Cartwright-Sturmfels ideals and multigraded ideals with radical support

Elisa Gorla (joint w/ A. Conca and E. De Negri)

Mathematics Institute, University of Neuchâtel

January 20, 2023

GRÖBNER BASES

 $\mathsf{fix} < \mathsf{a} \ \mathsf{term} \ \mathsf{order}$

$$f \in S$$
, $in_{<}(f) = max supp(f)$ is the leading term of f
 $in_{<}(I) = (in_{<}(f) : f \in I)$ is the initial

is the initial ideal of I

Gröbner bases

fix < a term order

 $f \in S$, in_< $(f) = \max \operatorname{supp}(f)$ is the leading term of f

 $\operatorname{in}_{<}(I) = (\operatorname{in}_{<}(f) : f \in I) = (\operatorname{in}_{<}(g_1), \dots, \operatorname{in}_{<}(g_s))$ is the initial ideal of I

 $g_1, \ldots, g_s \in I$ are a Gröbner basis of I wrt <

UNIVERSAL GRÖBNER BASES

fix < a term order

 $f \in S$, $in_{<}(f) = max supp(f)$ is the leading term of f $in_{<}(I) = (in_{<}(f) : f \in I) = (in_{<}(g_1), \dots, in_{<}(g_s))$ is the initial ideal of I

 $g_1, \ldots, g_s \in I$ are a Gröbner basis of I wrt <

 $g_1, \ldots, g_s \in I$ are a universal Gröbner basis of I if they are a Gröbner basis of I wrt every term order

UNIVERSAL GRÖBNER BASES

fix < a term order

 $f \in S$, $in_{<}(f) = max supp(f)$ is the leading term of f $in_{<}(I) = (in_{<}(f) : f \in I) = (in_{<}(g_1), \dots, in_{<}(g_s))$ is the initial ideal of I

 $g_1, \ldots, g_s \in I$ are a Gröbner basis of I wrt <

 $g_1, \ldots, g_s \in I$ are a universal Gröbner basis of I if they are a Gröbner basis of I wrt every term order

Facts

- a minimal system of generators is not in general a Gröbner basis,
- a Gröbner basis is not in general universal,
- finite universal Gröbner bases exist, but they tend not to be "natural".

Radical supports

EXAMPLE: IDEALS OF MAXIMAL MINORS

- $X = (x_{ij}) \ n \times m$ matrix with x_{ij} distinct variables,
- $S = k[X] = k[x_{ij} \mid 1 \le i \le n, 1 \le j \le m]$

EXAMPLE: IDEALS OF MAXIMAL MINORS

- $X = (x_{ij}) \ n imes m$ matrix with x_{ij} distinct variables, $1 \le t \le m \le n$
- $S = k[X] = k[x_{ij} \mid 1 \le i \le n, 1 \le j \le m] \supseteq I_t(X) = (t \text{minors of } X)$

Theorem (Sturmfels)

The t-minors of X are a diagonal Gröbner basis of $I_t(X)$. In particular, their diagonal initial ideals are radical.

A diagonal Gröbner basis is a Gröbner basis wrt an order that selects the products of the elements on the diagonal as a leading term of a minor.

EXAMPLE: IDEALS OF MAXIMAL MINORS

- $X = (x_{ij}) \ n imes m$ matrix with x_{ij} distinct variables, $1 \le t \le m \le n$
- $S = k[X] = k[x_{ij} \mid 1 \le i \le n, 1 \le j \le m] \supseteq I_t(X) = (t \text{minors of } X)$

Theorem (Sturmfels)

The t-minors of X are a diagonal Gröbner basis of $I_t(X)$. In particular, their diagonal initial ideals are radical.

A diagonal Gröbner basis is a Gröbner basis wrt an order that selects the products of the elements on the diagonal as a leading term of a minor.

They are not a universal Gröbner basis of $I_t(X)$ in general.

Theorem (Bernstein, Sturmfels, Zelewinsky)

The m-minors of X are a universal Gröbner basis of $I_m(X)$. In particular, all the initial ideals of $I_m(X)$ are radical.

