Computing Fundamental Groups of Weighted Hassett Spaces

Combinatorial Algebra meets Algebraic Combinatorics (CAAC 2023)

Moduli Space $\overline{M_{0, n}}(\mathbb{R})$
We denote the moduli space of stable genus zero curves with $n \geq 3$ distinct marked points, up to automorphism, as $M_{0, n}(\mathbb{R})$. In addition, we let $M_{0, n}(\mathbb{R}) \subseteq M_{0, n}(\mathbb{R})$ be the subspace consisting of the automorphism classes of smooth curves. More formally, elements of $M_{0, n}(\mathbb{R})$, under equivalence of an action by $\operatorname{Aut}\left(\mathbb{R} \mathbb{P}^{1}\right)$, are of the form $\left(\mathbb{R P}^{1} ; x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$, where $x_{i} \in \mathbb{R P}^{1}$ are distinct. Using the fact that any 3 distinct points in $\mathbb{R P}^{1}$ respectively map to any 3 distinct points via a unique $\varphi \in \operatorname{Aut}\left(\mathbb{R} \mathbb{P}^{1}\right)$, we may set $x_{1}=0, x_{2}=1, x_{3}=\infty$, and obtain

$$
M_{0, n}(\mathbb{R})=\left\{\left(\mathbb{R}^{1} ; 0,1, \infty, x_{4}, x_{5}, \ldots, x_{n}\right): x_{i} \in \mathbb{R} \backslash\{0,1\} \text { distinct }\right\}
$$

which gives a one-to-one correspondence between $M_{0, n}(\mathbb{R})$ and the configuration space $(\mathbb{R} \backslash\{0,1\})^{n-3} \backslash \cup_{4 \leq i<j \leq n}\left\{x_{i}=x_{j}\right\}$. The space, $\overline{M_{0, n}}(\mathbb{R})$, is known as the Deligne-Mumford-Knudsen compactification of $M_{0, n}(\mathbb{R})$.

Up to equivalence, an element in $\overline{M_{0, n}}(\mathbb{R})$ is a connected curve C that is a finite union of curves C_{i}, $1<i<k$, with each C_{i} isomorphic to $\mathbb{R P}^{1}$. together with n distinct marked points $x_{1}, \ldots, x_{n} \in C$ such that each x_{i} is on a unique component; and for $i \neq j$, that each x_{i} is on a unique component; and for $\imath \neq j$,
$C_{i} \cap C_{j}$ is either empty or consists of exactly one point,

$\overline{M_{0,17}(\mathbb{R})}$ graph with vertex set $\left\{C_{1}, \ldots, C_{k}, x_{1}, \ldots, x_{n}\right\}$, and edge set $\left\{\left\{C_{i}, C_{j}\right\}: C_{i} \cap C_{j} \neq \varnothing\right\} \cup\left\{\left\{x_{i}, C_{j}\right\}: x_{i} \in C_{j}\right\}$, is a tree where each internal vertex has degree at least three. We consider this tree with its leaves labelled (x_{i} is labelled i), together with a natural plane embedding that is well defined up to a dihedral ordering[Dev00] at each internal vertex. We call the subset of elements associated to a particular tree and plane embedding, a boundary stratum in $\overline{M_{0, n}}(\mathbb{R})$.

Cactus Group
Definition 1. The n-th order cactus group [Eti+10], J_{n}, is the group generated by elements $s_{p, q}, 1 \leq p<q \leq n$ with the following relations.
a) $s_{p, q}^{2}=1$ for each $p<q$;
(b) $s_{p, q} s_{m, r}=s_{m, r} s_{p, q}$ if $p<q<m<r$;
c) $s_{p, q} s_{m, r}=s_{p+q-r, p+q-m} s_{p, q}$ if $p \leq m<r \leq q$
for convenience, we set $s_{p, p}=1$.
The fundamental group, $\pi_{1}\left(\overline{M_{0, n+1}}(\mathbb{R})\right)$, is isomorphic to a particular subgroup of J_{n}. Furthermore, there is a short exact sequence of group homomorphisms

$$
1 \rightarrow \pi_{1}\left(\overline{M_{0, n+1}}(\mathbb{R})\right) \rightarrow J_{n} \rightarrow S_{n} \rightarrow 1
$$

where S_{n} denote the symmetric group on n symbols. The map, $J_{n} \rightarrow S_{n}$, sends $s_{p, q}$ to the involution that reverses the integers in $[p, q]$.
Some Notation:

