LACIM

Benjamin Dequêne a joint work with: Gabriel Frieden. Alessandro Iraci. Florian Schreier-Aigner. Hugh Thomas and Nathan Williams

Nonnesting partitions

A set partition π of $[n]$ is said to be nonnesting (of type A) if there is no 4-tuple (i, j, k, l) such that $1 \leqslant i<j<k<l \leqslant n$ and two distinct blocks $A, B \in \pi$ with $i, l \in A$ and $j, k \in B$.

Figure 1. Example of a nonnesting partition of [9].
We will see them throughout the rest of this poster as ideals in the (type A) root poset with which they are in bijection

Figure 2. Ideal in the type A root poset associated to the above nonnesting partition

Coxeter element and c-sorting word for w_{0}

Consider our type A Weyl group :

$S_{n}=\left\langle s_{1}, \ldots, s_{n-1}\right| s_{i}^{2}=\left(s_{i} s_{i+1}\right)^{3}=\left(s_{i} s_{j}\right)^{2}=1$ for $\left.|i-j|>1\right\rangle$ where $s_{i}=(i, i+1)$. A Coxeter element is an element $c \in S_{n}$ which could be written as a product of the s_{i} 's where each s_{i} appears exactly once. Note also that any of them can be written as one long cycle $\left(1, w_{1}, \ldots, w_{m}, n, w_{m+1}, \ldots, w_{n-2}\right)$ where

$$
1<w_{1}<\ldots<w_{m}<n>w_{m+1}>\ldots>w_{n-2}>1 .
$$

$$
c=(1,3,4,7,9,8,6,5,2)=s_{2} s_{1} s_{3} s_{6} s_{5} s_{4} s_{8} s_{7} .
$$

$$
\text { Figure 3. Example of a Coxeter element in } S_{9} \text {. }
$$

Given a reduced expression $\mathbf{c}=\left[r_{1}, \ldots, r_{n}\right]$ of a Coxeter element c, we can define a c-sorting word for w_{0}, the longest element in S_{n}, to be the leftmost reduced word $\mathrm{w}_{0}(c)$ in c^{∞}. Note that $\mathrm{w}_{0}(c)$ does not depend on the choice of the reduced word for c. Write $\mathrm{w}_{0}(c)=\left[t_{1}, \ldots, t_{N}\right]$ where the t_{i} 's are distinct transpositions in S_{n} and $N=\binom{n}{2}$. For each j, we defined the inversion

$$
\alpha^{(j)}=t_{1} \ldots t_{j-1}\left(\alpha_{t_{j}}\right)
$$

where α_{t} is the simple root corresponding to the adjacent transposition t. Since w_{0} has every positive root as an inversion, each positive root appears exactly once in the inversion sequence $\operatorname{inv}\left(\mathbf{w}_{\circ}(\mathbf{C})\right)=\left[\alpha^{(1)}, \ldots, \alpha^{(N)}\right]$.
$\mathbf{W}_{\mathbf{o}}(\mathbf{c})=s_{2} s_{1} s_{3} s_{6} s_{5} s_{4} s_{8} s_{7}\left|s_{2} s_{1} s_{3} s_{6} s_{5} s_{4} s_{8} s_{7}\right| s_{2} s_{1} s_{3} s_{6} s_{5} s_{4} s_{8} s_{7}\left|s_{2} s_{1} s_{3} s_{6} s_{5} s_{4} s_{8} s_{7}\right| s_{2} s_{6} s_{5} s_{8}$

$$
\operatorname{inv}\left(\mathrm{w}_{0}(\mathrm{c})\right)=
$$

$$
\left.\begin{array}{l}
{[(23),(13),(24),(67),(57),(27),(89),(69),} \\
(14),(34),(17),(59),(29),(19),(68),(58), \\
(37),(47),(39),(28),(18),(38),(56),(26), \\
(49),(79),(48),(16),(36),(46),(25),(15), \\
(78),(98),(76),(35),(45),(72),(12)
\end{array}\right] .
$$

Figure 4. Example of a c-sorting word for w_{0} with the reduced expression of c given in the previous figure.

Kroweras complement [DFISTW22]
Let $c \in S_{n}$ be a Coxeter element. The c-Kroweras complement is an action on nonnesting partitions, seen as an ideal in the root poset, defined by a sequence of toggles determined by the inversion sequence: if $\operatorname{inv}\left(\mathrm{w}_{0}(\mathrm{c})\right)=$ $\left[\alpha^{(1)}, \ldots, \alpha^{(N)}\right]$, then
$\operatorname{Krow}_{\mathcal{C}}=\operatorname{tog}_{\alpha^{(N)}} \circ \ldots \circ \operatorname{tog}_{\alpha^{(1)}}$

Figure 5. Example of application of Krow_{c} for $c=(1,3,4,7,9,8,6,5,2)$

Figure 6. The orbits of $\mathrm{Krow}_{\mathrm{c}}$ for $c=(1,2,4,3)=s_{1} s_{3} s_{2}$, where the c-Kroweras complement is given by inv $\left(\mathrm{w}_{\mathrm{o}}(\mathrm{c})\right)=[(34),(12),(14),(13),(24),(23)]$

Noncrossing partitions

Let $c \in S_{n}$ be a Coxeter element. A set partition χ of $[n]$ is said to be c-noncrossing (of A-type) if there are no integer 4 -tuples (i, j, k, l) such that $0 \leqslant i<j<k<l \leqslant n-1$ and two distinct blocks $A, B \in \chi$ with $c^{i}(1), c^{k}(1) \in A$ and $c^{j}(1), c^{l}(1) \in B$

Figure 7. A geometric (and prettier) way to represent c-noncrossing partition for $c=(1,3,4,7,9,8,6,5,2)$.

Note that a c-noncrossing partition can also be defined as an element of $[1 ; c]_{T}$ in the poset S_{n} ordered by the absolute length.

Kreweras complement

We illustrate in the following figure the way we define the c-Kreweras complement for c-noncrossing partition

Figure 8. Calculation of the c-Kreweras complement of the previous c-noncrossing partition. We can also compactly define it as $w \longmapsto w^{-1} c$ for $w \in\left[1 ; c_{T}\right.$.

Main result [DFISTW22]

There exists a unique family of bijections $\left(\mathrm{Charm}_{c}: \mathrm{NC}\left(S_{n}, c\right) \longrightarrow \mathrm{NN}\left(S_{n}\right)\right)$ indexed by Coxeter elements of S_{n} such that:

- $\mathrm{Charm}_{c} \circ \mathrm{Krew}_{c}=\mathrm{Krow}_{c} \circ \mathrm{Charm}_{c}$
- Supp $_{\mathrm{NC}}=$ Supp $_{\mathrm{NN}} \circ \mathrm{Charm}_{c}$.

Figure 9. A summary of the commutative square obtained with the bijection Charm $_{c}$ on a example. The construction of Charm_{c} is based on certain families of lattice paths on the root poset and the notion of charmed roots (the roots labelled by $\mathbf{~}$).

Our article: https://arxiv.org/abs/2212.14831

