Jake Levinson Simon Fraser University

joint with Maria Gillespie (Colorado State University) and Sean T. Griffin (University of California, Davis)

> CAAC 2023 University of Waterloo January 21, 2023

Moduli space of *n* distinct points on \mathbb{P}^1

$$M_{0,n} = \{(p_1, \ldots, p_n) \in (\mathbb{P}^1)^n : p_i \neq p_j \text{ for all } i \neq j\} / \mathrm{PGL}_2$$

Moduli space of *n* distinct points on \mathbb{P}^1

$$\begin{split} \mathcal{M}_{0,n} &= \{ (p_1, \dots, p_n) \in (\mathbb{P}^1)^n : p_i \neq p_j \text{ for all } i \neq j \} / \mathrm{PGL}_2 \\ &\cong \{ (t_1, \dots, t_{n-3}, 0, 1, \infty) : t_i \neq t_j, 0, 1, \infty \} \\ &= \mathbb{A}^{n-3} \setminus \{ t_i = t_j \text{ or } 0, 1, \infty \} \end{split}$$

Moduli space of *n* distinct points on \mathbb{P}^1

$$M_{0,n} = \{(p_1, \dots, p_n) \in (\mathbb{P}^1)^n : p_i \neq p_j \text{ for all } i \neq j\}/\text{PGL}_2$$
$$\cong \{(t_1, \dots, t_{n-3}, 0, 1, \infty) : t_i \neq t_j, 0, 1, \infty\}$$
$$= \mathbb{A}^{n-3} \setminus \{t_i = t_j \text{ or } 0, 1, \infty\}$$

- This is not compact (points can't collide).
- M
 _{0,n}: a nice compactification that "simulates" collisions. (Deligne–Mumford–Knudsen)

Stable curves and collisions

Nodes represent collisions:

Stable curves and collisions

Nodes represent collisions:

Stable curves and collisions

Nodes represent collisions:

•
$$\overline{M}_{0,n} = \{ \text{stable } n \text{-pointed genus } 0 \text{ curves } (C, (p_i)_{i=1}^n) \} / \sim$$

- ▶ $\overline{M}_{0,n} = \{$ stable *n*-pointed genus 0 curves $(C, (p_i)_{i=1}^n)\}/ \sim$
 - C = union of P¹'s joined at simple nodes, in a tree structure
 p₁,..., p_n ∈ C: distinct smooth points

- ▶ $\overline{M}_{0,n} = \{$ stable *n*-pointed genus 0 curves $(C, (p_i)_{i=1}^n)\}/ \sim$
 - C = union of P¹'s joined at simple nodes, in a tree structure
 p₁,..., p_n ∈ C: distinct smooth points

- ▶ $\overline{M}_{0,n} = \{$ stable *n*-pointed genus 0 curves $(C, (p_i)_{i=1}^n)\}/\sim$
 - C = union of P¹'s joined at simple nodes, in a tree structure
 p₁,..., p_n ∈ C: distinct smooth points

Stable": ≥ 3 marked points and/or nodes on each P¹ ⇔ no nontrivial automorphisms of (C, (p₁,..., p_n)).

The Grassmannian is the moduli space of planes:

The Grassmannian is the moduli space of planes:

$\operatorname{Gr}(k,n) = \{ \operatorname{subspaces} S \subseteq \mathbb{C}^n : \dim S = k \}.$				
	$\operatorname{Gr}(k, n)$	$\overline{M}_{0,n}$		
$\operatorname{Aut}(M)$	k -planes in \mathbb{C}^n	<i>n</i> -pointed curves		
	PGL _n	S _n		
Strata	Schubert cells X°_λ	strata X_T°		
	partitions $\lambda \subseteq \boxplus$	stable trees T		

The Grassmannian is the moduli space of planes:

$\operatorname{Gr}(k,n) = \{ \operatorname{subspaces} S \subseteq \mathbb{C}^n : \dim S = k \}.$			
	Gr(<i>k</i> , <i>n</i>)	$\overline{M}_{0,n}$	
$\operatorname{Aut}(M)$	k-planes in \mathbb{C}^n	<i>n</i> -pointed curves	
	PGL _n	S _n	
Strata	Schubert cells X°_λ	strata X_T°	
	partitions $\lambda \subseteq \boxplus$	stable trees T	
H*	basis $[X_{\lambda}]$	generators $[X_T]$ with relations	
Intersections	Young tableaux	Decorated trees	

The Grassmannian is the moduli space of planes:

$$Gr(k, n) = {$$
subspaces $S \subseteq \mathbb{C}^n : \dim S = k }.$

	$\operatorname{Gr}(k, n)$	$\overline{M}_{0,n}$
$\operatorname{Aut}(M)$	k -planes in \mathbb{C}^n	<i>n</i> -pointed curves
	PGL _n	S _n
Strata	Schubert cells X°_λ	strata X_T°
	partitions $\lambda \subseteq \boxplus$	stable trees T
	basis $[X_{\lambda}]$	generators $[X_T]$ with relations
Intersections	Young tableaux	Decorated trees
Maps to \mathbb{P}^n	Plücker coordinates	Kapranov coordinates

▶ Labels: $S = \{a, b, c, 1, ..., n\}$. Let $i \in \{1, ..., n\}$.

