Snake Graphs for Graph LP Algebras
Esther Banian
Aarhus University
FAC 2023
j. Sunita Chepuri, Elizabeth Kelley, \& Sylvester Zhang


Graph LP Algebras
Let $\Gamma$ be an undirected graph. We will only consider trees.
Variables: $\left\{X_{i} \mid i \in V(\Gamma)\right\} \cup\left\{Y_{S} \mid S \subseteq V(\Gamma), S\right.$ is connected $\}$

We work with $W=V(\Gamma)$.
maximal set of compatible
variables

Graph LP Algebras
Let $\Gamma$ be an undirected graph. We will only consider trees.
Variables: $\left\{X_{i} \mid i \in V(\Gamma)\right\} \cup\left\{Y_{S} \mid S \subseteq V(\Gamma), S\right.$ is connected $\}$
Clusters: $\left\{Y_{I} \mid I \in \mathcal{X}\right.$ is andesedinal $\left.\begin{array}{c}\text { bolection on } \\ \text { and }\end{array} W \subseteq V(\Gamma)\right\} \cup\left\{x_{i} \mid i \in V(\Gamma) \backslash w\right\} \quad \begin{aligned} & \text { we work with } \\ & W=V(\Gamma) .\end{aligned}$
maximal set
of compatible
variables
Def: A set $\mathcal{I}$ of subsets of $V(\Gamma)$ is a nested collection if for all $I, J \in \mathcal{I}$, either
(1) $I \leq J$ or $J \leqslant I$, or
(2) $\operatorname{InJ}=\phi$ and $I \& J$ do not "kiss"


Graph LP Algebras: mutation
Example of Mutation:


Graph LP Algebras: mutation
Example of Mutation:
$\{1235\} \cup\{124\} \quad\{1235\} \cap\{124\}$


$$
\{123\} \cap\{124\} \backslash \mathrm{Pa}_{\mathrm{a}+\mathrm{th}}^{3-4}
$$

Difficulty \#1)
$\{2\} \notin \mathcal{Z}, \mathcal{I}^{\prime}$

Graph LP Algebras: mutation


Substituting $Y_{2}=\frac{Y_{12}+1}{Y_{1}}$ we can write $Y_{124}$ in terms of $\tilde{I}$,

$$
y_{124}^{\pi}=\frac{y_{12345} y_{12} y_{1}^{2}+y_{12}^{2} y_{5}+2 y_{12} y_{5}+y_{5}}{y_{1235} y_{1}^{2}}
$$

Difficulty \#2: $Y_{1}$ appears in the denominator, but $\{13$ and $\{1,2,1\}$ are compatible - $113 \subset\{1,2,4\}$

Graph LP Algebras: mutation


Substituting $Y_{2}=\frac{Y_{12}+1}{Y_{1}}$ we can write $Y_{124}$ in terms of $\tau$,

$$
y_{124}^{\pi}=\frac{y_{12345} y_{12} y_{1}^{2}+y_{12}^{2} y_{5}+2 y_{12} y_{5}+y_{5}}{y_{1235} y_{1}^{2}}
$$

Difficulty \#z: $Y$, appears in the denominator, but $\{13$ and $\{1,2,1\}$ are compatible - $\{13 \subset\{1,2,4\}$

Goal: Prove $Y_{S}{ }^{\mathcal{Z}}$ have positive coefficients

Special Case: Path Graphs
There is a bijection between maximal nested collections on $P_{n}$ and triangulations of
 an ( $n+2$ )-gan:

Special Case: Path Graphs
There is a bijection between maximal nested collections on $P_{n}$ and triangulations of
 an ( $n+2$ )-gan:

Here, mutation of $y$-variables resembles mutation in a cluster algebra of type $A$.


Snake Graphs


- One tile for each crossing of $\gamma$ with an are in $T=\left\{\tau_{1} T_{3}, T_{3}\right\}$

$$
\pi_{2}^{\left.\pi^{\prime} \cdots \tau_{1}\right|_{\tau_{2}} ^{\prime}} \begin{array}{ccc}
\left.\tau_{1}\right|_{1} ^{\tau_{3}} a \tau_{2} & 4-3 \\
1-\tau_{4}^{\prime} & \left.\right|_{4} ^{1} \frac{\tau_{3}}{\tau_{2}} 2
\end{array}
$$

Snake Graphs


- One tile for each crossing of $\gamma$ with an arc in $T=\left\{\tau_{1}, \tau_{3}, \tau_{3}\right\}$

- glue tiles associated to adjacent crossings


Snake Graphs

such as

- One tile for each crossing of $\gamma \omega$ with an arc in $T=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$

- glue tiles associated to adjacent crossings

$$
G_{\gamma, \tau}
$$



- The cluster variable associated to $\gamma$ is given by statistics from the set of perfect matching of $G_{r, T}$

Main Result
Def $A$ set $S$ is weakly rooted with respect to a maximal nested collection $\tau$
if there exists a root $v$ so that, for any $i, j \in S$, either

- " $I_{i} \subseteq I_{j}$ ff $j$ appears on the path $i-v$ "OR
- $\exists I \in \mathcal{I}$ such that $i, j^{\prime} \in I \leq S$.


Main Result
Def $A$ set $S$ is weakly rooted with respect to a maximal nested collection $\tau$ if there exists a root $v$ so that, for any $i, j \in S$, either

- $I_{i} \subseteq I_{j}$ iff $j$ appears on the path $i-v$ OR
- $\exists I \in \mathcal{I}$ such that $i, j^{\prime} \in I \leq S$.


Thu [B. - Chepuri - Kelley - Zhang]
For any maximal nested collection $\mathcal{I}$ and weakly rooted set $S$,

$$
Y_{S}=\frac{1}{\text { labels }\left(g_{s}\right)} \sum_{P} \omega t(P){ }^{\text {"admissible }} \text { matching of } g_{s}
$$

Cor For some $(S, \mathcal{Z})$, this shows $Y_{S}$ has positive coefficients

Examples


Examples


$$
\begin{aligned}
& y_{1}=1_{2}^{2^{\prime}=v^{2}}+1 \\
& \begin{array}{l}
2^{1}=a^{12} \sqrt[3]{3}_{4}^{4} \\
2-\frac{1(1) 1)}{1}
\end{array} \\
& y_{1}=\frac{y_{12}+1}{y_{2}} \\
& y_{4}=\frac{y_{134} y_{2}+y_{2}^{2}+y_{133} y_{2}}{y_{123} y_{12}}
\end{aligned}
$$

Examples


Contributes $\frac{Y_{2} Y_{123}}{Y_{2} Y_{12} Y_{123}}$

Examples

would contribute

$$
\frac{y_{12} \cdot y_{2} y_{123}}{y_{2} \cdot y_{12} y_{123}}
$$

Relation: $Y_{14}=Y_{1} Y_{4}-1$
Graphically, we can combine a matching of $g_{1}$ \& a matching of $g_{4}$ except in one case.

Thank you for listening!

