Recent Applications of
 Geometric Vertex Decomposition

Sergio Da Silva

Combinatorial Algebra meets Algebraic Combinatorics January 21, 2023

Geometric Vertex Decomposition

Geometric Vertex Decomposition

- A square-free monomial ideal I_{Δ} is GVD iff Δ is vertex decomposable.

Geometric Vertex Decomposition

- A square-free monomial ideal I_{Δ} is GVD iff Δ is vertex decomposable.
- Geometric vertex decomposition \Leftrightarrow Height 1 elementary G-biliaison

Geometric Vertex Decomposition

- A square-free monomial ideal I_{Δ} is GVD iff Δ is vertex decomposable.
- Geometric vertex decomposition \Leftrightarrow Height 1 elementary G-biliaison
- I homogeneous and GVD \Rightarrow then R / I is Cohen-Macaulay and I glicci

Geometric Vertex Decomposition

- A square-free monomial ideal I_{Δ} is GVD iff Δ is vertex decomposable.
- Geometric vertex decomposition \Leftrightarrow Height 1 elementary G-biliaison
- I homogeneous and GVD \Rightarrow then R / I is Cohen-Macaulay and I glicci
- We can also build Gröbner bases via linkage

Geometric Vertex Decomposition

- Set $R=k\left[x_{1}, \ldots, x_{n}\right]$ and fix $y=x_{i}$ and a lex order with $y>x_{j}$.
- Let $I=\left\langle g_{1}, \ldots, g_{m}\right\rangle$ and write $g_{i}=y^{d_{i}} q_{i}+r_{i}$.

Geometric Vertex Decomposition

- Set $R=k\left[x_{1}, \ldots, x_{n}\right]$ and fix $y=x_{i}$ and a lex order with $y>x_{j}$.
- Let $I=\left\langle g_{1}, \ldots, g_{m}\right\rangle$ and write $g_{i}=y^{d_{i}} q_{i}+r_{i}$.

$$
C_{y, l}=\left\langle q_{1}, \ldots, q_{m}\right\rangle \quad N_{y, l}=\left\langle q_{i} \mid d_{i}=0\right\rangle .
$$

Geometric Vertex Decomposition

- Set $R=k\left[x_{1}, \ldots, x_{n}\right]$ and fix $y=x_{i}$ and a lex order with $y>x_{j}$.
- Let $I=\left\langle g_{1}, \ldots, g_{m}\right\rangle$ and write $g_{i}=y^{d_{i}} q_{i}+r_{i}$.

$$
C_{y, l}=\left\langle q_{1}, \ldots, q_{m}\right\rangle \quad N_{y, l}=\left\langle q_{i} \mid d_{i}=0\right\rangle .
$$

Definition

The ideal I is geometrically vertex decomposable if I is unmixed with

$$
\operatorname{in}_{y}(I)=\left\langle y^{d_{1}} q_{1}, \ldots, y^{d_{m}} q_{m}\right\rangle=C_{y, l} \cap\left(N_{y, I}+\langle y\rangle\right),
$$

and $C_{y, l}$ and $N_{y, l}$ are GVD in $k\left[x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right]$.

Geometric Vertex Decomposition

- Set $R=k\left[x_{1}, \ldots, x_{n}\right]$ and fix $y=x_{i}$ and a lex order with $y>x_{j}$.
- Let $I=\left\langle g_{1}, \ldots, g_{m}\right\rangle$ and write $g_{i}=y^{d_{i}} q_{i}+r_{i}$.

$$
C_{y, l}=\left\langle q_{1}, \ldots, q_{m}\right\rangle \quad N_{y, l}=\left\langle q_{i} \mid d_{i}=0\right\rangle .
$$

Definition

The ideal I is geometrically vertex decomposable if I is unmixed with

$$
\operatorname{in}_{y}(I)=\left\langle y^{d_{1}} q_{1}, \ldots, y^{d_{m}} q_{m}\right\rangle=C_{y, l} \cap\left(N_{y, I}+\langle y\rangle\right),
$$

and $C_{y, l}$ and $N_{y, l}$ are GVD in $k\left[x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right]$.

