Generalized chromatic functions

Farid Aliniaeifard

The University of British Columbia

CAAC 2023, University of Waterloo January 20, 2023

Generalized chromatic functions

1. Generalizing Stanley's chromatic symmetric functions (1995)
2. Relations with the Stanley-Stembridge ($3+1$)-Free Conjecture (1993) and the Tree Conjecture (1995)
3. Answering Rosas and Sagan's question (2004): Schur functions in noncommuting variables?

Generalized chromatic functions

Edge-coloured digraphs

An edge-coloured digraph is a digraph G with three types of edges $\rightarrow, \Rightarrow,--\rightarrow$.

Example

Proper colourings of edge-coloured digraphs

Given an edge-coloured digraph G, a proper colouring of G is a function

$$
f: V(G) \rightarrow\{1,2,3, \ldots\}
$$

such that

1. If $a \Rightarrow b$, then $f(a) \leq f(b)$.
2. If $a \rightarrow b$, then $f(a)<f(b)$.
3. If $a \rightarrow b$, then $f(a) \neq f(b)$.

Example

Monomials

Given a proper colouring f of an edge-coloured digraph G on vertices $v_{1}, v_{2}, \ldots, v_{n}$, the monomial corresponding to f in commuting variables $x_{1}, x_{2}, x_{3}, \ldots$ is

$$
x_{f\left(v_{1}\right)} x_{f\left(v_{2}\right)} \cdots x_{f\left(v_{n}\right)}
$$

Example

$$
x_{2} x_{2} x_{1} x_{4} x_{3}=x_{1} x_{2}^{2} x_{3} x_{4}
$$

Generalized chromatic functions (A., Li, van Willigenburg, 2022)

Let G be an edged-coloured digraph with vertices $v_{1}, v_{2}, \ldots, v_{n}$, the generalized chromatic function of G is

$$
\mathscr{X}_{G}=\sum x_{f\left(v_{1}\right)} x_{f\left(v_{2}\right)} \cdots x_{f\left(v_{n}\right)}
$$

where the sum is over all proper colourings f of the edge-coloured digraph G.

Example

If G is the following edge-coloured digraph

$$
\begin{gathered}
\square--\rightarrow \square \square \\
\mathscr{X}_{G}=\sum_{i \neq j \leq k} x_{i} x_{j} x_{k}=x_{1} x_{2} x_{2}+x_{1} x_{2} x_{3}+\cdots
\end{gathered}
$$

Stanley's chromatic symmetric function

Proper colourings with infinitely many colours

Given a graph H, a proper colouring κ of H is

$$
\kappa: V(H) \rightarrow\{1,2,3, \ldots\}
$$

so if $v_{i}, v_{j} \in V(H)$ are joined by an edge, then

$$
\kappa\left(v_{i}\right) \neq \kappa\left(v_{j}\right) .
$$

Example

Monomials

Given a proper colouring κ of H on vertices $v_{1}, v_{2}, \ldots, v_{n}$, the monomial corresponding to κ in commuting variables $x_{1}, x_{2}, x_{3}, \ldots$

$$
x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Example

Chromatic symmetric functions: Stanley 1995

Given a graph H with vertices $v_{1}, v_{2}, \ldots, v_{n}$ the chromatic symmetric function of H is

$$
X_{H}=\sum x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)}
$$

where the sum is over all proper colourings κ of H.

Example

Example

Let H be the following graph.

Then the proper colourings of H are

and so on.

$$
x_{H}=6 x_{1} x_{2} x_{3}+x_{1}^{2} x_{2}+\cdots
$$

Every chromatic symmetric function is a generalized chromatic function

Let H be a graph. Then

$$
X_{H}=\mathscr{X}_{\vec{H}}
$$

where \vec{H} is an edge-coloured digraph obtained by replacing the edges of H by dashed edges.

