヨト イヨト

NOTATION AND TERMINOLOGY

- (A, \mathfrak{m}, \Bbbk) a two-dimensional regular local ring with $\Bbbk = \bar{\Bbbk}$
- $I \subset A$ a simple complete \mathfrak{m} -primary ideal
- C an analytically irreducible plane curve

SIMPLE *I* is not a product of two proper ideals COMPLETE *I* is integrally closed i.e. $I = \overline{I}$, where

$$\overline{l} = \{x \in A \mid x^n + \sum_{i=1}^n a_i x^{n-i} = 0, a_i \in l^i\}$$

PLAIN CURVE Spec A/(f) where $f \in \mathfrak{m}$

(人間) トイヨト イヨト

NOTATION AND TERMINOLOGY

- (A, \mathfrak{m}, \Bbbk) a two-dimensional regular local ring with $\Bbbk = \bar{\Bbbk}$
- $I \subset A$ a simple complete \mathfrak{m} -primary ideal
- C an analytically irreducible plane curve

SIMPLE / is not a product of two proper ideals

COMPLETE I is integrally closed i.e. $I = \overline{I}$, where

$$\overline{l} = \{x \in A \mid x^n + \sum_{i=1}^n a_i x^{n-i} = 0, a_i \in l^i\}$$

PLAIN CURVE Spec A/(f) where $f \in \mathfrak{m}$

- 4 同 6 4 日 6 4 日 6

NOTATION AND TERMINOLOGY

- (A, \mathfrak{m}, \Bbbk) a two-dimensional regular local ring with $\Bbbk = \bar{\Bbbk}$
- $I \subset A$ a simple complete \mathfrak{m} -primary ideal
- C an analytically irreducible plane curve

SIMPLE *I* is not a product of two proper ideals COMPLETE *I* is integrally closed i.e. $I = \overline{I}$, where

$$\overline{I} = \{x \in A \mid x^n + \sum_{i=1}^n a_i x^{n-i} = 0, a_i \in I^i\}$$

PLAIN CURVE Spec A/(f) where $f \in \mathfrak{m}$

NOTATION AND TERMINOLOGY

- (A, \mathfrak{m}, \Bbbk) a two-dimensional regular local ring with $\Bbbk = \bar{\Bbbk}$
- $I \subset A$ a simple complete \mathfrak{m} -primary ideal
- C an analytically irreducible plane curve

SIMPLE *I* is not a product of two proper ideals COMPLETE *I* is integrally closed i.e. $I = \overline{I}$, where

$$\overline{I} = \{x \in A \mid x^n + \sum_{i=1}^n a_i x^{n-i} = 0, a_i \in I^i\}$$

PLAIN CURVE Spec A/(f) where $f \in \mathfrak{m}$

A (1) < A (1) < A (1) </p>

SIMPLE IDEALS AND PLANE CURVES

ZARISKI'S POINT OF VIEW:

Complete ideals are "linear system of curves" satisfying "infinitely near base conditions".

Theorem (Zariski)

A complete ideal is simple iff a general element is analytically irreducible.

< 回 > < 三 > < 三 >

SIMPLE IDEALS AND PLANE CURVES

ZARISKI'S POINT OF VIEW:

Complete ideals are "linear system of curves" satisfying "infinitely near base conditions".

THEOREM (ZARISKI)

A complete ideal is simple iff a general element is analytically irreducible.

QUESTIONS

• What are the jumping numbers of a simple complete ideal?

- How these are related to the jumping numbers of the curve determined by a general element?
- What are the jumping numbers of an analytically irreducible plane curve?

・ 戸 ト ・ ヨ ト ・ ヨ ト

QUESTIONS

- What are the jumping numbers of a simple complete ideal?
- How these are related to the jumping numbers of the curve determined by a general element?
- What are the jumping numbers of an analytically irreducible plane curve?

< 回 > < 三 > < 三 >

QUESTIONS

- What are the jumping numbers of a simple complete ideal?
- How these are related to the jumping numbers of the curve determined by a general element?
- What are the jumping numbers of an analytically irreducible plane curve?

