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Moduli space of n distinct points on P1

M0,n = {(p1, . . . , pn) ∈ (P1)n : pi ̸= pj for all i ̸= j}/PGL2

∼= {(t1, . . . , tn−3, 0, 1,∞) : ti ̸= tj , 0, 1,∞}
= An−3 \ {ti = tj or 0, 1,∞}
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▶ This is not compact (points can’t collide).

▶ M0,n: a nice compactification that “simulates” collisions.
(Deligne–Mumford–Knudsen)
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Stable curves and collisions

▶ Nodes represent collisions:

p1

p2

p3 = x+ at
p4 = x+ bt

x
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t→0−−−−→
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Stable curves

▶ M0,n =
{
stable n-pointed genus 0 curves (C , (pi )

n
i=1)

}
/ ∼

▶ C = union of P1’s joined at simple nodes, in a tree structure
▶ p1, . . . , pn ∈ C : distinct smooth points
▶ “stable”: ≥ 3 marked points and/or nodes on each P1

⇔ no nontrivial automorphisms of (C , (p1, . . . , pn)).
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▶ “stable”: ≥ 3 marked points and/or nodes on each P1

⇔ no nontrivial automorphisms of (C , (p1, . . . , pn)).
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⇔ no nontrivial automorphisms of (C , (p1, . . . , pn)).
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Stratification of M0,n

▶ Strata of M0,n are indexed by at-least trivalent trees
▶ X ◦

T = {(C , p•) : dual tree of C = T}, XT = X ◦
T

▶ codim(XT ) = #internal edges(T )

XT
∼= M0,5 ×M0,5 ×M0,4

▶ Fractal structure!
∂M0,n = M0,n \M0,n = union of products of M0,n′ .
▶ Combinatorics of labeled trees
▶ Operads (category theory), H∗(M0,n), rep theory, ...
▶ and algebraic geometry of course!
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Analogy: M0,n vs Gr(k , n)

The Grassmannian is the moduli space of planes:

Gr(k , n) = {subspaces S ⊆ Cn : dimS = k}.

Gr(k , n) M0,n

Aut(M) k-planes in Cn n-pointed curves
PGLn Sn

Strata Schubert cells X ◦
λ strata X ◦

T

partitions λ ⊆ stable trees T

H∗ basis [Xλ] generators [XT ] with relations
Intersections Young tableaux Decorated trees

Maps to Pn Plücker coordinates Kapranov coordinates



Analogy: M0,n vs Gr(k , n)

The Grassmannian is the moduli space of planes:

Gr(k , n) = {subspaces S ⊆ Cn : dimS = k}.

Gr(k , n) M0,n

Aut(M) k-planes in Cn n-pointed curves
PGLn Sn

Strata Schubert cells X ◦
λ strata X ◦

T

partitions λ ⊆ stable trees T

H∗ basis [Xλ] generators [XT ] with relations
Intersections Young tableaux Decorated trees
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Kapranov maps

▶ Labels: S = {a, b, c , 1, . . . , n}. Let i ∈ {1, . . . , n}.
▶ i-th Kapranov map ψi : M0,S → Pn by “zooming in on pi”:

p3
s

p4
∞

t
p1

p6

0

p5

pa

pb
u

p2 pc

ψ47−−−→ [zb : zc : · · · ẑ4 · · · : z6] ∈ P6

[0 : u : t : u : s : 0 : t]

▶ Clearly not injective. But it is surjective.

▶ Hyperplane section: the i-th psi class ∈ H∗(M0,n+3).
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Log-canonical embedding

▶ Forgetful map: πi : M0,S → M0,S\{i}: forget pi , then stabilize
if necessary.

▶ Kapranov: (ψn, πn) : M0,n+3 ↪→ Pn ×M0,n+2

▶ Keel–Tevelev: Ωn : M0,n+3 ↪→ Pn × Pn−1 × · · · × P1

“Zoom in on pn, then forget pn...”, repeat.

