©
Hadamard Products and Binomial Ideals
B. Atar, K. Bhaskara, A. Cook, D. Da Silva, M. Harada, J. Rajchgot, A. Van Tuyl, R. Wang, J. Yang

McMaster University

Abstract

We study the Hadamard product of two varieties V and W, with particular attention to the situation when one or both of V and W is a binomial variety. The main result of this paper shows that when V and W are both binomial varieties, and the binomials that define V and W have the same binomial exponents, then the defining equations of $V \star W$ can be computed explicitly and directly from the defining equations of V and W. This result recovers known results about Hadamard products of binomial hypersurfaces and toric varieties. Moreover, as an application of our main result, we describe a relationship between the Hadamard product of the toric ideal I_{G} of a graph G and the toric ideal I_{H} of a subgraph H of G. We also derive results about algebraic invariants of Hadamard products: assuming V and W are binomial with the same exponents, we show that $\operatorname{deg}(V \star W)=\operatorname{deg}(V)=\operatorname{deg}(W)$ and $\operatorname{dim}(V \star W)=\operatorname{dim}(V)=\operatorname{dim}(W)$. Finally, given any (not necessarily binomial) projective variety V and a point $p \in \mathbb{P}^{n} \backslash \mathbb{V}\left(x_{0} x_{1} \cdots x_{n}\right)$, subject to some additional minor hypotheses, we find

Definitions and Preliminaries

Let \mathbb{P}^{n} denote the projective space over the algebraically closed field k of dimension n, with homogeneous coordinates $\left[x_{0}: x_{1}: \cdots: x_{n}\right]$, and $X, Y \subseteq \mathbb{P}^{n}$ be projective varieties. The Hadamard product of X and Y is given by

$$
X \star Y:=\overline{\{p \star q \mid p \in X, q \in Y, p \star q \text { is defined }\}} \subseteq \mathbb{P}^{n}
$$

where $p \star q:=\left[p_{0} q_{0}: \cdots: p_{n} q_{n}\right]$ is the point obtained by component-wise multiplication of the points $p=\left[p_{0}: \cdots: p_{n}\right]$ and $q=\left[q_{0}: \cdots: q_{n}\right]$, and $p \star q$ is defined precisely when there exists at least one index $i, 0 \leq i \leq n$, with $p_{i} q_{i} \neq 0$ (so that $p \star q=\left[p_{0} q_{0}: \cdots: p_{n} q_{n}\right]$ is a valid point in \mathbb{P}^{n}).

