

HADAMARD PRODUCTS AND BINOMIAL IDEALS B. Atar, K. Bhaskara, A. Cook, D. Da Silva, M. Harada, J. Rajchgot, A. Van Tuyl, R. Wang, J. Yang McMaster University

Abstract

We study the Hadamard product of two varieties V and W, with particular attention to the situation when one or both of V and W is a binomial variety. The main result of this paper shows that when V and W are both binomial varieties, and the binomials that define V and W have the same binomial exponents, then the defining equations of $V \star W$ can be computed explicitly and directly from the defining equations of V and W. This result recovers known results about Hadamard products of binomial hypersurfaces and toric varieties. Moreover, as an application of our main result, we describe a relationship between the Hadamard product of the toric ideal I_G of a graph G and the toric ideal I_H of a subgraph H of G. We also derive results about algebraic invariants of Hadamard products: assuming V and W are binomial with the same exponents, we show that $\deg(V \star W) = \deg(V) = \deg(W)$ and $\dim(V \star W) = \dim(V) = \dim(W)$. Finally, given any (not necessarily binomial) projective variety V and a point $p \in \mathbb{P}^n \setminus \mathbb{V}(x_0 x_1 \cdots x_n)$, subject to some additional minor hypotheses, we find an explicit binomial variety that describes all the points q that satisfy $p \star V = q \star V$.

Definitions and Preliminaries

Let \mathbb{P}^n denote the projective space over the algebraically closed field k of dimension n, with homogeneous coordinates $[x_0 : x_1 : \cdots : x_n]$, and $X, Y \subseteq \mathbb{P}^n$ be projective varieties. The Hadamard product of X and Y is given by

$$X \star Y := \overline{\{p \star q \mid p \in X, q \in Y, p \star q \text{ is defined}\}} \subseteq \mathbb{P}^r$$

where $p \star q := [p_0 q_0 : \cdots : p_n q_n]$ is the point obtained by component-wise multiplication of the points $p = [p_0 : \cdots : p_n]$ and $q = [q_0 : \cdots : q_n]$, and $p \star q$ is defined precisely when there exists at least one index i, $0 \le i \le n$, with $p_i q_i \ne 0$ (so that $p \star q = [p_0q_0 : \cdots : p_nq_n]$ is a valid point in \mathbb{P}^n).

Two binomial varieties V and W have the same binomial exponents if there are two ordered subsets $\{\alpha_1, \ldots, \alpha_s\}$ and $\{\beta_1, \ldots, \beta_s\}$ of \mathbb{N}^{n+1} such that $\alpha_i \neq \beta_i$ for all $i = 1, \ldots, s$, the pairs (α_i, β_i) of exponents are pairwise distinct for all $i = 1, \ldots, s$, and there are nonzero constants $a_1, \ldots, a_s, b_1, \ldots, b_s, c_1, \ldots, c_s, d_1, \ldots, d_s \in k \setminus \{0\}$ such that

$$\mathbb{I}(V) = \langle a_1 X^{\alpha_1} - b_1 X^{\beta_1}, a_2 X^{\alpha_2} - b_2 X^{\beta_2}, \dots, a_s X^{\alpha_s} - b_s X^{\beta_s} \rangle$$

and

$$\mathbb{I}(W) = \langle c_1 X^{\alpha_1} - d_1 X^{\beta_1}, c_2 X^{\alpha_2} - d_2 X^{\beta_2}, \dots, c_s X^{\alpha_s} - d_s X^{\beta_s} \rangle.$$

Let G = (V, E) be a finite simple graph with vertices $V = \{v_1, \ldots, v_n\}$ and edges $E = \{e_1, \ldots, e_q\}$. Consider the ring homomorphism $\varphi \colon k[e_1, \ldots, e_q] \to k$ $k[v_1,\ldots,v_n]$ defined by

$$e_i \mapsto \varphi(e_i) := v_{i_1} v_{i_2}$$
 for all $e_i = \{v_{i_1}, v_{i_2}\}, \ 1 \le i \le q$.

The *toric ideal of* G, denoted I_G , is defined to $ker(\varphi)$, the kernel of φ .

Given a finite simple graph G and a subgraph H of G, let $E = \{e_1, \ldots, e_q\}$ be the set of edges of G and $E' = \{e_{i_1}, \ldots, e_{i_r}\} \subseteq E$ be the set of edges of *H*. We have that $I_G \subseteq k[e_1, \ldots, e_q]$ and $I_H \subseteq k[e_{i_1}, \ldots, e_{i_r}]$. There is a natural inclusion Ψ from the ambient ring $k[e_{i_1}, \ldots, e_{i_r}]$ of I_H into $k[e_1, \ldots, e_q]$, so we consider the natural extension I_H^e of I_H to $k[e_1, \ldots, e_q]$, defined by $I_H^e := \langle \Psi(I_H) \rangle$.