▶ Composing with the Segre map gives the log-canonical
embedding: M0,n+3 ↪→ P(n+1)!−1.

(Corresponds to the divisor class KM0,n+3
+ ∂M0,n+3.)

Bottom line: These are two of the most natural ways to present
M0,n+3 as a (multi)projective variety.

Example

M0,5 ↪→ P1 × P2 is a surface of bi-degree (1, 2).
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Aside: Multidegrees and combinatorics

The map Ωn : M0,n+3 ↪→ Pn × · · · × P1 has nice combinatorics:

▶ Cavalieri–Gillespie–Monin (2021):
Total degree (sum of multidegrees) of Ωn(M0,n+3) is:

(2n − 1)!! = # labelled trivalent trees on n + 2 leaves.

Enumeration by column-restricted parking functions.

▶ Gillespie–Griffin–L (2022): Enumeration by boundary points
on M0,n+3 (lazy tournaments).
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Embeddings and homogeneous equations

▶ Veronese Pn ↪→ P(
n+d
d )−1, Segre Pn × Pm ↪→ P(n+1)(m+1)−1:

cut out by quadrics XIXJ = XKXL

▶ Plücker embedding Gr(k, n) ↪→ P(
n
k)−1:

cut out by Plücker relations pIpJ =
∑±pI ′pJ′

▶ Keel–Tevelev (2005): M0,n+3 ↪→ P(n+1)!−1:
cut out by quadrics.

Conjecture (Monin–Rana 2017)

The image of Ωn : M0,n+3 ↪→ P1 × · · · × Pn is cut out by the 2× 2
minors of several 2× k matrices (for various 2 ≤ k ≤ n).

▶ Shown for n ≤ 8 using Macaulay2.
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Equations for M0,n

▶ Equations from Pi × Pk for each 1 ≤ i < k ≤ n.

▶ Coordinates:
Pi = [Xb : Xc : X1 : · · · : Xi−1],
Pk = [Yb : Yc : Y1 : · · · · · · : Yk−1]

▶ MRi ,k = 2× (i + 1) matrix:[
Xb(Yb − Yi ) Xc(Yc − Yi ) · · · Xi−1(Yi−1 − Yi )

Yb Yc · · · Yi−1

]
▶ MRn =

(
2× 2 minors of MRi ,k : 1 ≤ i < k ≤ n

)
.

Example

M0,5 ↪→ P1 × P2 (coordinates [Xb : Xc ], [Yb : Yc : Y1]) is:

det

[
Xb(Yb − Y1) Xc(Yc − Y1)

Yb Yc

]
= 0.
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Yb Yc · · · Yi−1

]
▶ MRn =

(
2× 2 minors of MRi ,k : 1 ≤ i < k ≤ n

)
.

Example

M0,5 ↪→ P1 × P2 (coordinates [Xb : Xc ], [Yb : Yc : Y1]) is:

det

[
Xb(Yb − Y1) Xc(Yc − Y1)

Yb Yc

]
= 0.
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Combinatorial algebra

Theorem (Gillespie–Griffin–L 2022)

Monin–Rana’s equations cut out Ωn(M0,n+3) ↪→ P1 × · · · × Pn for
all n.

Sketch of proof:

0. Monin–Rana: Ωn(M0,n+3) ⊆ V(MRn).

1. Set-theoretic equality: Ωn(M0,n+3) = V(MRn) as sets.

2. Scheme-theoretic equality: tangent spaces agree.

Each step has combinatorics + algebra.

Focus on Step 1.
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Set-theoretic equality: Graph coloring

Let x ∈ P1 × · · · × Pn satisfy the Monin–Rana equations.

By induction: prn(x) ∈ P1 × · · · × Pn−1

= Ωn−1(Cn−1, p•) for some (Cn−1, p•) ∈ M0,n+2.

