Generalized chromatic functions

Farid Aliniaeifard

The University of British Columbia

CAAC 2023, University of Waterloo January 20, 2023

<□> < @ > < ≧ > < ≧ > ≧ り < ♡ 1/23

Generalized chromatic functions

1. Generalizing Stanley's chromatic symmetric functions (1995)

- Relations with the Stanley-Stembridge (3 + 1)-Free Conjecture (1993) and the Tree Conjecture (1995)
- 3. **Answering** Rosas and Sagan's question (2004): Schur functions in noncommuting variables?

Generalized chromatic functions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An edge-coloured digraph is a digraph *G* with three types of edges \rightarrow , \Rightarrow , \rightarrow , \rightarrow .

Proper colourings of edge-coloured digraphs

Given an edge-coloured digraph G, a proper colouring of G is a function

$$f:V(G) \rightarrow \{1,2,3,\dots\}$$

such that

- 1. If $a \Rightarrow b$, then $f(a) \leq f(b)$.
- 2. If $a \rightarrow b$, then f(a) < f(b).
- 3. If $a \rightarrow b$, then $f(a) \neq f(b)$.

Monomials

Given a proper colouring f of an edge-coloured digraph G on vertices v_1, v_2, \ldots, v_n , the monomial corresponding to f in commuting variables x_1, x_2, x_3, \ldots is

 $X_{f(v_1)}X_{f(v_2)}\cdots X_{f(v_n)}$.

Generalized chromatic functions (A., Li, van Willigenburg, 2022)

Let G be an edged-coloured digraph with vertices v_1, v_2, \ldots, v_n , the generalized chromatic function of G is

$$\mathscr{X}_{G} = \sum x_{f(v_1)} x_{f(v_2)} \cdots x_{f(v_n)}$$

where the sum is over all proper colourings f of the edge-coloured digraph G.

Stanley's chromatic symmetric function

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ? 8/23

Proper colourings with infinitely many colours

Given a graph H, a proper colouring κ of H is

 $\kappa: V(H) \rightarrow \{1, 2, 3, \dots\}$

so if $v_i, v_j \in V(H)$ are joined by an edge, then

 $\kappa(\mathbf{v}_i) \neq \kappa(\mathbf{v}_j).$

Monomials

Given a proper colouring κ of H on vertices v_1, v_2, \ldots, v_n , the monomial corresponding to κ in commuting variables x_1, x_2, x_3, \ldots

 $X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_n)}.$

Chromatic symmetric functions: Stanley 1995

Given a graph H with vertices v_1, v_2, \ldots, v_n the chromatic symmetric function of H is

$$X_H = \sum x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}$$

where the sum is over all proper colourings κ of H.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ・ ク へ ^(*) 11/23

Example

Every chromatic symmetric function is a generalized chromatic function

Let H be a graph. Then

$$X_H = \mathscr{X}_{\overrightarrow{H}}$$

where H is an edge-coloured digraph obtained by replacing the edges of H by dashed edges.

$\begin{array}{c} \textbf{Stanley-Stembridge} \ (3+1)\text{-}\textbf{Free Conjecture and Tree} \\ \textbf{Conjecture} \end{array}$

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ Q ○ 15/23

Useful edge-coloured graphs

Notation	Expression
P _n	The directed path with n vertices and solid edges
K _n	A tournament with <i>n</i> vertices and dashed edges

An integer partition λ of n, denoted $\lambda \vdash n$, is a list $\lambda_1 \lambda_2 \cdots \lambda_{\ell(\lambda)}$ of positive integers such that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{\ell(\lambda)}$ and their sum is n.

3221 ⊢ 8

The elementary symmetric function for $\lambda = \lambda_1 \lambda_2 \cdots \lambda_{\ell(\lambda)} \vdash n$ is

$$e_{\lambda} = \mathscr{X}_{P_{\lambda_1}} \mathscr{X}_{P_{\lambda_2}} \cdots \mathscr{X}_{P_{\lambda_{\ell}(\lambda)}}.$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 17/23

Symmetric functions

Let

$$\operatorname{Sym}_n = \mathbb{Q}\operatorname{-span}\{e_{\lambda} : \lambda \vdash n\}.$$

Then

$$\operatorname{Sym} = \bigoplus_{n \ge 0} \operatorname{Sym}_n.$$

Proposition

Sym is a graded subalgebra of bounded degree power series, and $\{e_{\lambda}\}$ is a basis for it.

 $X_G \in Sym$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q @ 18/23

Chromatic symmetric functions in terms of *e*-basis

Which chromatic symmetric functions are *e*-positive?

Unit interval graphs

Consider a set $\{I_1, I_2, \ldots, I_n\}$ and assign a unit interval to each of them

$$I_1 \stackrel{f}{\mapsto} [a_1, b_1], I_2 \stackrel{f}{\mapsto} [a_2, b_2], \dots, I_n \stackrel{f}{\mapsto} [a_n, b_n]$$

such that $a_1 \leq a_2 \leq \cdots \leq a_n$.

A unit interval graph is a graph with vertex set $\{I_1, I_2, ..., I_n\}$ such that I_i is adjacent to I_j if $f(I_i) \cap f(I_j) \neq \emptyset$.

First open problem: Stanley-Stembridge, Guay-Paquet

If G is the following unit interval graph

then $X_G = 2e_{31} + 16e_4$.

Stanley-Stembridge (3+1)-Free Conjecture

Every unit interval graph is *e*-positive.

Open problems

For which edge-coloured digraphs G is \mathscr{X}_G symmetric? For which edge-coloured digraphs G is \mathscr{X}_G *e*-positive?

Second open problem

Stanley 1995:

FIG. 1. Graphs G and H with $X_G = X_H$.

"We do not know whether X_G distinguishes trees."

Heil and Ji 2018: The chromatic symmetric function distinguishes all trees up to 29 vertices.

(There are 5469566585 nonisomorphic trees on 29 vertices!)

Tree Conjecture

Let T and T' be trees. $X_T = X_{T'}$ if and only if $T \cong T'$.

Open problem

For which edge-coloured trees T does \mathscr{X}_T distinguish T?

Thank you very much for listening!

1. F. Aliniaeifard, S. Li, and S. van Willigenburg, **Schur functions** in noncommuting variables, Adv. Math. 406, 108536 (2022) [37 pages].

2. F. Aliniaeifard, S. Li, and S. van Willigenburg, **Generalized chromatic functions**, (2022) [33 pages] arXiv:2208.08458.