Toric Ideals of Graphs

- Let $G=(V, E)$ be a finite simple graph.

Toric Ideals of Graphs

- Let $G=(V, E)$ be a finite simple graph.
- The toric ideal I_{G} of the graph G is generated by binomials corresponding to closed even walks of G.

Toric Ideals of Graphs

- Let $G=(V, E)$ be a finite simple graph.
- The toric ideal I_{G} of the graph G is generated by binomials corresponding to closed even walks of G.

$$
(g, e, f, a) \rightarrow f g-a e \in I_{G}
$$

Toric Ideals of Graphs

- Let $G=(V, E)$ be a finite simple graph.
- The toric ideal I_{G} of the graph G is generated by binomials corresponding to closed even walks of G.

$$
(g, e, f, a) \rightarrow f g-a e \in I_{G}
$$

$$
(g, e, f, a, g, d, c, b) \rightarrow c f g^{2}-a b d e \in I_{G}
$$

Geometric Vertex Decomposition for I_{G}

- Primitive closed even walks define a universal Gröbner basis for I_{G}.

Geometric Vertex Decomposition for I_{G}

- Primitive closed even walks define a universal Gröbner basis for I_{G}.
- If I_{G} possesses a square-free degeneration, then R / I_{G} is both normal and Cohen-Macaulay.

Geometric Vertex Decomposition for I_{G}

- Primitive closed even walks define a universal Gröbner basis for I_{G}.
- If I_{G} possesses a square-free degeneration, then R / I_{G} is both normal and Cohen-Macaulay.

Example

Consider a lex ordering such that $g>f>\ldots$

$$
I=I_{G}=\langle a e-f g, b d-c g, a c e-b d f\rangle
$$

Geometric Vertex Decomposition for I_{G}

- Primitive closed even walks define a universal Gröbner basis for I_{G}.
- If I_{G} possesses a square-free degeneration, then R / I_{G} is both normal and Cohen-Macaulay.

Example

Consider a lex ordering such that $g>f>\ldots$

$$
\begin{gathered}
I=I_{G}=\langle a e-f g, b d-c g, a c e-b d f\rangle \\
C_{g, I}=\langle c, f, a c e-b d f\rangle=\langle c, f\rangle \quad N_{g, I}=\langle a c e-b d f\rangle
\end{gathered}
$$

Geometric Vertex Decomposition for I_{G}

- Primitive closed even walks define a universal Gröbner basis for I_{G}.
- If I_{G} possesses a square-free degeneration, then R / I_{G} is both normal and Cohen-Macaulay.

Example

Consider a lex ordering such that $g>f>\ldots$

$$
\begin{gathered}
I=I_{G}=\langle a e-f g, b d-c g, a c e-b d f\rangle \\
C_{g, I}=\langle c, f, a c e-b d f\rangle=\langle c, f\rangle \quad N_{g, I}=\langle a c e-b d f\rangle
\end{gathered}
$$

Note that $C_{g, l}$ is already GVD, and setting $J=N_{g, l}$:

$$
C_{f, J}=\langle b d\rangle \quad N_{f, J}=\langle 0\rangle
$$

Structure Results

Joint work with Michael Cummings, Jenna Rajchgot, and Adam Van Tuyl:

- $N_{y, I_{G}}=I_{G \backslash y}$ and $C_{y, I_{G}}=\bigcap_{i=1}^{d}\left(M_{i}+I_{G \backslash E_{i}}\right)$.

Structure Results

Joint work with Michael Cummings, Jenna Rajchgot, and Adam Van Tuyl:

- $N_{y, I_{G}}=I_{G \backslash y}$ and $C_{y, I_{G}}=\bigcap_{i=1}^{d}\left(M_{i}+I_{G \backslash E_{i}}\right)$.
- The GVD property respects tensor products and ring extensions.
- Let $G=H \sqcup K$. Then I_{G} is GVD iff I_{H} and I_{K} are.