< 同 ト く ヨ ト く ヨ ト

SIMPLE IDEALS AND SIMPLE SEQUENCES

Fact

simple complete ideals \leftrightarrow finite simple sequences

$$\operatorname{\mathsf{Spec}} A = X_1 \leftarrow X_2 \leftarrow \ldots \leftarrow X_n \leftarrow X_{n+1} = X$$

$$X_{i+1}$$
 = the blow-up of X_i at a closed point $x_i \in E_{i-1}$
 E_i = the exceptional divisor of $X_{i+1} \rightarrow X_i$

Now

 x_i = the unique point on X_i where the transform of I has positive order

(4 冊) (4 日) (4 日)

SIMPLE IDEALS AND VALUATIONS

Fact

simple complete ideals \leftrightarrow divisorial valuations

$$I \mapsto v := \operatorname{ord}_{E_n} = \mathfrak{m}_{X_n, x_n}$$
-adic valuation

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

3

MULTIPLICITY SEQUENCE

DEFINITION

The multiplicity sequence of I is (m_1, \ldots, m_n) where

 m_i = the order of the transform of I at x_i

Remark

Note that $m_n = 1$, because *I* is the unique simple complete ideal whose transform at x_n is \mathfrak{m}_{X_n,x_n} .

- 4 週 ト - 4 三 ト - 4 三 ト

MULTIPLICITY SEQUENCE

DEFINITION

The multiplicity sequence of I is (m_1, \ldots, m_n) where

 m_i = the order of the transform of I at x_i

Remark

Note that $m_n = 1$, because *I* is the unique simple complete ideal whose transform at x_n is \mathfrak{m}_{X_n,x_n} .

Proximity

DEFINITION

 x_i is proximate to x_j iff $x_i \in E_j$ and j < i.

- Clearly x_i is proximate to x_{i-1} if i > 1.
- If x_i is proximate to x_j with j < i 1, then x_i is satellite to x_j .
- If x_i is a satellite but x_{i+1} not, then x_i is a terminal satellite.

イロト イヨト イヨト

PROXIMITY

DEFINITION

 x_i is proximate to x_j iff $x_i \in E_j$ and j < i.

- Clearly x_i is proximate to x_{i-1} if i > 1.
- If x_i is proximate to x_j with j < i 1, then x_i is satellite to x_j .
- If x_i is a satellite but x_{i+1} not, then x_i is a terminal satellite.

イロト イヨト イヨト

PROXIMITY

DEFINITION

 x_i is proximate to x_j iff $x_i \in E_j$ and j < i.

- Clearly x_i is proximate to x_{i-1} if i > 1.
- If x_i is proximate to x_j with j < i 1, then x_i is satellite to x_j .
- If x_i is a satellite but x_{i+1} not, then x_i is a terminal satellite.

< 日 > < 同 > < 回 > < 回 > < 回 >

Proximity

DEFINITION

 x_i is proximate to x_j iff $x_i \in E_j$ and j < i.

- Clearly x_i is proximate to x_{i-1} if i > 1.
- If x_i is proximate to x_j with j < i 1, then x_i is satellite to x_j .
- If x_i is a satellite but x_{i+1} not, then x_i is a terminal satellite.

TERMINAL SATELLITES

Fact

If x_{i+1}, \ldots, x_i are the points proximate to x_i , then

 $m_i=m_{i+1}+\ldots+m_j.$

Moreover, $m_{i+1} = \ldots = m_{j-1} \ge m_j$ and $m_i > m_{j-1} = m_j$ iff x_j is a terminal satellite.

• Let $x_{\gamma_1}, \ldots, x_{\gamma_g}$ be the terminal satellites $\neq x_n$.

• Also set $\gamma_0 = 1$ and $\gamma_{g+1} = n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

TERMINAL SATELLITES

Fact

If x_{i+1}, \ldots, x_i are the points proximate to x_i , then

 $m_i = m_{i+1} + \ldots + m_i.$

Moreover, $m_{i+1} = \ldots = m_{j-1} \ge m_j$ and $m_i > m_{j-1} = m_j$ iff x_j is a terminal satellite.