- $\sigma_{p, q, r}:=s_{p . r} s_{p, q} s_{q+1, r} ; 1 \leq p \leq q<r \leq n$
$\bullet b_{p, q, r, m}:=\sigma_{p, q, r}^{-1} \sigma_{p+r-q, r, m}^{-1} \sigma_{p, q, m} ; 1 \leq p \leq q<r<m \leq n$
Theorem $1([$ Eti +10$])$. The group, $\pi_{1}\left(\overline{M_{0, n+1}}(\mathbb{R})\right)$ is generated by the elements $b_{p, q, r, m}$, as a normal subgroup of J_{n}.

Weighted Hassett Space $\overline{M_{0, \mathcal{A}}}(\mathbb{R})$

A weighted variant of the moduli space $\overline{M_{0, n}}(\mathbb{R})$ is constructed by Hassett [Has03]. Let $\mathcal{A}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in(0,1]^{n}$ be a collection of weight data with $\sum a_{i}>2$ We consider genus zero curves with n (not necessarily distinct) smooth marked points, $\left(C ; x_{1}, \ldots, x_{n}\right)$, where C is a curve that has the tree structure as in the case of $\overline{M_{0, n}}(\mathbb{R})$. Intuitively, we assign a weight a_{i} to the i-th marked point, x_{i} Let $\mathcal{N} \subseteq C$ denote the set of nodes in C. Let $\overline{M_{0, \mathcal{A}}}(\mathbb{R})$ be the moduli space consisting of, up to automorphism, the elements $\left(C ; x_{1}, \ldots, x_{n}\right)$ satisfying

1. For each component C_{i} of $C,\left(\sum_{\left\{j: x_{j} \in C_{i}\right\}} a_{j}\right)+\left|\mathcal{N} \cap C_{i}\right|>2$; and 2. For each smooth point $y \in C, \sum_{\left\{j: x_{j}=y\right\}} a_{j} \leq 1$.

We refer to the spaces $\overline{M_{0, \mathcal{A}}}(\mathbb{R})$ as Hassett spaces. It follows that if each $a_{i}=1$ then $\overline{M_{0, \mathcal{A}}}(\mathbb{R})=\overline{M_{0, n}}(\mathbb{R})$. Blankers et al.[BB22] gives a construction of Hassett spaces using simplicial complexes on $[n]:=\{1, \ldots, n\}$: Subsets of $\mathcal{P}([n])$ which contain singletons and are closed under taking subsets. The weight data \mathcal{A} corresponds to the simplicial complex $\left\{I \subseteq[n]: \sum_{i \in I} a_{i} \leq 1\right\}$, the sets of weights that may coincide in $M_{0, \mathcal{A}}(\mathbb{R})$
Construction via blowups of $\mathbb{R} \mathbb{P}^{n-3}$
The unweighted moduli space, $\overline{M_{0, n}}(\mathbb{R})$, can be constructed via an iterated se quence of blow-ups applied to $\mathbb{R P}^{n-3}$. This is Kapranov's [Kap92, Section 4.3] construction, and its steps are as follows:

1. Let $W_{0}:=\mathbb{R} \mathbb{P}^{n-3}$. Choose $n-1$ points $q_{1}, \ldots, q_{n-1} \in \mathbb{R} \mathbb{P}^{n-3}$ in general position. 2. Blow up the points $q_{i} \in W_{0}$ in any order. Denote W_{1} as the resulting variety. 3. Consider $k=2,3, \ldots, n-4$ in increasing order. For each k-subset $I \in\binom{[n-1]}{k}$ considered in any order, blow up the (strict transform of) the $k-1$-dimension subspace $S_{I}:=\left\langle q_{i}: i \in I\right\rangle$ in W_{k-1}. Denote the resulting variety as W_{k}. 4. It follows that $W_{n-4} \simeq \overline{M_{0, n}}(\mathbb{R})$.