Let V be any projective variety in \mathbb{P}^n and let $p = [p_0 : \cdots : p_n] \in \mathbb{P}^n$ denote a fixed point in \mathbb{P}^n such that $p_0 \cdots p_n \neq 0$. We call $p \star V$ the Hadamard *transformation of* V by p. We define the set

$$\psi(V,p) := \{ q \in \mathbb{P}^n \mid q \star V = p \star V \} \subseteq \mathbb{P}^n$$

which is the set of points in \mathbb{P}^n which yield the same Hadamard product with V as for p.

Results

Theorem 1: Let V and W be binomial varieties of \mathbb{P}^n . Assume that V and W have the same binomial exponents. In addition, suppose that V or W contains a point $p = [p_0 : \cdots : p_n]$ with $p_0 \cdots p_n \neq 0$. Then $V \star W$ is also a binomial variety that has the same binomial exponents as V and W. More precisely, if

$$\mathbb{I}(V) = \langle a_1 X^{\alpha_1} - b_1 X^{\beta_1}, a_2 X^{\alpha_2} - b_2 X^{\beta_2}, \dots, a_s X^{\alpha_s} - b_s X^{\beta_s} \rangle$$

and

$$\mathbb{I}(W) = \langle c_1 X^{\alpha_1} - d_1 X^{\beta_1}, c_2 X^{\alpha_2} - d_2 X^{\beta_2}, \dots, c_s X^{\alpha_s} - d_s X^{\alpha_s} - d$$

then

$$\mathbb{I}(V \star W) = \langle a_1 c_1 X^{\alpha_1} - b_1 d_1 X^{\beta_1}, a_2 c_2 X^{\alpha_2} - b_2 d_2 X^{\beta_2}, \dots, a_s c_s X^{\alpha_s} \rangle$$

Example 2: Let R = k[x, y, z] be the associated coordinate ring, and suppose that

$$I = \langle x^3 - 2y^2 z \rangle$$
 and $J = \langle x^3 - 2yz^2 \rangle$.

Note that the exponents that appear in the binomial generators of I and J are not the same. We can compute $I \star J$ using *Macaulay2* [1] to find that $I \star J = \langle 0 \rangle$. If $V = \mathbb{V}(I)$ and $W = \mathbb{V}(J)$, we thus have

$$V \star W = \mathbb{V}(I) \star \mathbb{V}(J) = \mathbb{V}(I \star J) = \mathbb{P}^2.$$

Note that I and J do not have the same exponents, so Theorem 1 does not apply. On the other hand, certainly the ideal I has the same binomial exponents as itself. If we compute $I \star I$ using *Macaulay2*, we get $I \star I = \langle x^3 - 4y^2z \rangle$. This agrees with the conclusion of Theorem 1.

Corollary 3: Let V and W be binomial varieties of \mathbb{P}^n . Assume that V and W have the same binomial exponents. Let $V' \subseteq V$ be any subvariety. If V' contains a point $p = [p_0 : \cdots : p_n]$ with $p_0 \cdots p_n \neq 0$, then

$$p \star W = V' \star W = V \star W.$$

Theorem 4: Let G be a finite simple graph with edge set $E = \{e_1, \ldots, e_q\}$ and suppose that H is a subgraph of G with edge set $E' = \{e_{i_1}, \ldots, e_{i_r}\}$. Let $I_G \subseteq k[e_1, \ldots, e_q]$ be the toric ideal of G, and let $I_H \subseteq k[e_{i_1}, \ldots, e_{i_r}]$ denote the toric ideal of H. If I_H^e is the extension of I_H defined above, then $I_G \star I_H^e = I_H^e$.

Theorem 5: Let $V \subseteq \mathbb{P}^n$ be a nonempty projective variety. Suppose that $\mathbb{I}(V): \langle x_0 x_1 \cdots x_n \rangle = \mathbb{I}(V)$. Let $p = [p_0: \cdots: p_n] \in \mathbb{P}^n$ be a point with $p_0 \cdots p_n \neq 0$. Let < be a monomial order on $k[x_0, \ldots, x_n]$ and let $\mathcal{G} = \{f_1, \ldots, f_m\}$ denote a reduced Gröbner basis for $\mathbb{I}(V)$ with respect to <. Assume that every element of the Gröbner basis is of degree ≥ 2 . For each $i = 1, \ldots, m$, write

$$f_i = X^{\alpha_{1,i}} - a_{2,i} X^{\alpha_{2,i}} - \dots - a_{k_i,i} X^{\alpha_{k_i,i}}$$
 where $LT(f_i) = X^{\alpha_{k_i,i}}$

where we assume $X^{\alpha_{k_i,i}} < \cdots < X^{\alpha_{1,i}}$ with respect to < so that $X^{\alpha_{1,i}}$ is the leading term of f_i . Let

$$J := \langle b_{1,i} X^{\alpha_{1,i}} - b_{\ell,i} X^{\alpha_{\ell,i}} | \text{ for each } i = 1, \dots, m \text{ and } 1 < \ell \leq \ell$$

where the constants $b_{i,i}$ are chosen so that they satisfy the equations $b_{1,i}p^{\alpha_{1,i}} = b_{\ell,i}p^{\alpha_{\ell,i}}$ for all $1 \le i \le m$. If $\mathbb{I}(\mathbb{V}(J)) : \langle x_0 x_1 \cdots x_n \rangle = J$, then $J = \sqrt{J} = \mathbb{I}(\psi(V, p))$. In particular, under the hypotheses above, the ideal $\mathbb{I}(\psi(V,p))$ is a binomial ideal, and a set of generators of $\mathbb{I}(\psi(V, p))$ can be computed via a reduced Gröbner basis of $\mathbb{I}(V)$.