Two binomial varieties V and W have the same binomial exponents if there are two ordered subsets $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{s}\right\}$ of \mathbb{N}^{n+1} such that $\alpha_{i} \neq \beta_{i}$ for all $i=1, \ldots, s$, the pairs $\left(\alpha_{i}, \beta_{i}\right)$ of exponents are pairwise distinct for all $i=1, \ldots, s$, and there are nonzero constants $a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{s}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{s} \in k \backslash\{0\}$ such that
$\mathbb{I}(V)=\left\langle a_{1} X^{\alpha_{1}}-b_{1} X^{\beta_{1}}, a_{2} X^{\alpha_{2}}-b_{2} X^{\beta_{2}}, \ldots, a_{s} X^{\alpha_{s}}-b_{s} X^{\beta_{s}}\right\rangle$
and
$\mathbb{I}(W)=\left\langle c_{1} X^{\alpha_{1}}-d_{1} X^{\beta_{1}}, c_{2} X^{\alpha_{2}}-d_{2} X^{\beta_{2}}, \ldots, c_{s} X^{\alpha_{s}}-d_{s} X^{\beta_{s}}\right\rangle$,
Let $G=(V, E)$ be a finite simple graph with vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edges $E=\left\{e_{1}, \ldots, e_{q}\right\}$. Consider the ring homomorphism $\varphi: k\left[e_{1}, \ldots, e_{q}\right] \rightarrow$ $k\left[v_{1}, \ldots, v_{n}\right]$ defined by
$e_{i} \mapsto \varphi\left(e_{i}\right):=v_{i_{1}} v_{i_{2}} \quad$ for all $e_{i}=\left\{v_{i_{1}}, v_{i_{2}}\right\}, 1 \leq i \leq q$
The toric ideal of G, denoted I_{G}, is defined to $\operatorname{ker}(\varphi)$, the kernel of φ.
Given a finite simple graph G and a subgraph H of G, let $E=\left\{e_{1}, \ldots, e_{q}\right\}$ be the set of edges of G and $E^{\prime}=\left\{e_{i_{1}}, \ldots, e_{i_{r}}\right\} \subseteq E$ be the set of edges of H. We have that $I_{G} \subseteq k\left[e_{1}, \ldots, e_{q}\right]$ and $I_{H} \subseteq k\left[e_{i_{1}}, \ldots, e_{i_{r}}\right]$. There is a natural inclusion Ψ from the ambient ring $k\left[e_{i_{1}}, \ldots, e_{i_{r}}\right]$ of I_{H} into $k\left[e_{1}, \ldots, e_{q}\right]$, so we
consider the natural extension I_{H}^{e} of I_{H} to $k\left[e_{1}, \ldots, e_{q}\right.$, defined by $I_{H}^{e}:=\left\langle\Psi\left(I_{H}\right)\right\rangle$.
號 \mathbb{P}^{n} and let $p=\left[p_{0}: \ldots: p^{n}\right.$ de
Let V be any projective variety $p_{0} \cdots p_{n} \neq 0$. We call $p \star V$ the Hadamard note a fixed point in \mathbb{P}^{n} such that $p_{0} \cdots p_{n}$
transformation of V by p. We define the set

$$
\psi(V, p):=\left\{q \in \mathbb{P}^{n} \mid q \star V=p \star V\right\} \subseteq \mathbb{P}^{n}
$$

which is the set of points in \mathbb{P}^{n} which yield the same Hadamard product with V as for p.

Results

Theorem 1: Let V and W be binomial varieties of \mathbb{P}^{n}. Assume that V and W have the same binomial exponents. In addition, suppose that V or W contains a point $p=\left[p_{0}: \cdots: p_{n}\right]$ with $p_{0} \cdots p_{n} \neq 0$. Then $V \star W$ is also a binomial variety that has the same binomial exponents as V and W. More precisely, if

$$
\mathbb{I}(V)=\left\langle a_{1} X^{\alpha_{1}}-b_{1} X^{\beta_{1}}, a_{2} X^{\alpha_{2}}-b_{2} X^{\beta_{2}}, \ldots, a_{s} X^{\alpha_{s}}-b_{s} X^{\beta_{s}}\right\rangle
$$

and

$$
\mathbb{I}(W)=\left\langle c_{1} X^{\alpha_{1}}-d_{1} X^{\beta_{1}}, c_{2} X^{\alpha_{2}}-d_{2} X^{\beta_{2}}, \ldots, c_{s} X^{\alpha_{s}}-d_{s} X^{\beta_{s}}\right\rangle,
$$

$\mathbb{I}(V \star W)=\left\langle a_{1} c_{1} X^{\alpha_{1}}-b_{1} d_{1} X^{\beta_{1}}, a_{2} c_{2} X^{\alpha_{2}}-b_{2} d_{2} X^{\beta_{2}}, \ldots, a_{s} c_{s} X^{\alpha_{s}}-b_{s} d_{s} X^{\beta_{s}}\right\rangle$.
Example 2: Let $R=k[x, y, z]$ be the associated coordinate ring, and suppose that $I=\left\langle x^{3}-2 y^{2} z\right\rangle$ and $J=\left\langle x^{3}-2 y z^{2}\right\rangle$
Note that the exponents that appear in the binomial generators of I and J are not the same. We can compute $I \star J$ using Macaulay2 [1] to find that $I \star J=\langle 0\rangle$. If $V=\mathbb{V}(I)$ and $W=\mathbb{V}(J)$, we thus have

$$
V \star W=\mathbb{V}(I) \star \mathbb{V}(J)=\mathbb{V}(I \star J)=\mathbb{P}^{2}
$$

Note that I and J do not have the same exponents, so Theorem 1 does not apply. On the other hand, certainly the ideal I has the same binomial exponents as itself. If we compute $I \star I$ using Macaulay2, we get $I \star I=\left\langle x^{3}-4 y^{2} z\right\rangle$. This agrees with the conclusion of Theorem 1 .