- Let $x_{\gamma_1}, \ldots, x_{\gamma_g}$ be the terminal satellites $\neq x_n$.
- Also set $\gamma_0 = 1$ and $\gamma_{g+1} = n$.

イロト イポト イヨト イヨト 二日

DUAL GRAPH

DEFINITION

The dual graph of the resolution $X \to \text{Spec } A$ has the exceptional divisors $E_1, \ldots, E_n \subset X$ as vertices. The vertices E_i and E_j are connected by an edge iff $E_i \cap E_j \neq \emptyset$.

The stars are $E_{\gamma_1}, \ldots, E_{\gamma_g}$:

THE MAIN RESULT

THEOREM

EERO HYRY, TARMO JÄRVILEHTO

JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

THE MAIN RESULT

THEOREM

EERO HYRY, TARMO JÄRVILEHTO

JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

THE MAIN RESULT

THEOREM

Eero Hyry, Tarmo Järvilehto

JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

Remarks

•
$$(m_1^2+\ldots+m_{\gamma_{
u+1}}^2):m_{\gamma_
u}\in\mathbb{N}$$

- Jumping numbers are periodic with period one (a general fact).
- $1 + \frac{1}{v(l)}$ is the least jumping greater than one (note that $v(l) = m_1^2 + \ldots + m_n^2$).
- Every integer greater than one is a jumping number (but one is not a jumping number).

< 回 > < 三 > < 三 >

Remarks

- $(m_1^2+\ldots+m_{\gamma_{\nu+1}}^2):m_{\gamma_{\nu}}\in\mathbb{N}$
- Jumping numbers are periodic with period one (a general fact).
- $1 + \frac{1}{v(l)}$ is the least jumping greater than one (note that $v(l) = m_1^2 + \ldots + m_n^2$).
- Every integer greater than one is a jumping number (but one is not a jumping number).

- 4 週 ト - 4 三 ト - 4 三 ト

- $(m_1^2+\ldots+m_{\gamma_{\nu+1}}^2):m_{\gamma_{\nu}}\in\mathbb{N}$
- Jumping numbers are periodic with period one (a general fact).
- $1 + \frac{1}{v(I)}$ is the least jumping greater than one (note that $v(I) = m_1^2 + \ldots + m_n^2$).
- Every integer greater than one is a jumping number (but one is not a jumping number).

イロト イポト イヨト イヨト

- $(m_1^2 + \ldots + m_{\gamma_{\nu+1}}^2)$: $m_{\gamma_{\nu}} \in \mathbb{N}$
- Jumping numbers are periodic with period one (a general fact).
- $1 + \frac{1}{v(I)}$ is the least jumping greater than one (note that $v(I) = m_1^2 + \ldots + m_n^2$).
- Every integer greater than one is a jumping number (but one is not a jumping number).

THE MONOMIAL CASE

EXAMPLE

Suppose that g = 0 (i.e. *I* is monomial with respect to some regular parameters). The jumping numbers of *I* are then

$$rac{s+1}{\operatorname{ord}(I)}+(t+1)rac{\operatorname{ord}(I)}{v(I)}\quad(s,t\in\mathbb{N}).$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

The structure of the set $\mathcal{H}(I)$

NOTATION • Set $\mathcal{H}(I) = \{ \text{jumping numbers of } I \}$ • Set $\xi_{\nu} := \frac{1}{m_{\gamma_{\nu}}} + \frac{1}{(m_1^2 + \ldots + m_{\gamma_{\nu+1}}^2) : m_{\gamma_{\nu}}} \quad (\nu = 0, \ldots, g)$

Proposition

$$\xi_
u \in \mathcal{H}(I) \quad (
u = 0, \dots, g)$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