Example 6: Let $V = \mathbb{V}(x^2 - xy - yz) \subseteq \mathbb{P}^3$, and p = [1:2:3:4]. Thus, $\mathbb{I}(V) = \langle x^2 - xy - yz \rangle$, a principal ideal of R = k[x, y, z, w]. Let > be the lexicographical momomial order given by x > y > z > w. Since $\mathbb{I}(V)$ is principal, and the leading coefficient of $f = x^2 - xy - yz$ is 1, we can conclude that $\mathcal{G} = \{f\}$ is a reduced Gröbner basis for $\mathbb{I}(V)$. Furthermore, one can verify by using *Macaulay2* that $\mathbb{I}(V)$: $\langle xyzw \rangle = \mathbb{I}(V)$, so the above theorem applies. As per Theorem 5, the binomials which generate $\mathbb{I}(\psi(V,p))$ are of the form $g_1 = a_1 x^2 - b_1 x y$ and $g_2 = a_2 x^2 - b_2 yz$. We solve for the coefficients by substituting x = 1, y = 2, z = 3, and w = 4. We have $2b_1 = a_1$ and $6b_2 = a_2$. Therefore, $\mathbb{I}(\psi(V, p)) = \langle x^2 - (1/2)xy, x^2 - (1/6)yz \rangle$.

 X^{β_s}

 $X^{\beta_s}\rangle,$

 $-b_s d_s X^{\beta_s} \rangle.$

 $X^{\alpha_{1,i}}$

 $\leq k_i \rangle$

Example: Hadamard Product of Toric Ideals

A walk on a finite simple graph G is simply a sequence (e_1, \ldots, e_n) of adjacent edges of G. A walk is called *even* if n is even, and called *closed* if the second vertex of e_n and the first vertex of e_1 coincide (we view each edge in the walk as an ordered pair of vertices). Villarreal [2] showed that the generators of the toric ideal I_G correspond to the closed even walks of G:

Theorem 7 (Villarreal): Let $\Gamma = (e_{i_1}, \ldots, e_{i_{2m}})$ be a closed even walk of a finite simple graph G. Define the binomial

$$f_{\Gamma} = \prod_{2 \nmid j} e_{i_j} - \prod_{2 \mid j} e_{i_j}.$$

Then I_G is generated by all the binomials f_{Γ} , where Γ is a closed even walk of G.

Example 8: Consider the graph G below and the subgraph H of G highlighed in green.

By the previous theorem, we have

$$I_G = \langle e_1 e_3 - e_2 e_4, e_1 e_3 e_5 e_7 e_9 - e_2 e_4 e_6 e_8 e_{10}, e_6 e_{10$$

and

$$_{H}^{e} = \langle e_{1}e_{3} - e_{2}e_{4} \rangle.$$

Using *Macaulay2*, we find that

$$I_G \star I_H^e = \langle e_1 e_3 - e_2 e_4 \rangle = I_H^e,$$

which agrees with the conclusion of Theorem 4.

Remarks

The Hadamard product of two varieties V and W is well know and easily computable when one of the varieties is a single point $p = [x_0 : \cdots : x_n] = V$ with no zero homogeneous coordinates [3]. Many of our results come from identifying when all points in a projective variety give the same Hadamard transformation, i.e., showing that $p \star V = q \star V$ for all $p, q \in W \setminus \mathbb{V}(x_0 \dots x_n)$.

Acknowledgements

We thank C. Bocci and E. Carlini for answering some of our questions and for their suggestions. Results were based upon computer experiments using *Macaulay2*, and in particular, the Hadamard package of Bahmani Jafarloo.

References

[1] D. Grayson and M. Stillman, *Macaulay2*, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.

[2] R. H. Villarreal, *Rees algebras of dege ideals*, Comm. Algebra **23** (1995), no. 9, 3513–3524. [3] C. Bocci and E. Carlini, *Hadamard products of hypersurfaces*, J. Pure Appl. Algebra **226** (2022), no. 11, Paper No. 107078, 12 pp.

The full list of references for our work can be found in our preprint, Hadamard products and binomial ideals, available at arXiv:2211.14210.

Department of Mathematics & Statistics

 $(e_9 - e_6 e_8 e_{10})$