Multigradings

k field,
$$S = k[x_{ij} \mid 1 \le i \le n, 0 \le j \le m_i]$$
 multigraded,
i.e. \mathbb{Z}^n -graded by $\deg(x_{ij}) = e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}) \in \mathbb{Z}^n$

Multigradings

k field,
$$S = k[x_{ij} | 1 \le i \le n, 0 \le j \le m_i]$$
 multigraded,
i.e. \mathbb{Z}^n -graded by deg $(x_{ij}) = e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}) \in \mathbb{Z}^n$

$$\begin{split} S &= \bigoplus_{d \in \mathbb{Z}^n} S_d, \ S_d = \langle \text{monomials of deg } d \in \mathbb{Z}^n \rangle \\ I &\subseteq S \text{ is multigraded if } I = \bigoplus_{d \in \mathbb{Z}^n} (I \cap S_d), \text{ write } I_d = I \cap S_d \end{split}$$

Throughout the talk: the multigrading is fixed and ideals are multigraded.

Multigradings

k field,
$$S = k[x_{ij} | 1 \le i \le n, 0 \le j \le m_i]$$
 multigraded,
i.e. \mathbb{Z}^n -graded by deg $(x_{ij}) = e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}) \in \mathbb{Z}^n$

 $S = \bigoplus_{d \in \mathbb{Z}^n} S_d$, $S_d = \langle \text{monomials of deg } d \in \mathbb{Z}^n \rangle$ $I \subseteq S$ is multigraded if $I = \bigoplus_{d \in \mathbb{Z}^n} (I \cap S_d)$, write $I_d = I \cap S_d$ Throughout the talk: the multigrading is fixed and ideals are multigraded. The Hilbert Series of S/I is

$$\mathsf{HS}_{S/I}(z) = \sum_{d \in \mathbb{Z}^n} \left[\dim_k(S_d) - \dim(I_d) \right] z^d = \frac{K_{S/I}(z)}{\prod_{i=1}^n (1-z_i)^{m_i+1}}$$

where $z = (z_1, ..., z_n)$, $z^d = z_1^{d_1} \cdots z_n^{d_n}$, $K_{S/I}(z) \in \mathbb{Z}[z_1, ..., z_n]$.

Cartwright-Sturmfeld ideals

Radical supports

Multigraded generic initial ideals

k field, $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i]$, $\deg(x_{ij}) = e_i \in \mathbb{Z}^n$

- k field, $S = k[x_{ij} \mid 1 \le i \le n, 0 \le j \le m_i]$, $\deg(x_{ij}) = e_i \in \mathbb{Z}^n$
- S is the coordinate ring of $\mathbb{P}^{m_1} imes \ldots imes \mathbb{P}^{m_n}$

 $G = GL_{m_1+1}(k) \times \ldots \times GL_{m_n+1}(k)$ acts on S by linear substitution, preserving the multigraded structure

$$k$$
 field, $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i]$, $\deg(x_{ij}) = e_i \in \mathbb{Z}^n$

S is the coordinate ring of $\mathbb{P}^{m_1} imes \ldots imes \mathbb{P}^{m_n}$

 $G = GL_{m_1+1}(k) \times \ldots \times GL_{m_n+1}(k)$ acts on S by linear substitution, preserving the multigraded structure

Remark

 $in_{<}(gl)$ depends on $g \in G$.

Theorem (Galligo, Bayer-Stillmann, Aramova-Crona-De Negri)

If k is infinite, then there is $U \subseteq G$ dense open s.t. $gin_{<}(I) := in_{<}(gI)$ is constant for $g \in U$

$$k$$
 field, $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i]$, $\deg(x_{ij}) = e_i \in \mathbb{Z}^n$

S is the coordinate ring of $\mathbb{P}^{m_1} imes \ldots imes \mathbb{P}^{m_n}$

 $G = GL_{m_1+1}(k) \times \ldots \times GL_{m_n+1}(k)$ acts on S by linear substitution, preserving the multigraded structure

Remark

 $in_{<}(gl)$ depends on $g \in G$.

