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Abstract

We study the Hadamard product of two varieties V and W , with particular atten-
tion to the situation when one or both of V and W is a binomial variety. The
main result of this paper shows that when V and W are both binomial vari-
eties, and the binomials that define V and W have the same binomial exponents,
then the defining equations of V ⋆ W can be computed explicitly and directly
from the defining equations of V and W . This result recovers known results
about Hadamard products of binomial hypersurfaces and toric varieties. More-
over, as an application of our main result, we describe a relationship between the
Hadamard product of the toric ideal IG of a graph G and the toric ideal IH of a
subgraph H of G. We also derive results about algebraic invariants of Hadamard
products: assuming V and W are binomial with the same exponents, we show
that deg(V ⋆ W ) = deg(V ) = deg(W ) and dim(V ⋆ W ) = dim(V ) = dim(W ).
Finally, given any (not necessarily binomial) projective variety V and a point
p ∈ Pn \ V(x0x1 · · ·xn), subject to some additional minor hypotheses, we find
an explicit binomial variety that describes all the points q that satisfy p⋆V = q ⋆V .

Definitions and Preliminaries

Let Pn denote the projective space over the algebraically closed field k of dimen-
sion n, with homogeneous coordinates [x0 : x1 : · · · : xn], and X, Y ⊆ Pn be
projective varieties. The Hadamard product of X and Y is given by

X ⋆ Y := {p ⋆ q | p ∈ X, q ∈ Y, p ⋆ q is defined} ⊆ Pn

where p ⋆ q := [p0q0 : · · · : pnqn] is the point obtained by component-wise
multiplication of the points p = [p0 : · · · : pn] and q = [q0 : · · · : qn], and p ⋆ q is
defined precisely when there exists at least one index i, 0 ≤ i ≤ n, with piqi ̸= 0
(so that p ⋆ q = [p0q0 : · · · : pnqn] is a valid point in Pn).

Two binomial varieties V and W have the same binomial exponents if
there are two ordered subsets {α1, . . . , αs} and {β1, . . . , βs} of Nn+1
such that αi ̸= βi for all i = 1, . . . , s, the pairs (αi, βi) of exponents
are pairwise distinct for all i = 1, . . . , s, and there are nonzero constants
a1, . . . , as, b1, . . . , bs, c1, . . . , cs, d1, . . . , ds ∈ k \ {0} such that

I(V ) = ⟨a1Xα1 − b1X
β1, a2X

α2 − b2X
β2, . . . , asX

αs − bsX
βs⟩

and
I(W ) = ⟨c1Xα1 − d1X

β1, c2X
α2 − d2X

β2, . . . , csX
αs − dsX

βs⟩.

Let G = (V,E) be a finite simple graph with vertices V = {v1, . . . , vn} and
edges E = {e1, . . . , eq}. Consider the ring homomorphism φ : k[e1, . . . , eq] →
k[v1, . . . , vn] defined by

ei 7→ φ(ei) := vi1vi2 for all ei = {vi1, vi2}, 1 ≤ i ≤ q.

The toric ideal of G, denoted IG, is defined to ker(φ), the kernel of φ.

Given a finite simple graph G and a subgraph H of G, let E = {e1, . . . , eq}
be the set of edges of G and E′ = {ei1, . . . , eir} ⊆ E be the set of edges of
H. We have that IG ⊆ k[e1, . . . , eq] and IH ⊆ k[ei1, . . . , eir]. There is a natural
inclusion Ψ from the ambient ring k[ei1, . . . , eir] of IH into k[e1, . . . , eq], so we
consider the natural extension IeH of IH to k[e1, . . . , eq], defined by IeH := ⟨Ψ(IH)⟩.

Let V be any projective variety in Pn and let p = [p0 : · · · : pn] ∈ Pn de-
note a fixed point in Pn such that p0 · · · pn ̸= 0. We call p ⋆ V the Hadamard
transformation of V by p. We define the set

ψ(V, p) := {q ∈ Pn | q ⋆ V = p ⋆ V } ⊆ Pn

which is the set of points in Pn which yield the same Hadamard product with V
as for p.

Results

Theorem 1: Let V andW be binomial varieties of Pn. Assume that V andW have the same
binomial exponents. In addition, suppose that V orW contains a point p = [p0 : · · · : pn] with
p0 · · · pn ̸= 0. Then V ⋆ W is also a binomial variety that has the same binomial exponents
as V and W . More precisely, if

I(V ) = ⟨a1Xα1 − b1X
β1, a2X

α2 − b2X
β2, . . . , asX

αs − bsX
βs⟩

and
I(W ) = ⟨c1Xα1 − d1X

β1, c2X
α2 − d2X

β2, . . . , csX
αs − dsX

βs⟩,
then

I(V ⋆ W ) = ⟨a1c1Xα1 − b1d1X
β1, a2c2X

α2 − b2d2X
β2, . . . , ascsX

αs − bsdsX
βs⟩.

Example 2: Let R = k[x, y, z] be the associated coordinate ring, and suppose that

I = ⟨x3 − 2y2z⟩ and J = ⟨x3 − 2yz2⟩.

Note that the exponents that appear in the binomial generators of I and J are not the same.
We can compute I ⋆ J using Macaulay2 [1] to find that I ⋆ J = ⟨0⟩. If V = V(I) and
W = V(J), we thus have

V ⋆ W = V(I) ⋆ V(J) = V(I ⋆ J) = P2.