Corollary 3: Let V and W be binomial varieties of \mathbb{P}^{n}. Assume that V and W have the same binomial exponents. Let $V^{\prime} \subseteq V$ be any subvariety. If V^{\prime} contains a point $p=\left[p_{0}: \cdots: p_{n}\right]$ with $p_{0} \cdots p_{n} \neq 0$, then

$$
p \star W=V^{\prime} \star W=V \star W .
$$

Theorem 4: Let G be a finite simple graph with edge set $E=\left\{e_{1}, \ldots, e_{q}\right\}$ and suppose
 oric ideal of G, and let $I_{H} \subseteq k\left[e_{i_{1}}, \ldots, e_{i_{r}}\right.$ denote the toric ideal of H. If I_{H}^{e} is the extension of I_{H} defined above, then $I_{G} \star I_{H}^{e}=I_{H}^{e}$.

Theorem 5: Let $V \subseteq \mathbb{P}^{n}$ be a nonempty projective variety. Suppose that $(V):\left\langle x_{0} x_{1} \cdots x_{n}\right\rangle=\mathbb{I}(V)$. Let $p=\left[p_{0}: \cdots: p_{n}\right] \in \mathbb{P}^{n}$ be a point with $p_{0} \cdots p_{n} \neq 0$. Let $<$ be a monomial order on $k\left[x_{0}, \ldots, x_{n}\right]$ and let $\mathcal{G}=\left\{f_{1}, \ldots, f_{m}\right\}$ denote a reduced Gröbner basis for $\mathbb{I}(V)$ with respect to $<$. Assume that every element of the Gröbner basis is of degree ≥ 2. For each $i=1, \ldots, m$, write

$$
f_{i}=X^{\alpha_{1, i}}-a_{2, i} X^{\alpha_{2, i}}-\cdots-a_{k_{i}, i} X^{\alpha_{k_{i}, i}} \text { where } L T\left(f_{i}\right)=X^{\alpha_{1, i}}
$$

where we assume $X^{\alpha_{k_{i}, i}}<\cdots<X^{\alpha_{1, i}}$ with respect to $<$ so that $X^{\alpha_{1, i}}$ is the leading term of f_{i}. Let

$$
\left.J:=\left\langle b_{1, i} X^{\alpha_{1, i}}-b_{\ell, i} X^{\alpha_{\ell, i}}\right| \text { for each } i=1, \ldots, m \text { and } 1<\ell \leq k_{i}\right\rangle
$$

where the constants $b_{j, i}$ are chosen so that they satisfy the equations $b_{1, i} p^{\alpha_{1, i}}=b_{\ell, i} p^{\alpha_{\ell, i}}$ for all $1 \leq i \leq m$. If $\mathbb{I}(\mathbb{V}(J)):\left\langle x_{0} x_{1} \cdots x_{n}\right\rangle=J$, then $J=\sqrt{J}=\mathbb{I}(\psi(V, p))$. In particular, under the hypotheses above, the ideal $\mathbb{I}(\psi(V, p))$ is a binomial ideal, and a set of generators of $\mathbb{I}(\psi(V, p))$ can be computed via a reduced Gröbner basis of $\mathbb{I}(V)$.