Theorem (Galligo, Bayer-Stillmann, Aramova-Crona-De Negri)

If k is infinite, then there is $U\subseteq G$ dense open s.t. $gin_<(I):=in_<(gI)$ is constant for $g\in U$

 $gin_{<}(I)$ is the generic initial ideal of I wrt <

$$k$$
 field, $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i]$, $\deg(x_{ij}) = e_i \in \mathbb{Z}^n$

S is the coordinate ring of $\mathbb{P}^{m_1} imes \ldots imes \mathbb{P}^{m_n}$

 $G = GL_{m_1+1}(k) \times \ldots \times GL_{m_n+1}(k)$ acts on S by linear substitution, preserving the multigraded structure

Remark

 $in_{<}(gl)$ depends on $g \in G$.

Theorem (Galligo, Bayer-Stillmann, Aramova-Crona-De Negri)

If k is infinite, then there is $U \subseteq G$ dense open s.t. $gin_{<}(I) := in_{<}(gI)$ is constant for $g \in U$ and $gin_{<}(I)$ is Borel-fixed, i.e., fixed by the action of B.

 $gin_{\leq}(I)$ is the generic initial ideal of I wrt $\leq B = B_{m_1+1}(k) \times \ldots \times B_{m_n+1}(k) \subseteq G$ is the Borel subgroup, with $B_m(k) \subseteq GL_m(k)$ the subgroup of upper triangular matrices

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \ I_{2143} = (x_{11}, \det(X)) \subseteq k[X]$$

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \ I_{2143} = (x_{11}, \det(X)) \subseteq k[X]$$

• if deg $(x_{ij}) = 1$ for all i, j, then $gin(I) = (x_{11}, x_{12}^3)$

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \ I_{2143} = (x_{11}, \det(X)) \subseteq k[X]$$

- if deg $(x_{ij}) = 1$ for all i, j, then gin $(I) = (x_{11}, x_{12}^3)$
- if deg $(x_{1j}) = (1, 0, 0)$, deg $(x_{2j}) = (0, 1, 0)$, deg $(x_{3j}) = (0, 0, 1)$ for all j, then gin $(I) = (x_{11}, x_{12}x_{21}x_{31})$

Definition

- $I \subseteq S$ is Cartwright-Sturmfels (CS) if gin(1) is radical.
- Being CS depends on the multigrading.

Definition

 $I \subseteq S$ is Cartwright-Sturmfels (CS) if gin(I) is radical.

Being CS depends on the multigrading. For us, the multigrading is fixed.

Definition

 $I \subseteq S$ is Cartwright-Sturmfels (CS) if gin(I) is radical.

Being CS depends on the multigrading. For us, the multigrading is fixed.

Theorem (CDG)

 $J, J' \subseteq S$ Borel-fixed with the same multigraded Hilbert series. If J is radical, then J = J'.

Definition

 $I \subseteq S$ is Cartwright-Sturmfels (CS) if gin(1) is radical.

Being CS depends on the multigrading. For us, the multigrading is fixed.

Theorem (CDG)

 $J, J' \subseteq S$ Borel-fixed with the same multigraded Hilbert series. If J is radical, then J = J'.

Corollary (CDG)

 $I, J \subseteq S$ with the same multigraded Hilbert series. If J is radical and Borel-fixed, then J = gin(I).

 $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i] \;\; \mathbb{Z}^n$ -graded by deg $(x_{ij}) = e_i \in \mathbb{Z}^n$

Theorem (CDG)

 $I, J \subseteq S$ with the same multigraded Hilbert series. If J is radical and Borel-fixed, then J = gin(I).