Where should pn be inserted on Cn−1?

dual tree of Cn−1:

▶ Graph coloring of the dual tree of Cn−1.

▶ Monin–Rana equations ⇒ “strong separation property”.

▶ Identifies a unique vertex (↔ component P1 ⊆ Cn−1).



Set-theoretic equality: Graph coloring

Let x ∈ P1 × · · · × Pn satisfy the Monin–Rana equations.

By induction: prn(x) ∈ P1 × · · · × Pn−1

= Ωn−1(Cn−1, p•) for some (Cn−1, p•) ∈ M0,n+2.

Where should pn be inserted on Cn−1?

dual tree of Cn−1:

(B)
(B)

(B)

(Z)

(Z)

(R)

(R) (R)

(G)

(P)

▶ Graph coloring of the dual tree of Cn−1.

▶ Monin–Rana equations ⇒ “strong separation property”.

▶ Identifies a unique vertex (↔ component P1 ⊆ Cn−1).



Set-theoretic equality: Graph coloring

Let x ∈ P1 × · · · × Pn satisfy the Monin–Rana equations.

By induction: prn(x) ∈ P1 × · · · × Pn−1

= Ωn−1(Cn−1, p•) for some (Cn−1, p•) ∈ M0,n+2.

Where should pn be inserted on Cn−1?

dual tree of Cn−1:

(B)
(B)

(B)

(Z)

(Z)

(R)

(R) (R)

(G)

(P)

▶ Graph coloring of the dual tree of Cn−1.

▶ Monin–Rana equations ⇒ “strong separation property”.

▶ Identifies a unique vertex (↔ component P1 ⊆ Cn−1).



Set-theoretic equality: Graph coloring

Let x ∈ P1 × · · · × Pn satisfy the Monin–Rana equations.

By induction: prn(x) ∈ P1 × · · · × Pn−1

= Ωn−1(Cn−1, p•) for some (Cn−1, p•) ∈ M0,n+2.

Where should pn be inserted on Cn−1?

dual tree of Cn−1:

(B)
(B)

(B)

(Z)

(Z)

(R)

(R) (R)

(G)

(P)

▶ Graph coloring of the dual tree of Cn−1.

▶ Monin–Rana equations ⇒ “strong separation property”.

▶ Identifies a unique vertex (↔ component P1 ⊆ Cn−1).



Noncrossing colorings

Roughly, we show that if a 2× 2 minor of MRi ,k is nonzero, then
there’s a “crossing coloring” of this form:

(R)

(R)(B)

(B)



Set-theoretic equality: Matrix factorization

Where should pn be inserted on P1 ⊆ Cn−1?

▶ 2× 2 minors vanish ⇔ matrix MRi ,n factors:

MRi ,n =

[
Xb(Yb − Yi ) Xc(Yc − Yi ) · · · Xi−1(Yi−1 − Yi )

Yb Yc · · · Yi−1

]
=

[
λ
1

]
·
[
Yb · · · Yi−1

]
▶ λ (up to coordinate change) says where to insert pn on the P1.

▶ Gives (Cn, p•) such that Ωn(Cn, p•) = x .
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Scheme-theoretic equality: Tangent spaces

▶ We linearize the Monin–Rana equations near each x = Ωn(C )
for C ∈ M0,n+3.

▶ We decompose the tangent space according to “branches” of
the dual tree near pn ∈ C .

▶ We show: dimTxΩn(M0,n+3) = dimTxV(MRn).
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Some questions for all of you

▶ Minimal generators for the ideal?
(Recall: Id = Jd for d ≫ 0 ↔ Proj(R/I ) ∼= Proj(R/J).)

▶ Minimal free resolution?

▶ Equations for M0,n in other embeddings? e.g.

M0,n ↪→ (P1)(
n
4)?

▶ Equations for variations on M0,n?
Losev–Manin space LMn (permutohedral variety)?
Hassett spaces?



Thank you!