Example

Stanley-Stembridge (3+1)-Free Conjecture and Tree Conjecture

Useful edge-coloured graphs

Notation	Expression
P_{n}	The directed path with n vertices and solid edges
K_{n}	A tournament with n vertices and dashed edges

Example

Elementary symmetric functions

An integer partition λ of n, denoted $\lambda \vdash n$, is a list $\lambda_{1} \lambda_{2} \cdots \lambda_{\ell(\lambda)}$ of positive integers such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell(\lambda)}$ and their sum is n.

$$
3221 \vdash 8
$$

The elementary symmetric function for $\lambda=\lambda_{1} \lambda_{2} \cdots \lambda_{\ell(\lambda)} \vdash n$ is

$$
e_{\lambda}=\mathscr{X}_{P_{\lambda_{1}}} \mathscr{X}_{P_{\lambda_{2}}} \cdots \mathscr{X}_{P_{\lambda_{\ell(\lambda)}}} .
$$

Symmetric functions

Let

$$
\operatorname{Sym}_{n}=\mathbb{Q}-\operatorname{span}\left\{e_{\lambda}: \lambda \vdash n\right\} .
$$

Then

$$
\operatorname{Sym}=\bigoplus_{n \geq 0} \operatorname{Sym}_{n}
$$

Proposition

Sym is a graded subalgebra of bounded degree power series, and $\left\{e_{\lambda}\right\}$ is a basis for it.

$$
X_{G} \in \operatorname{Sym}
$$

Chromatic symmetric functions in terms of e-basis

Example

If G is the path

$$
\bigcirc \quad X_{G}=3 e_{3}+e_{21}
$$

but if G is a claw,

$$
X_{G}=e_{211}-2 e_{22}+5 e_{31}+4 e_{4}
$$

Which chromatic symmetric functions are e-positive?

Unit interval graphs

Consider a set $\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$ and assign a unit interval to each of them

$$
I_{1} \stackrel{f}{\mapsto}\left[a_{1}, b_{1}\right], I_{2} \stackrel{f}{\mapsto}\left[a_{2}, b_{2}\right], \ldots, I_{n} \stackrel{f}{\mapsto}\left[a_{n}, b_{n}\right]
$$

such that $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$.
A unit interval graph is a graph with vertex set $\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$ such that I_{i} is adjacent to I_{j} if $f\left(I_{i}\right) \cap f\left(I_{j}\right) \neq \emptyset$.

Example

$$
\begin{aligned}
& I_{1}=\begin{array}{ll}
0 & 1 \\
0
\end{array} \\
& l_{2}= \\
& 0.5 \quad 1.5 \\
& I_{3}= \\
& \underset{0}{0.75} \\
& I_{4}=
\end{aligned}
$$

First open problem: Stanley-Stembridge, Guay-Paquet

If G is the following unit interval graph

then $X_{G}=2 e_{31}+16 e_{4}$.

Stanley-Stembridge (3+1)-Free Conjecture

Every unit interval graph is e-positive.

Open problems

For which edge-coloured digraphs G is \mathscr{X}_{G} symmetric?
For which edge-coloured digraphs G is \mathscr{X}_{G} e-positive?

Second open problem

Stanley 1995:

Fig. 1. Graphs G and H with $X_{G}=X_{H}$.
"We do not know whether X_{G} distinguishes trees."
Heil and Ji 2018: The chromatic symmetric function distinguishes all trees up to 29 vertices.
(There are 5469566585 nonisomorphic trees on 29 vertices!)

Tree Conjecture

Let T and T^{\prime} be trees. $X_{T}=X_{T^{\prime}}$ if and only if $T \cong T^{\prime}$.

Open problem

For which edge-coloured trees T does \mathscr{X}_{T} distinguish T ?

Thank you

Thank you very much for listening!

1. F. Aliniaeifard, S. Li, and S. van Willigenburg, Schur functions in noncommuting variables, Adv. Math. 406, 108536 (2022) [37 pages].
2. F. Aliniaeifard, S. Li, and S. van Willigenburg, Generalized chromatic functions, (2022) [33 pages] arXiv:2208.08458.