 $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i] \;\; \mathbb{Z}^n$ -graded by deg $(x_{ij}) = e_i \in \mathbb{Z}^n$

Theorem (CDG)

 $I, J \subseteq S$ with the same multigraded Hilbert series. If J is radical and Borel-fixed, then J = gin(I). In particular, if I is CS:

• gin(1) is independent of the term order,

 $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i] \;\; \mathbb{Z}^n$ -graded by deg $(x_{ij}) = e_i \in \mathbb{Z}^n$

Theorem (CDG)

 $I, J \subseteq S$ with the same multigraded Hilbert series. If J is radical and Borel-fixed, then J = gin(I). In particular, if I is CS:

- gin(1) is independent of the term order,
- $J = gin(in_{<}(I))$ for any term order <,

 $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i] \;\; \mathbb{Z}^n$ -graded by deg $(x_{ij}) = e_i \in \mathbb{Z}^n$

Theorem (CDG)

 $I, J \subseteq S$ with the same multigraded Hilbert series. If J is radical and Borel-fixed, then J = gin(I). In particular, if I is CS:

- gin(1) is independent of the term order,
- $J = gin(in_{<}(I))$ for any term order <,
- I and all its initial ideals are radical,
- reg(I), reg(in<(I)) ≤ n for any term order <,

 $S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i] \;\; \mathbb{Z}^n$ -graded by deg $(x_{ij}) = e_i \in \mathbb{Z}^n$

Theorem (CDG)

 $I, J \subseteq S$ with the same multigraded Hilbert series. If J is radical and Borel-fixed, then J = gin(I). In particular, if I is CS:

- gin(1) is independent of the term order,
- $J = gin(in_{<}(I))$ for any term order <,
- I and all its initial ideals are radical,
- reg(I), reg(in<(I)) ≤ n for any term order <,
- I has a universal Gröbner basis consisting of polynomials of degree ≤ (1,...,1) ∈ Zⁿ, hence of standard degree ≤ n.

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \ I_{2143} = (x_{11}, \det(X)) \subseteq k[X]$$

 $deg(x_{1j}) = (1, 0, 0), deg(x_{2j}) = (0, 1, 0), deg(x_{3j}) = (0, 0, 1)$ for all j

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \ I_{2143} = (x_{11}, \det(X)) \subseteq k[X]$$
$$\deg(x_{1i}) = (1, 0, 0), \ \deg(x_{2i}) = (0, 1, 0), \ \deg(x_{3i}) = (0, 0, 1) \text{ for all } j$$

 $gin(I) = (x_{11}, x_{12}x_{21}x_{31})$ so I_{2143} is CS. Moreover:

- I and all its initial ideals have regularity 3,
- x_{11} and $-x_{12}(x_{21}x_{33} x_{23}x_{31}) + x_{13}(x_{21}x_{32} x_{22}x_{31})$ are minimal generators and a universal Gröbner basis of I,
- every initial ideal of l_{2143} is radical and a complete intersection.

١

MULTIPLICITY-FREE AND CS IDEALS The Hilbert Series of S/I is

$$HS_{S/I}(z) = \sum_{d \in \mathbb{Z}^n} [\dim_k(S_d) - \dim(I_d)] z^d = \frac{K_{S/I}(z)}{\prod_{i=1}^n (1-z_i)^{m_i+1}}$$

where $z = (z_1, \dots, z_n)$, $z^d = z_1^{d_1} \cdots z_n^{d_n}$, $K_{S/I}(z) \in \mathbb{Z}[z_1, \dots, z_n]$.
The multidegree of S/I is the least degree part of $K_{S/I}(1-z)$.
The G-multidegree of S/I is the sum with coefficients of the monomials in $K_{S/I}(1-z)$ which are minimal wrt divisibility.
A polynomial is multiplicity-free if it only has 0, 1 as coefficients.

MULTIPLICITY-FREE AND CS IDEALS The Hilbert Series of S/I is

$$HS_{S/I}(z) = \sum_{d \in \mathbb{Z}^n} [\dim_k(S_d) - \dim(I_d)] z^d = \frac{K_{S/I}(z)}{\prod_{i=1}^n (1 - z_i)^{m_i + 1}}$$

where $z = (z_1, \dots, z_n), z^d = z_1^{d_1} \cdots z_n^{d_n}, K_{S/I}(z) \in \mathbb{Z}[z_1, \dots, z_n].$
The multidegree of S/I is the least degree part of $K_{S/I}(1 - z)$.
The G-multidegree of S/I is the sum with coefficients of the monomials in $K_{S/I}(1 - z)$ which are minimal wrt divisibility.