・日本

The structure of the set $\mathcal{H}(I)$

NOTATION
• Set
$$\mathcal{H}(I) = \{ \text{jumping numbers of } I \}$$

• Set $\xi_{\nu} := \frac{1}{m_{\gamma_{\nu}}} + \frac{1}{(m_1^2 + \ldots + m_{\gamma_{\nu+1}}^2) : m_{\gamma_{\nu}}}$ $(\nu = 0, \ldots, g)$

Proposition

$$\xi_{
u} \in \mathcal{H}(I) \quad (
u = 0, \dots, g)$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

イロン イヨン イヨン イヨン

THE STRUCTURE OF THE SET $\mathcal{H}(I)$

NOTATION
• Set
$$\mathcal{H}(I) = \{ \text{jumping numbers of } I \}$$

• Set $\xi_{\nu} := \frac{1}{m_{\gamma_{\nu}}} + \frac{1}{(m_1^2 + \ldots + m_{\gamma_{\nu+1}}^2) : m_{\gamma_{\nu}}}$ $(\nu = 0, \ldots, g)$

PROPOSITION

$$\xi_{\nu} \in \mathcal{H}(I) \quad (\nu = 0, \dots, g)$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

(日) (圖) (E) (E) (E)

The structure of the set $\mathcal{H}(I)$

PROPOSITION

•
$$\xi_{\nu} = \min\{\xi \in \mathcal{H}(I) \mid \xi \ge \frac{1}{m_{\gamma_{\nu}}}\}$$
 $(\nu = 0, ..., g)$
• $\frac{1}{m_{\gamma_{0}}} < \xi_{0} < \frac{1}{m_{\gamma_{1}}} < \xi_{1} < ... < \frac{1}{m_{\gamma_{g}}} < \xi_{g}$
• $\frac{1}{m_{\gamma_{\nu}}} \notin \mathcal{H}(I)$ $(\nu = 0, ..., g + 1)$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

<ロ> (日) (日) (日) (日) (日)

The structure of the set $\mathcal{H}(I)$

PROPOSITION

•
$$\xi_{\nu} = \min\{\xi \in \mathcal{H}(I) \mid \xi \ge \frac{1}{m_{\gamma_{\nu}}}\}$$
 $(\nu = 0, \dots, g)$
• $\frac{1}{m_{\gamma_{0}}} < \xi_{0} < \frac{1}{m_{\gamma_{1}}} < \xi_{1} < \dots < \frac{1}{m_{\gamma_{g}}} < \xi_{g}$
• $\frac{1}{m_{\gamma_{\nu}}} \notin \mathcal{H}(I)$ $(\nu = 0, \dots, g + 1)$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

<ロ> (日) (日) (日) (日) (日)

The structure of the set $\mathcal{H}(I)$

PROPOSITION

•
$$\xi_{\nu} = \min\{\xi \in \mathcal{H}(I) \mid \xi \ge \frac{1}{m_{\gamma_{\nu}}}\}$$
 $(\nu = 0, \dots, g)$
• $\frac{1}{m_{\gamma_{0}}} < \xi_{0} < \frac{1}{m_{\gamma_{1}}} < \xi_{1} < \dots < \frac{1}{m_{\gamma_{g}}} < \xi_{g}$
• $\frac{1}{m_{\gamma_{\nu}}} \notin \mathcal{H}(I)$ $(\nu = 0, \dots, g + 1)$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

<ロ> (日) (日) (日) (日) (日)

JUMPING NUMBERS OF PLANE CURVES

THEOREM

Let C be an analytically irreducible plane curve whose strict transform intersects transversally at x_n every exceptional divisor going through x_n . The set of jumping numbers of C is then

$$\mathcal{H}(\mathcal{C}) = \{\xi + k \mid \xi \in \mathcal{H}(\mathcal{I}) \cup \{1\}, 0 < \xi \leq 1, k \in \mathbb{N}\}.$$

Conversely,

$$\mathcal{H}(I) = (\mathcal{H}(C) \setminus \{1\}) \cup \{1 + \frac{k+1}{v(I)} \mid k \in \mathbb{N}\}.$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