Example 6: Let $V=\mathbb{V}\left(x^{2}-x y-y z\right) \subseteq \mathbb{P}^{3}$, and $p=[1: 2: 3: 4]$. Thus, $\mathbb{I}(V)=\left\langle x^{2}-x y-y z\right\rangle$, a principal ideal of $R=k[x, y, z, w]$. Let $>$ be the lexicographical momomial order given by $x>y>z>w$. Since $\mathbb{I}(V)$ is principal, and the leading coefficient of $f=x^{2}-x y-y z$ is 1 , we can conclude that $\mathcal{G}=\{f\}$ is a reduced Gröbner basis for $\mathbb{I}(V)$. Furthermore, one can verify by using Macaulay2 that $\mathbb{I}(V):\langle x y z w\rangle=\mathbb{I}(V)$, so the above theorem applies. As per Theorem 5 , the binomials which generate $\mathbb{I}(\psi(V, p))$ are of the form $g_{1}=a_{1} x^{2}-b_{1} x y$ and $g_{2}=a_{2} x^{2}-b_{2} y z$. We solve for the coefficients by substituting $x=1, y=2, z=3$, and $w=4$. We have $2 b_{1}=a_{1}$ and $6 b_{2}=a_{2}$. Therefore, $\mathbb{I}(\psi(V, p))=\left\langle x^{2}-(1 / 2) x y, x^{2}-(1 / 6) y z\right\rangle$.

Example: Hadamard Product of Toric Ideals

A walk on a finite simple graph G is simply a sequence $\left(e_{1}, \ldots, e_{n}\right)$ of adjacent edges of G. A walk is called even if n is even, and called closed if the second vertex of e_{n} and the first vertex of e_{1} coincide (we view each edge in the walk as an ordered pair of vertices). Villarreal [2] showed that the generators of the toric ideal I_{G} correspond to the closed even walks of G :

Theorem 7 (Villarreal): Let $\Gamma=\left(e_{i_{1}}, \ldots, e_{i_{2 m}}\right)$ be a closed even walk of a finite simple graph G. Define the binomia

$$
f_{\Gamma}=\prod_{2 \nmid j} e_{i_{j}}-\prod_{2 \mid j} e_{i_{j}}
$$

Then I_{G} is generated by all the binomials f_{Γ}, where Γ is a closed even walk of G.
Example 8: Consider the graph G below and the subgraph H of G highlighed in green.

By the previous theorem, we have

$$
I_{G}=\left\langle e_{1} e_{3}-e_{2} e_{4}, e_{1} e_{3} e_{5} e_{7} e_{9}-e_{2} e_{4} e_{6} e_{8} e_{10}, e_{5} e_{7} e_{9}-e_{6} e_{8} e_{10}\right\rangle
$$

and

$I_{H}^{e}=\left\langle e_{1} e_{3}-e_{2} e_{4}\right\rangle$.

Using Macaulay2, we find that

$$
I_{G} \star I_{H}^{e}=\left\langle e_{1} e_{3}-e_{2} e_{4}\right\rangle=I_{H}^{e},
$$

which agrees with the conclusion of Theorem 4.

Remarks

The Hadamard product of two varieties V and W is well know and easily computable when one of the varieties is a single point $p=\left[x_{0} \cdot \ldots, x_{n}\right]=V$ with no zero homogeneous coordinates [3]. Many of our results come from identifying when all points in a projective variety give the same Hadamard transformation, showing that $p \star V=q \star V$ for all $p, q \in W \backslash \mathbb{V}\left(x_{0}\right)$ transformation,

Acknowledgements

We thank C. Bocci and E. Carlini for answering some of our questions and for their suggestions. Results were based upon computer experiments using Macaulay2, and in particular, the Hadamard package of Bahmani Jafarloo.

References

1] D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geom etry, Available at http:///www.math.uiuc. edu/Macaulay ay $/$. 2] R. H. Villarreal, Rees algebras of dege ideals, Comm. Algebra 23 (1995), no. 9, 3513-3524. [3] C. Bocci and E. Carlini, Hadamard products of hypersurfaces, J. Pure Appl. Algebra 226 (2022), no. 11, Paper No. 107078, 12 pp.

The full list of references for our work can be found in our preprint, Hadamard products and binomial ideals, available at arXiv:2211.14210.