Theorem (CDG)

v

If I is CS, then the G-multidegree of S/I is multiplicity-free.

MULTIPLICITY-FREE AND CS IDEALS The Hilbert Series of S/I is

$$HS_{S/I}(z) = \sum_{d \in \mathbb{Z}^n} [\dim_k(S_d) - \dim(I_d)] z^d = \frac{K_{S/I}(z)}{\prod_{i=1}^n (1 - z_i)^{m_i + 1}}$$

where $z = (z_1, \dots, z_n), z^d = z_1^{d_1} \cdots z_n^{d_n}, K_{S/I}(z) \in \mathbb{Z}[z_1, \dots, z_n].$
The multidegree of S/I is the least degree part of $K_{S/I}(1 - z)$.
The G-multidegree of S/I is the sum with coefficients of the monomials in $K_{S/I}(1 - z)$ which are minimal wrt divisibility.

Theorem (CDG)

v

If I is CS, then the G-multidegree of S/I is multiplicity-free.

Theorem (Brion, Caminata-Cid Ruiz-Conca)

If $P \subseteq S$ is prime and the multidegree of S/P is multiplicity-free, then P is CS and gin(P) is Cohen-Macaulay.

PRESERVING THE PROPERTY OF BEING CS

Corollary

If I is CS and P is an associated prime of I, then P is CS.

Theorem (CDG)

If I is CS, $\ell \in S_{e_i}$, then $I : \ell$, $I + (\ell)$, and $I + (\ell)/(\ell)$ are CS. If R is a k-subalgebra of S gen'd by variables and I is CS, then $I \cap R$ is CS.

PRESERVING THE PROPERTY OF BEING CS

Corollary

If I is CS and P is an associated prime of I, then P is CS.

Theorem (CDG)

If I is CS, $\ell \in S_{e_i}$, then $I : \ell$, $I + (\ell)$, and $I + (\ell)/(\ell)$ are CS. If R is a k-subalgebra of S gen'd by variables and I is CS, then $I \cap R$ is CS.

Example

 $X = (x_{ij}) \ n \times m$ matrix with x_{ij} distinct variables

 $S = k[X] = k[x_{ij} \mid 1 \le i \le n, 1 \le j \le m] \supseteq I_{\max}(X) = (\max \text{ minors of } X)$

PRESERVING THE PROPERTY OF BEING CS

Corollary

If I is CS and P is an associated prime of I, then P is CS.

Theorem (CDG)

If I is CS, $\ell \in S_{e_i}$, then $I : \ell$, $I + (\ell)$, and $I + (\ell)/(\ell)$ are CS. If R is a k-subalgebra of S gen'd by variables and I is CS, then $I \cap R$ is CS.

Example

 $X = (x_{ij}) \ n \times m$ matrix with x_{ij} distinct variables

 $S = k[X] = k[x_{ij} \mid 1 \le i \le n, 1 \le j \le m] \supseteq I_{\max}(X) = (\max \text{ minors of } X)$

 $I_{\max}(X)$ is CS, hence so is $I_{\max}(L)$ where $L=(\ell_{ij})$ and $\ell_{ij}\in S_{e_i}$

 $I_{\max}(L)$ has a universal Gröbner basis which consists of linear combinations of the minors and the minors are a universal Gröbner basis if $m \le n$

RADICALITY AND DEGREES OF GENERATORS

Example

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \ I_{2143} = (x_{11}, \det(X)) \subseteq k[X]$$
$$\deg(x_{1j}) = (1, 0, 0), \ \deg(x_{2j}) = (0, 1, 0), \ \deg(x_{3j}) = (0, 0, 1) \text{ for all } j$$
$$\operatorname{gin}(I) = (x_{11}, x_{12}x_{21}x_{31}) \text{ so } I_{2143} \text{ is CS}$$

For any $\ell \in S_{(1,0,0)}$ and $f \in S_{(1,1,1)}$, $J = (\ell, f) \subseteq S$ is CS, hence radical.