Note that I and J do not have the same exponents, so Theorem 1 does not apply.
On the other hand, certainly the ideal I has the same binomial exponents as itself. If we
compute I ⋆ I using Macaulay2, we get I ⋆ I = ⟨x3− 4y2z⟩. This agrees with the conclusion
of Theorem 1.

Corollary 3: Let V and W be binomial varieties of Pn. Assume that V and W have
the same binomial exponents. Let V ′ ⊆ V be any subvariety. If V ′ contains a point
p = [p0 : · · · : pn] with p0 · · · pn ̸= 0, then

p ⋆ W = V ′ ⋆ W = V ⋆ W.

Theorem 4: Let G be a finite simple graph with edge set E = {e1, . . . , eq} and suppose
that H is a subgraph of G with edge set E′ = {ei1, . . . , eir}. Let IG ⊆ k[e1, . . . , eq] be the
toric ideal of G, and let IH ⊆ k[ei1, . . . , eir] denote the toric ideal of H. If IeH is the extension
of IH defined above, then IG ⋆ I

e
H = IeH .

Theorem 5: Let V ⊆ Pn be a nonempty projective variety. Suppose that
I(V ) : ⟨x0x1 · · · xn⟩ = I(V ). Let p = [p0 : · · · : pn] ∈ Pn be a point with p0 · · · pn ̸= 0. Let <
be a monomial order on k[x0, . . . , xn] and let G = {f1, . . . , fm} denote a reduced Gröbner
basis for I(V ) with respect to <. Assume that every element of the Gröbner basis is of
degree ≥ 2. For each i = 1, . . . ,m, write

fi = Xα1,i − a2,iX
α2,i − · · · − aki,iX

αki,i where LT (fi) = Xα1,i

where we assume Xαki,i < · · · < Xα1,i with respect to < so that Xα1,i is the leading term
of fi. Let

J := ⟨b1,iXα1,i − bℓ,iX
αℓ,i | for each i = 1, . . . ,m and 1 < ℓ ≤ ki⟩

where the constants bj,i are chosen so that they satisfy the equations b1,ip
α1,i = bℓ,ip

αℓ,i for
all 1 ≤ i ≤ m. If I(V(J)) : ⟨x0x1 · · ·xn⟩ = J , then J =

√
J = I(ψ(V, p)). In particular, under

the hypotheses above, the ideal I(ψ(V, p)) is a binomial ideal, and a set of generators of
I(ψ(V, p)) can be computed via a reduced Gröbner basis of I(V ).

Example 6: Let V = V(x2−xy−yz) ⊆ P3, and p = [1 : 2 : 3 : 4]. Thus, I(V ) = ⟨x2−xy−yz⟩,
a principal ideal of R = k[x, y, z, w]. Let > be the lexicographical momomial order given by
x > y > z > w. Since I(V ) is principal, and the leading coefficient of f = x2− xy− yz is 1,
we can conclude that G = {f} is a reduced Gröbner basis for I(V ). Furthermore, one can
verify by using Macaulay2 that I(V ) : ⟨xyzw⟩ = I(V ), so the above theorem applies. As
per Theorem 5, the binomials which generate I(ψ(V, p)) are of the form g1 = a1x

2 − b1xy
and g2 = a2x

2 − b2yz. We solve for the coefficients by substituting x = 1, y = 2, z = 3, and
w = 4. We have 2b1 = a1 and 6b2 = a2. Therefore, I(ψ(V, p)) = ⟨x2− (1/2)xy, x2− (1/6)yz⟩.

Example: Hadamard Product of Toric Ideals

A walk on a finite simple graph G is simply a sequence (e1, . . . , en) of adjacent
edges of G. A walk is called even if n is even, and called closed if the second
vertex of en and the first vertex of e1 coincide (we view each edge in the walk as
an ordered pair of vertices). Villarreal [2] showed that the generators of the toric
ideal IG correspond to the closed even walks of G:

Theorem 7 (Villarreal): Let Γ = (ei1, . . . , ei2m) be a closed even walk of a
finite simple graph G. Define the binomial

fΓ =
∏
2∤j

eij −
∏
2|j

eij.

Then IG is generated by all the binomials fΓ, where Γ is a closed even walk ofG.

Example 8: Consider the graph G below and the subgraph H of G high-
lighed in green.

e8

e10
e9

e7

e5e6

e2e3

e1e4

By the previous theorem, we have

IG = ⟨e1e3 − e2e4, e1e3e5e7e9 − e2e4e6e8e10, e5e7e9 − e6e8e10⟩

and
IeH = ⟨e1e3 − e2e4⟩.

Using Macaulay2, we find that

IG ⋆ I
e
H = ⟨e1e3 − e2e4⟩ = IeH ,

which agrees with the conclusion of Theorem 4.

Remarks

The Hadamard product of two varieties V and W is well know and easily com-
putable when one of the varieties is a single point p = [x0 : · · · : xn] = V with no
zero homogeneous coordinates [3]. Many of our results come from identifying
when all points in a projective variety give the same Hadamard transformation,
i.e., showing that p ⋆ V = q ⋆ V for all p, q ∈ W \ V(x0 . . . xn).
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