Convention Give $\mathbb{R} \mathbb{P}^{n-3}$ the homogeneous coordinates $\mathbf{x}=\left[x_{2}: x_{3}: \ldots: x_{n-1}\right]$. Put $q_{1}=[1: 1: \ldots: 1]$, and for $2 \leq i \leq n$, $q_{i}=[\underbrace{0 \ldots \ldots: 1}_{i}: 1: \underbrace{0: \ldots: 0}_{-2,}]$. If $a_{n}=1$, we have an inclusion $D \subseteq \mathbb{R}^{n-1} \hookrightarrow \overline{M_{0, \mathcal{A}}}(\mathbb{R})$,

$$
\left[x_{2}: \ldots: x_{n-1}\right] \mapsto\left(\mathbb{R P}^{1} ; x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
\text { with } x_{1}=0 \text { and } x_{n}=\infty \text {. In particular, }
$$

Figure 2: $\overline{M_{0,5}}(\mathbb{R})$ as a blowup of four points in $\mathbb{R P}^{2}$.

$$
D=\left\{\mathbf{x} \mid \sum_{i: x_{i}=y} a_{i} \leq 1 \quad \forall y \in \mathbb{R P}^{1}\right\} .
$$

Suppose $n=4$ and each $a_{i}=1$. We blow up $q_{1}, q_{2}, q_{3}, q_{4} \in \mathbb{R} \mathbb{P}^{2}$ to form $\overline{M_{0.5}}(\mathbb{R})$. The points in $\mathbb{R P}^{2}$ away from the exceptional divisors (E_{i} of q_{i}) are elements of $M_{0,5}(\mathbb{R})$. Each E_{i} correspond to a non-smooth boundary stratum in $\overline{M_{0,5}}(\mathbb{R})$. For example, E_{1} correspond to the stable curves where one of the components contain x_{1}, x_{5}, exactly one node, and no other x_{j}.

Assume $a_{n}=1$ so that $x_{n} \neq x_{j}$ for each $j<n$. To obtain the Hassett space $\overline{M_{0, \mathcal{A}}}(\mathbb{R})$, we perform the above steps, blowing up the space in the same order with a slight modification: Let $\mathcal{K} \subseteq \mathcal{P}([n-1]) \cup\{\{n\}\} \subseteq \mathcal{P}([n])$ denote the simplicial complex that \mathcal{A} correspond to. We blow up S_{I} if and only if $[n-1] \backslash I \notin \mathcal{K}$

Computing Fundamental Groups
The main goal of this project is to compute a combinatorial presentation of $\pi_{1}\left(\overline{M_{0, \mathcal{A}}}(\mathbb{R})\right)$ for certain weight data \mathcal{A}. We take a recursive approach, using the fact that the exceptional divisors obtained by blowups are naturally products of Hassett spaces of smaller dimension. We attempt to perform compuations in increasing order of n, and use Seifert van-Kampen to relate the fundamental groups of tubular neighbourhoods of exceptional divisors (and space away from the blowups) to that of the entire space. We also use the proposition below, which follows from the Whitney approximation theorem and an extended version of the transversality homotopy thoerem.
Proposition 1. Let X be a path connected manifold of finite dimension. Let $Z \subseteq X$ be an embedded submanifold. Assume $\operatorname{codim}_{X}(Z) \geq 3$. Then the inclusion $Z \hookrightarrow X$ induces an isomorphism $\pi_{1}(Z) \xrightarrow{\approx} \pi_{1}(X)$.

We roughly describe the recursive procedure of computing $\pi_{1}(\cdot)$. Consider a manifold X, that results after a sequence of blowups of finitely many closed subspaces of $\mathbb{R} \mathbb{P}^{n-3}$. Let $Z \subseteq X$ be the strict transform of another closed subspace of $\mathbb{R P}^{n-3}$. Let $Y:=\operatorname{Bl}_{Z}(X)$ be the blowup of Z in X. Suppose full presentations are known for $\pi_{1}(X)$ and $\pi_{1}(Z)$. We compute $\pi_{1}(Y)$ as follows: Take U to be a tubular neighbourhood of Z, and V to be Y with the exception divisor of Z removed, so $V \simeq X \backslash Z$. We use out knowledge of $\pi_{1}(X)$ and $\pi_{1}(Z)$ to obtain presentations for $\pi_{1}(U), \pi_{1}(V)$, and $\pi_{1}(U \cap V)$. Finally, using Seifert Van-Kampen, we obtain a presentation for $\pi_{1}(Y)$.