RADICALITY AND DEGREES OF GENERATORS

Example

$$\begin{split} X &= \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \ I_{2143} = (x_{11}, \det(X)) \subseteq k[X] \\ \deg(x_{1j}) &= (1, 0, 0), \ \deg(x_{2j}) = (0, 1, 0), \ \deg(x_{3j}) = (0, 0, 1) \ \text{for all } j \\ \operatorname{gin}(I) &= (x_{11}, x_{12}x_{21}x_{31}) \ \text{so } I_{2143} \ \text{is CS} \end{split}$$

For any $\ell \in S_{(1,0,0)}$ and $f \in S_{(1,1,1)}, \ J = (\ell, f) \subseteq S$ is CS, hence radical.

Question

Can one conclude that an ideal is radical just by looking at the degrees of its generators?

Multigraded ideals with radical support

Fix $d \in \mathbb{Z}^n$: all $f \in S_d$ are squarefree iff $d \leq (1, \dots, 1) \in \mathbb{Z}^n$.

E.g., $x_{11}^{d_1} \cdots x_{n1}^{d_n}$ is squarefree iff $d \leq (1, \ldots, 1)$.

Multigraded ideals with radical support

Fix
$$d \in \mathbb{Z}^n$$
: all $f \in S_d$ are squarefree iff $d \leq (1, ..., 1) \in \mathbb{Z}^n$.
E.g., $x_{11}^{d_1} \cdots x_{n1}^{d_n}$ is squarefree iff $d \leq (1, ..., 1)$.

$$\begin{split} &A \subseteq \{1, \dots, n\} \leftrightarrow \sum_{a \in A} e_a \leq (1, \dots, 1) \in \mathbb{Z}^n, \\ &\mathcal{A} = \{A_1, \dots, A_s\} \text{ a multiset, where } \emptyset \neq A_i \subseteq \{1, \dots, n\} \text{ for all } i. \\ &\text{E.g., } \mathcal{A} = \{\{1, 2, 3\}, \{1, 4\}, \{2, 3, 4\}, \{1, 4\}\} \text{ corresponds to} \\ &d_1 = (1, 1, 1, 0), d_2 = (1, 0, 0, 1), d_3 = (0, 1, 1, 1), d_4 = (1, 0, 0, 1). \end{split}$$

Multigraded ideals with radical support

Fix
$$d \in \mathbb{Z}^n$$
: all $f \in S_d$ are squarefree iff $d \leq (1, ..., 1) \in \mathbb{Z}^n$
E.g., $x_{11}^{d_1} \cdots x_{n1}^{d_n}$ is squarefree iff $d \leq (1, ..., 1)$.

$$A \subseteq \{1, \dots, n\} \leftrightarrow \sum_{a \in A} e_a \leq (1, \dots, 1) \in \mathbb{Z}^n,$$

$$\mathcal{A} = \{A_1, \dots, A_s\} \text{ a multiset, where } \emptyset \neq A_i \subseteq \{1, \dots, n\} \text{ for all } i.$$

E.g., $\mathcal{A} = \{\{1, 2, 3\}, \{1, 4\}, \{2, 3, 4\}, \{1, 4\}\} \text{ corresponds to}$

$$d_1 = (1, 1, 1, 0), d_2 = (1, 0, 0, 1), d_3 = (0, 1, 1, 1), d_4 = (1, 0, 0, 1).$$

Definition

 \mathcal{A} is a radical support if for every field $k, m_1, \ldots, m_n \in \mathbb{N}$, and $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i]$ multigraded of $\deg(f_i) = \sum_{a \in A_i} e_a, (f_1, \ldots, f_s)$ is radical.