Structure Results

Joint work with Michael Cummings, Jenna Rajchgot, and Adam Van Tuyl:

- $N_{y, I_{G}}=I_{G \backslash y}$ and $C_{y, I_{G}}=\bigcap_{i=1}^{d}\left(M_{i}+I_{G \backslash E_{i}}\right)$.
- The GVD property respects tensor products and ring extensions.
- Let $G=H \sqcup K$. Then I_{G} is GVD iff I_{H} and I_{K} are.
- Gluing on even cycles preserves the GVD property.

Families of Graphs

- I_{G} is GVD if G is a bipartite graph (building on proof of Constantinescu and Gorla).

Families of Graphs

- I_{G} is GVD if G is a bipartite graph (building on proof of Constantinescu and Gorla).
- If primitive closed even walks of I_{G} are quadratic, then I_{G} is GVD with respect to any $<$.

Families of Graphs

- I_{G} is GVD if G is a bipartite graph (building on proof of Constantinescu and Gorla).
- If primitive closed even walks of I_{G} are quadratic, then I_{G} is GVD with respect to any $<$.

- Let G be a gap-free graph such that the graph complement \bar{G} is not gap-free. Then I_{G} is glicci.

The Square-free Degeneration Case

Goal: Classify which toric ideals of graphs are GVD.

Conjecture

Let G be a finite simple graph with toric ideal I_{G}. If $\mathrm{in}_{<}\left(I_{G}\right)$ is square-free with respect to a lex ordering $<$, then I_{G} is GVD.

Height of I_{G}

In joint work with Jenna Rajchgot and Emma Naguit:
If I_{G} is a GVD, then height $\left(I_{G}\right)=\#$ of "boundary" non-degenerate one-step GVDs of I_{G}.

Height of I_{G}

In joint work with Jenna Rajchgot and Emma Naguit:
If I_{G} is a GVD, then height $\left(I_{G}\right)=\#$ of "boundary" non-degenerate one-step GVDs of I_{G}.

Provides an alternate proof that

$$
\text { height }\left(I_{G}\right)= \begin{cases}|E|-|V| & \text { if } G \text { is not bipartite } \\ |E|-|V|+1 & \text { if } G \text { is bipartite }\end{cases}
$$

Height of I_{G}

In joint work with Jenna Rajchgot and Emma Naguit:
If I_{G} is a GVD, then height $\left(I_{G}\right)=\#$ of "boundary" non-degenerate one-step GVDs of I_{G}.

Provides an alternate proof that

$$
\operatorname{height}\left(I_{G}\right)= \begin{cases}|E|-|V| & \text { if } G \text { is not bipartite } \\ |E|-|V|+1 & \text { if } G \text { is bipartite }\end{cases}
$$

Conjecture

Given any toric ideal I_{G} of a graph G, there exists at least one variable y and some order $<$ for which I_{G} is square-free in y. That is, there is some $<$ where $\mathrm{in}_{<}\left(I_{G}\right)$ is square-free in y.

What about the graph G ?

- Suppose that I_{G} is GVD. Consider the graph deletions

$$
G \backslash y_{1}, G \backslash\left\{y_{1}, y_{2}\right\}, \ldots
$$

corresponding to variables from GVD.

- We can detect the first instance when a graph deletion is bipartite.

What about the graph G ?

- Suppose that I_{G} is GVD. Consider the graph deletions

$$
G \backslash y_{1}, G \backslash\left\{y_{1}, y_{2}\right\}, \ldots
$$

corresponding to variables from GVD.

- We can detect the first instance when a graph deletion is bipartite.

Theorem

Let G be a finite simple graph which is not bipartite such that I_{G} is GVD. Suppose y defines a degenerate $G V D$ of I_{G} and is not a bridge of G. Then $G \backslash y$ is bipartite.

Geometric Vertex Decomposition by Substitution

What about the non-square-free case?