Example Results

If X is $\mathbb{R P}^{2}$ blown up at k points, then $\pi_{1}(X)=\left\langle s_{1}, \ldots, s_{k+1} \mid s_{1}^{2} s_{2}^{2} \ldots s_{k+1}^{2}=1\right\rangle$. In particular $\pi_{1}\left(\overline{M_{0,5}}(\mathbb{R})\right)=\left\langle s_{1}, \ldots, s_{5} \mid s_{1}^{2} \ldots s_{5}^{2}=1\right\rangle$. If $n \geq 6$ and X is $\mathbb{R P}^{n-3}$ blown up at k points, then $\pi_{1}(X)=(\mathbb{Z} / 2 \mathbb{Z})^{*(k+1)}$ is a free product of $k+1$ copies of $\mathbb{Z} / 2 \mathbb{Z}$. Consider the weight data \mathcal{A} with $a_{n}=1$. We have thus computed $\pi_{1}\left(\overline{M_{0, \mathcal{A}}}(\mathbb{R})\right)$ in the case where either $n=5$; or $n>5$ and $1<\sum_{i=1}^{n-1} a_{i} \leq 1+a_{j}$ for each $j<n$. We improve these slightly
Theorem 2. Assume $n \geq 7$. Let X denote the blowup of $\mathbb{R P}^{n-3}$ at q_{2}, q_{3}. Blow up the strict transform of the line $\left\langle q_{2}, q_{3}\right\rangle$ in X, and denote the resulting space as Y, and the exceptional divior as E_{23}. Then $\pi_{1}(X)=\left\langle l, l_{2}, l_{3} \mid l^{2}=l_{2}^{2}=l_{3}^{2}=1\right\rangle$ and

$$
\pi_{1}(Y)=\left\langle\alpha, \beta, l, l_{2}, l_{3} \mid \alpha^{2}=l^{2}=l_{2}^{2}=l_{3}^{2}=1, \alpha \beta=\beta \alpha=l_{3} l l_{2}\right\rangle
$$

where the generators are illustrated by the figure below, $l_{2}=\gamma_{2}{ }^{-1} \iota_{2} \gamma_{2}$, and $l_{3}=\gamma_{3} \iota_{3} \gamma_{3}-1$.

Figure 3: Illustrations for Theorem 2
Proof Sketch. Take U to be a tubular neighbourhood of $E_{2,3}$, and $V=Y \backslash E_{2,3} \simeq X \backslash\left\langle q_{2}, q_{3}\right\rangle$ Knowing that $U \cap V$ is a double cover of $E_{2.3}$, and that $\alpha \beta$ lifts to a loop $\widetilde{\alpha \beta} \in \pi_{1}(U \cap V)$, we determine that $\pi_{1}(U \cap V)=\langle\widetilde{\alpha \beta}\rangle \simeq \mathbb{Z}$, and $\widetilde{\alpha \beta}=l_{3} l l_{2} \in \pi_{1}(V)=\pi_{1}(X)$.

References

[BB22] Vance Blankers and Sebastian Bozlee. "On compactifications of $\mathcal{M}_{q, n}$ with colliding markings". In: (2022). [Dev00] Satyan L. Devadoss. "Tessellations of Moduli Spaces and the Mosaic Operad". In: (2000)
Devin Satyan L. Devadoss. "Tessellations of Moduli Spaces and the Mosaic Operad". In: (20) [Eti+10] Pavel Etingof et al. "The Cohomology Ring of the Real Locus of the Moduli Space of Stable Curves of Genus
[Has03] Brendan Hassett. "Moduli spaces of weighted pointed stable curves". In: Advances in Mathematics 173.2 (2003), pp. 316-352. ISSN: 0001-8708

Kap92 M.M. Kapranov. "Chow Quotients of Grassmannians I". In: (1992).
Supervisor: Dr. Jake Levinson