Example

 $\mathcal{A} = \{\{1\}, \{1, 2, 3\}\}$ is a radical support.

SUPPORTS OF REGULAR SEQUENCES

- $\mathcal{A} = \{A_1, \dots, A_s\}$ a multiset, where $\emptyset \neq A_i \subseteq \{1, \dots, n\}$ for all *i*. TFAE:
 - there exist $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \le i \le n, 0 \le j \le m_i]$ multigraded of deg $(f_i) = \sum_{a \in A_i} e_a$ s.t. f_1, \ldots, f_s is a regular sequence,
 - there exist $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \le i \le n, 0 \le j \le m_i]$ multigraded of deg $(f_i) = \sum_{a \in A_i} e_a$ s.t. f_1, \ldots, f_s is a regular sequence and (f_1, \ldots, f_s) is radical,

SUPPORTS OF REGULAR SEQUENCES

- $\mathcal{A} = \{A_1, \dots, A_s\}$ a multiset, where $\emptyset \neq A_i \subseteq \{1, \dots, n\}$ for all *i*. TFAE:
 - there exist $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \le i \le n, 0 \le j \le m_i]$ multigraded of deg $(f_i) = \sum_{a \in A_i} e_a$ s.t. f_1, \ldots, f_s is a regular sequence,
 - there exist $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \le i \le n, 0 \le j \le m_i]$ multigraded of deg $(f_i) = \sum_{a \in A_i} e_a$ s.t. f_1, \ldots, f_s is a regular sequence and (f_1, \ldots, f_s) is radical,

Example

 $\mathcal{A} = \{\{1, 2, 3\}, \{1, 4\}, \{2, 5\}, \{1, 6\}\} \text{ is the support of the regular sequence } f_1 = x_{10}x_{20}x_{30}, f_2 = x_{11}x_{40}, f_3 = x_{21}x_{50}, f_4 = x_{12}x_{60}. \\ f_1, f_2, f_3, f_4 \text{ generate a radical monomial ideal, if } m_1 \ge 2, m_2 \ge 1, \\ m_3, m_4, m_5, m_6 \ge 0.$

SUPPORTS OF REGULAR SEQUENCES

- $\mathcal{A} = \{A_1, \dots, A_s\}$ a multiset, where $\emptyset \neq A_i \subseteq \{1, \dots, n\}$ for all *i*. TFAE:
 - there exist $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \le i \le n, 0 \le j \le m_i]$ multigraded of deg $(f_i) = \sum_{a \in A_i} e_a$ s.t. f_1, \ldots, f_s is a regular sequence,
 - there exist $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \le i \le n, 0 \le j \le m_i]$ multigraded of deg $(f_i) = \sum_{a \in A_i} e_a$ s.t. f_1, \ldots, f_s is a regular sequence and (f_1, \ldots, f_s) is radical,
 - for every $j \in \{1, \ldots, n\}$ one has $|\{i \mid j \in A_i\}| \le m_j + 1$.

Example

 $\mathcal{A} = \{\{1, 2, 3\}, \{1, 4\}, \{2, 5\}, \{1, 6\}\} \text{ is the support of the regular sequence } f_1 = x_{10}x_{20}x_{30}, f_2 = x_{11}x_{40}, f_3 = x_{21}x_{50}, f_4 = x_{12}x_{60}. \\ f_1, f_2, f_3, f_4 \text{ generate a radical monomial ideal, if } m_1 \ge 2, m_2 \ge 1, \\ m_3, m_4, m_5, m_6 \ge 0.$

CARTWIGHT-STURMFELS SUPPORTS

Definition

 \mathcal{A} is a Cartwright-Sturmfels support if for every field $k, m_1, \ldots, m_n \in \mathbb{N}$, and $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i]$ multigraded of $\deg(f_i) = \sum_{a \in \mathcal{A}_i} e_a, (f_1, \ldots, f_s)$ is Cartwright-Sturmfels.

• Each Cartwright-Sturmfels support is a radical support.