- 4 回 ト - 4 回 ト

JUMPING NUMBERS OF PLANE CURVES

THEOREM

Let C be an analytically irreducible plane curve whose strict transform intersects transversally at x_n every exceptional divisor going through x_n . The set of jumping numbers of C is then

$$\mathcal{H}(\mathcal{C}) = \{\xi + k \mid \xi \in \mathcal{H}(\mathcal{I}) \cup \{1\}, 0 < \xi \leq 1, k \in \mathbb{N}\}.$$

Conversely,

$$\mathcal{H}(I) = (\mathcal{H}(C) \setminus \{1\}) \cup \{1 + \frac{k+1}{v(I)} \mid k \in \mathbb{N}\}.$$

- 4 回 ト - 4 回 ト

• This applies to a curve determined by a general element of *I*.

- This yields a formula for the jumping numbers of an arbitrary analytically irreducible plane curve.
- Note that 1 is always a jumping number of a plane curve.

A (10) A (10)

- This applies to a curve determined by a general element of *I*.
- This yields a formula for the jumping numbers of an arbitrary analytically irreducible plane curve.
- Note that 1 is always a jumping number of a plane curve.

・ 同 ト ・ ヨ ト ・ ヨ

- This applies to a curve determined by a general element of *I*.
- This yields a formula for the jumping numbers of an arbitrary analytically irreducible plane curve.
- Note that 1 is always a jumping number of a plane curve.

< 同 > < 三 > < 三 >

THEOREM

Let $\xi < \psi < \zeta$ be the three smallest jumping numbers. Then

ord(I) =
$$\begin{cases} \frac{5}{3\xi} & \text{if } 6\xi = 10\psi - 5\zeta; \\ \frac{1}{2\xi - \psi} & \text{if } 6\xi \neq 10\psi - 5\zeta. \end{cases}$$

Moreover,

ξ > 1 iff ord(l) = 1
ξ < 1 < ζ implies ord(l) = 2

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

イロト 不得下 イヨト イヨト 二日

THEOREM

Let $\xi < \psi < \zeta$ be the three smallest jumping numbers. Then

ord(I) =
$$\begin{cases} \frac{5}{3\xi} & \text{if } 6\xi = 10\psi - 5\zeta; \\ \frac{1}{2\xi - \psi} & \text{if } 6\xi \neq 10\psi - 5\zeta. \end{cases}$$

Moreover,

- $\xi > 1$ iff ord(I) = 1
- $\xi < 1 < \zeta$ implies $\operatorname{ord}(I) = 2$

イロト 不得下 イヨト イヨト 二日

THEOREM

Let $\xi < \psi < \zeta$ be the three smallest jumping numbers. Then

$$\operatorname{ord}(I) = \begin{cases} \frac{5}{3\xi} & \text{if } 6\xi = 10\psi - 5\zeta; \\ \frac{1}{2\xi - \psi} & \text{if } 6\xi \neq 10\psi - 5\zeta. \end{cases}$$

Moreover,

•
$$\xi > 1$$
 iff $\operatorname{ord}(I) = 1$

• $\xi < 1 < \zeta$ implies $\operatorname{ord}(I) = 2$

イロト 不得下 イヨト イヨト 二日

EXAMPLE

- If the multiplicity sequence = (2, 1, 1), then $\xi = \frac{5}{6}, \ \psi = \frac{7}{6} \text{ and } \zeta = \frac{8}{6} \text{ so that}$ $6\xi = 10\psi - 5\zeta.$
- If the multiplicity sequence = (3, 1, 1, 1), then $\xi = \frac{7}{12}$, $\psi = \frac{10}{12}$ and $\zeta = \frac{11}{12}$ so that $6\xi \neq 10\psi - 5\zeta$.

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

- 4 同 6 4 日 6 4 日 6

EXAMPLE

- If the multiplicity sequence = (2, 1, 1), then $\xi = \frac{5}{6}, \ \psi = \frac{7}{6} \text{ and } \zeta = \frac{8}{6} \text{ so that}$ $6\xi = 10\psi - 5\zeta$.
- If the multiplicity sequence = (3, 1, 1, 1), then $\xi = \frac{7}{12}$, $\psi = \frac{10}{12}$ and $\zeta = \frac{11}{12}$ so that $6\xi \neq 10\psi - 5\zeta$.

