Proof Of A Conjecture Of Matherne, Morales, And Selover
On Encodings Of Unit Interval Orders

Félix Gélinas Adrien Segovia Hugh Thomas

UQÃM

University of Toronto and Université du Québec à Montréal

Abstract

There are two bijections from unit interval orders on n elements to Dyck paths from (0,0) to
(n, n). One is to consider the pairs of incomparable elements, which form the set of boxes
between some Dyck path and the diagonal. Another is to find a particular part listing (in the
sense of Guay-Pacuet) which yields an isomorphic poset, and to interpret the part listing as the
area sequence of a Dyck path. Matherne, Morales, and Selover conjectured that for any unit
interval order, these two Dyck paths are related by Haglund's well-known zeta bijection.

Unit interval orders

Let $\mathcal{I}=\left\{I_{1}, \ldots, I_{n}\right\}$ be a set of n intervals of unit length, numbered from left to right. $U(\mathcal{I})$ is the poset on the elements 1 to n which is defined by $i \prec j$ if and only if I_{i} is strictly to the left of I_{j}.

The map a

We define $\tilde{a}(U)=\{(x, y) \mid x \nprec y, 1 \leq x<y \leq n\}$. The poset from the figure 1 gives us the following
area set: area set:

$\{(1,2),(2,3),(2,4),(3,4),(4,5)\}$

We define $a(U)$ to be the Dyck path whose area set is given by $\tilde{a}(U)$.

The $\operatorname{map} p$

$$
\begin{aligned}
& \text { Let } w=\left(w_{1}, \ldots, w_{n}\right) \text { be a sequence of non-negative integers. We define its associated poset } \\
& P(w) \text { as follows }[G P] \text {. For } 1 \leq i, j \leq n \text {, we set } i \prec j \text { if either } w_{j}-w_{i} \geq 2 \text {, or } w_{j}-w_{i}=1 \text { and } i<j \text {. } \\
& \text { For a unit interval order } U \in \mathcal{U}_{n} \text {, there is a unique part listing } w \text { such that } P(w) \text { is isomorphic to } U \\
& \text { and } w \text { is the area sequence of a Dyck path. Define } \tilde{p}(U) \text { to be this part listing. Define } p(U) \text { to be }
\end{aligned}
$$ the Dyck path whose area sequence is $\tilde{p}(U)$.

Part listings

We defined an algorithm that associate a unit interval order to an area sequence. Define $\ell(j)$ to We defined an algorithm that associate a unit interval order to an area sequence. Define $\ell(j)$ to
be max $\operatorname{maj}_{i<j} \ell(i)+1$. We call $\ell(i)$ the level of i (or of the interval I_{i}. We will successively define words $q_{1}, q_{2}, \ldots, q_{n}$. The word q_{i} is of length i, and is obtained by inserting a copy of $\ell(i)$ into q_{i-1}.

- We begin by defining $q_{1}=0$. Now suppose that q_{i-1} has already been constructed.
- Let C_{i} be the number of elements of level $\ell(i)-1$ comparable to i. Note that they are necessarily to the left of i.) The letter $\ell(i)$ is added into q_{i-1} directly after the occurrences of the letter $\ell(i)$ (if any) immediately following the C_{i}-th letter $\ell(i)-1$.

$w=a a a b b a b b a b$
We define $p(U)$ to be the Dyck path whose area set is given by $\tilde{p}(U)=q(U)$.

The zeta map [H]

We label the top end-point of an up step with the letter a, and we label the right endpoint of a right step with the letter b. We then read the labels: first on the line $y=x$, from bottom left to top right, then on the line $y=x+1$, again in the same direction, then on the line $y=x+2$, etc.
Interpret b as designating an up step, and a as designating a right step. This defines a lattice path from $(0,0)$ to (n, n). Define this to be $\zeta(D)$.

$w=a a a b b a b b a b$
$\zeta(w)=a a b a a b b a b b$

Theorem (G., Segovia, Thomas)

Proof of the theorem
The proof of the conjecture [MMS] will proceed by induction. We suppose that for a unit interval The proof of the conjecture [MMS] will proceed by induction. We suppose that for a unit interval a new rightmost interval to U.

The Dyck path $p\left(U^{\prime}\right)$ is obtained from $p(U)$ by adding a final maximal peak.

$p(U)=(0,1,1,0)=a a b a b b a b$
$p\left(U^{\prime}\right)=(0,1,2,1,0)=$ a a abb $a b b a b$
The Dyck path $\zeta\left(p\left(U^{\prime}\right)\right)$ is obtained from $\zeta(p(U))$ by adding a final peak in position $(n-r, n+1)$, where r is the sum of the number of occurrences of the letter ℓ in $p(U)$ and of the number of occurrences of the letter $\ell-1$ appearing after the position of the added letter ℓ in $p\left(U^{\prime}\right)$.

The Dyck path $a\left(U^{\prime}\right)$ is obtained from $a(U)$ by adding a final peak in position $(n-s, n+1)$, where s is the number of intervals in U^{\prime} not comparable to the rightmost interval I_{n+1}.

The theorem follows from the fact that $r=s$.

References