Geometric Vertex Decomposition by Substitution

What about the non-square-free case?

Here I_{G} is not GVD. Make the substitution $y=e_{4}^{2}$:

$$
\left\langle y e_{1} e_{6} e_{7}-e_{2} e_{3} e_{5}^{2} e_{8}\right\rangle \subseteq \mathbb{C}\left[e_{1}, e_{2}, e_{3}, y, e_{5}, e_{6}, e_{7}, e_{8}\right]
$$

This is now GVD, but not the toric ideal of a graph.

Associated Graph

In joint work with Agnieszka Nachman:

Goal 1: Formalize how to associate graphs after substituting:

$$
I_{G}=\left\langle e_{1} e_{4} \tilde{e}_{4} e_{6} e_{7}-e_{2} e_{3} e_{5}^{2} e_{8}\right\rangle
$$

Associated Graph

In joint work with Agnieszka Nachman:

Goal 1: Formalize how to associate graphs after substituting:

$$
I_{G}=\left\langle e_{1} e_{4} \tilde{e}_{4} e_{6} e_{7}-e_{2} e_{3} e_{5}^{2} e_{8}\right\rangle
$$

Setting $\tilde{e}_{4}=1$ gives the ideal from the previous slide.

Goal 2: Find families of graphs which are not GVD, but are after substitution.

Goal 2: Find families of graphs which are not GVD, but are after substitution.

Conjecture

Let G_{1} and G_{2} be two graphs which are not bipartite, and suppose that $I_{G_{1}}$ and $I_{G_{2}}$ are GVD. Construct a new graph H by joining an odd cycle of G_{1} to an odd cycle of G_{2} by a path of length >2. Then I_{H} is not GVD, but is up to substitution.

Goal 2: Find families of graphs which are not GVD, but are after substitution.

Conjecture

Let G_{1} and G_{2} be two graphs which are not bipartite, and suppose that $I_{G_{1}}$ and $I_{G_{2}}$ are GVD. Construct a new graph H by joining an odd cycle of G_{1} to an odd cycle of G_{2} by a path of length >2. Then I_{H} is not GVD, but is up to substitution.

Result: Conjecture holds when G_{1} and G_{2} are bipartite with exactly one odd cycle glued on.

Edge Contractions

Goal 3: Find graph operations which preserve the list of primitive closed even walks.

Edge Contractions

Goal 3: Find graph operations which preserve the list of primitive closed even walks.

$\langle a c e-b d f, a e-f g, b d-c g\rangle \longrightarrow\langle a c-b d, a-g, b d-c g\rangle$

Edge Contraction Results

Theorem

Choose a vertex v of G and contract all edges e_{1}, \ldots, e_{k} incident to v. The set of primitive closed even walks of the contracted graph G_{v} is equal to the set of primitive closed even walks of G with $e_{1}=\cdots=e_{k}=1$.

Edge Contraction Results

Theorem

Choose a vertex v of G and contract all edges e_{1}, \ldots, e_{k} incident to v. The set of primitive closed even walks of the contracted graph G_{v} is equal to the set of primitive closed even walks of G with $e_{1}=\cdots=e_{k}=1$.

Example

Havel-Hakimi theorem can be used to compute when a given list of non-negative integers is the degree sequence of a graph.

Question: When is a homogeneous ideal the toric ideal of some graph G ?

Apply the theorem to all possible subsets of variables set to 1 . If we cannot determine whether the resulting ideal is the toric ideal of graph, continue the process.

Other Results

- With M. Harada, regular nilpotent Hessenberg varieties in the w_{0}-chart are GVD.
- With M.Cummings, M. Harada, and J. Rajchgot, regular nilpotent Hessenberg varieties in each Schubert cell are GVD. Provides a computational proof that regular nilpotent Hessenberg varieties have an affine paving.
- M. Cummings and A. Van Tuyl developed a Macaulay2 package for computing GVDs and related quantities.

Going Forward: There is a real need to optimize the general algorithm to be able to compute examples quickly.

Thank you!