- 4 同 5 - 4 回 5 - 4 回 5

JUMPING NUMBERS DETERMINE MULTIPLICITIES

COROLLARY

The jumping numbers and the multiplicity sequence are equivalent data. In particular, for an analytically irreducible plane curve, the equisingularity class is determined by the jumping numbers.

Remark

In fact, already ξ_0, \ldots, ξ_g determine the rest of the jumping numbers.

・ 同 ト ・ ヨ ト ・ ヨ ト

JUMPING NUMBERS DETERMINE MULTIPLICITIES

COROLLARY

The jumping numbers and the multiplicity sequence are equivalent data. In particular, for an analytically irreducible plane curve, the equisingularity class is determined by the jumping numbers.

Remark

In fact, already ξ_0, \ldots, ξ_g determine the rest of the jumping numbers.

A (1) < A (1) < A (1) < A (1) </p>

THE STARTING POINT OF THE PROOF

DEFINITION

Let $J \subset A$ be any ideal. The log-canonical threshold of I w.r.t. J is

$$\mathsf{lct}(I; J) = \inf\{c > 0 \mid \mathcal{J}(cI) \not\supseteq J\}.$$

Remark

$$\operatorname{lct}(I; A) = \operatorname{lct}(I)$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

- 4 同下 4 三下 4 三下

THE STARTING POINT OF THE PROOF

DEFINITION

Let $J \subset A$ be any ideal. The log-canonical threshold of I w.r.t. J is

$$\mathsf{lct}(I; J) = \inf\{c > 0 \mid \mathcal{J}(cI) \not\supseteq J\}.$$

Remark

$$\mathsf{lct}(I;A) = \mathsf{lct}(I)$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

JUMPING NUMBERS AS LC-THRESHOLDS

NOTATION For $R = (r_1, ..., r_n) \in \mathbb{N}^n$, set $J_R = \prod_{i=1}^n p_i^{r_i}$ where $I = p_n \subset p_{n-1} \subset ... \subset p_1 = \mathfrak{m}$ denote the simple *v*-ideals.

LEMMA

$$\mathcal{H}(I) = \{\mathsf{lct}(I; J_R) \mid R \in \mathbb{N}^n\}$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

イロト イポト イヨト イヨト

JUMPING NUMBERS AS LC-THRESHOLDS

NOTATION For $R = (r_1, ..., r_n) \in \mathbb{N}^n$, set $J_R = \prod_{i=1}^n p_i^{r_i}$ where $l = p_n \subset p_{n-1} \subset ... \subset p_1 = \mathfrak{m}$ denote the simple *v*-ideals.

LEMMA

$$\mathcal{H}(I) = \{\mathsf{lct}(I; J_R) \mid R \in \mathbb{N}^n\}$$

EERO HYRY, TARMO JÄRVILEHTO JUMPING NUMBERS OF A SIMPLE COMPLETE IDEAL

Earlier work on plane curves (over \mathbb{C})

- Igusa (1977) and Kuwata (1999): the log-canonical threshold
- Vaquié (1994):
 - Jumping numbers \Leftrightarrow the Hodge spectrum
- Saito (2000): the Hodge spectrum

< 同 > < 三 > < 三 >

EARLIER WORK ON PLANE CURVES (OVER \mathbb{C})

- Igusa (1977) and Kuwata (1999): the log-canonical threshold
- Vaquié (1994):
 - Jumping numbers \Leftrightarrow the Hodge spectrum
- Saito (2000): the Hodge spectrum

Earlier work on plane curves (over \mathbb{C})

- Igusa (1977) and Kuwata (1999): the log-canonical threshold
- Vaquié (1994): Jumping numbers ⇔ the Hodge spectrum
- Saito (2000): the Hodge spectrum