CARTWIGHT-STURMFELS SUPPORTS

Definition

 \mathcal{A} is a Cartwright-Sturmfels support if for every field $k, m_1, \ldots, m_n \in \mathbb{N}$, and $f_1, \ldots, f_s \in S = k[x_{ij} \mid 1 \leq i \leq n, 0 \leq j \leq m_i]$ multigraded of $\deg(f_i) = \sum_{a \in \mathcal{A}_i} e_a, (f_1, \ldots, f_s)$ is Cartwright-Sturmfels.

- Each Cartwright-Sturmfels support is a radical support.
- If we have a regular sequence with support \mathcal{A} which generates a Cartwright-Sturmfels ideal, then \mathcal{A} is a Cartwright-Sturmfels support.

Example

$$\begin{split} f_1 &= y_{10}y_{20}, f_2 = y_{11}y_{30} \text{ is a regular sequence s.t. } (f_1, f_2) \text{ is CS} \\ g_1, g_2 \in S = k[x_{ij}] \text{ of degrees } (1, 1, 0), (1, 0, 1), \text{ then} \\ (g_1, g_2) &= (f_1 + g_1, f_2 + g_2) + (y_{10}, y_{11})/(y_{10}, y_{11}) \text{ is CS}. \end{split}$$

The graph associated to a support

Associate a graph $G(\mathcal{A})$ to a multiset $\mathcal{A} = \{A_1, \ldots, A_s\}$ as follows: the graph has *s* vertices labelled $1, \ldots, s$. Distinct vertices $i, j \in \{1, \ldots, s\}$ are connected by an edge labelled by *a* if and only if $a \in A_i \cap A_i$.

Example

$$\mathcal{A} = \{\{1,2\},\{2,3\},\ldots,\{n-1,n\}\} \subseteq 2^{\{1,\ldots,n\}}$$
 corresponds to

A CHARACTERIZATION OF RADICAL SUPPORTS

Theorem (CDG)

 $\mathcal{A} = \{A_1, \dots, A_s\}$ a multiset, $G(\mathcal{A})$ the associated graph. TFAE:

- A is a radical support,
- *A* is a Cartwright-Sturmfels support,
- there exists a field k, $m = (m_1, \ldots, m_n) \in \mathbb{Z}^n$, and a regular sequence $f_1, \ldots, f_s \in S$ with $\deg(f_i) = \sum_{a \in A_i} e_a$ for all i s.t. the ideal (f_1, \ldots, f_s) is Cartwright-Sturmfels,
- for every field k, $m = (m_1, ..., m_n) \in \mathbb{Z}^n$ with $m_i \ge |\{j : i \in A_j\}|$, and every regular sequence $f_1, ..., f_s \in S$ with $\deg(f_i) = \sum_{a \in A_i} e_a$ for all i, the ideal $(f_1, ..., f_s)$ is Cartwright-Sturmfels,
- every cycle of $G(\mathcal{A})$ has constant edge labels.

A CHARACTERIZATION OF RADICAL SUPPORTS

Theorem (CDG)

 $\mathcal{A} = \{A_1, \dots, A_s\}$ a multiset, $G(\mathcal{A})$ the associated graph. TFAE:

- A is a radical support,
- *A* is a Cartwright-Sturmfels support,
- there exists a field k, $m = (m_1, \ldots, m_n) \in \mathbb{Z}^n$, and a regular sequence $f_1, \ldots, f_s \in S$ with $\deg(f_i) = \sum_{a \in A_i} e_a$ for all i s.t. the ideal (f_1, \ldots, f_s) is Cartwright-Sturmfels,
- for every field k, $m = (m_1, ..., m_n) \in \mathbb{Z}^n$ with $m_i \ge |\{j : i \in A_j\}|$, and every regular sequence $f_1, ..., f_s \in S$ with $\deg(f_i) = \sum_{a \in A_i} e_a$ for all i, the ideal $(f_1, ..., f_s)$ is Cartwright-Sturmfels,
- every cycle of $G(\mathcal{A})$ has constant edge labels.

Thank you for your attention!