▶ Labels: $S = \{a, b, c, 1, ..., n\}$. Let $i \in \{1, ..., n\}$.

▶ Labels: $S = \{a, b, c, 1, ..., n\}$. Let $i \in \{1, ..., n\}$.

▶ Labels: $S = \{a, b, c, 1, ..., n\}$. Let $i \in \{1, ..., n\}$.

▶ Labels: $S = \{a, b, c, 1, ..., n\}$. Let $i \in \{1, ..., n\}$.

▶ *i*-th Kapranov map $\psi_i : \overline{M}_{0,S} \to \mathbb{P}^n$ by "zooming in on p_i ":

Clearly not injective. But it is surjective.

▶ Labels: $S = \{a, b, c, 1, ..., n\}$. Let $i \in \{1, ..., n\}$.

- Clearly not injective. But it is surjective.
- Hyperplane section: the *i*-th *psi class* $\in H^*(\overline{M}_{0,n+3})$.

► Forgetful map: $\pi_i : \overline{M}_{0,S} \to \overline{M}_{0,S \setminus \{i\}}$: forget p_i , then stabilize if necessary.

- ► Forgetful map: $\pi_i : \overline{M}_{0,S} \to \overline{M}_{0,S \setminus \{i\}}$: forget p_i , then stabilize if necessary.
- ► Kapranov: $(\psi_n, \pi_n) : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \overline{M}_{0,n+2}$

- ► Forgetful map: $\pi_i : \overline{M}_{0,S} \to \overline{M}_{0,S \setminus \{i\}}$: forget p_i , then stabilize if necessary.
- ► Kapranov: $(\psi_n, \pi_n) : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \overline{M}_{0,n+2}$
- ► Keel-Tevelev: $\Omega_n : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \mathbb{P}^{n-1} \times \cdots \times \mathbb{P}^1$ "Zoom in on p_n , then forget p_n ...", repeat.

- ► Forgetful map: $\pi_i : \overline{M}_{0,S} \to \overline{M}_{0,S \setminus \{i\}}$: forget p_i , then stabilize if necessary.
- ► Kapranov: $(\psi_n, \pi_n) : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \overline{M}_{0,n+2}$
- ► Keel-Tevelev: $\Omega_n : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \mathbb{P}^{n-1} \times \cdots \times \mathbb{P}^1$ "Zoom in on p_n , then forget p_n ...", repeat.
- Composing with the Segre map gives the log-canonical embedding: M_{0,n+3} → P^{(n+1)!-1}.

(Corresponds to the divisor class $K_{\overline{M}_{0,n+3}} + \partial \overline{M}_{0,n+3}$.)

- ► Forgetful map: $\pi_i : \overline{M}_{0,S} \to \overline{M}_{0,S \setminus \{i\}}$: forget p_i , then stabilize if necessary.
- ► Kapranov: $(\psi_n, \pi_n) : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \overline{M}_{0,n+2}$
- ► Keel-Tevelev: $\Omega_n : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \mathbb{P}^{n-1} \times \cdots \times \mathbb{P}^1$ "Zoom in on p_n , then forget p_n ...", repeat.
- Composing with the Segre map gives the log-canonical embedding: M_{0,n+3} → P^{(n+1)!-1}.

(Corresponds to the divisor class $K_{\overline{M}_{0,n+3}} + \partial \overline{M}_{0,n+3}$.)

Bottom line: These are two of the most natural ways to present $\overline{M}_{0,n+3}$ as a (multi)projective variety.

- ► Forgetful map: $\pi_i : \overline{M}_{0,S} \to \overline{M}_{0,S \setminus \{i\}}$: forget p_i , then stabilize if necessary.
- ► Kapranov: $(\psi_n, \pi_n) : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \overline{M}_{0,n+2}$
- ► Keel-Tevelev: $\Omega_n : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \mathbb{P}^{n-1} \times \cdots \times \mathbb{P}^1$ "Zoom in on p_n , then forget p_n ...", repeat.
- Composing with the Segre map gives the log-canonical embedding: M_{0,n+3} → P^{(n+1)!-1}.

(Corresponds to the divisor class $K_{\overline{M}_{0,n+3}} + \partial \overline{M}_{0,n+3}$.)

Bottom line: These are two of the most natural ways to present $\overline{M}_{0,n+3}$ as a (multi)projective variety.

Example

 $\overline{M}_{0,5} \hookrightarrow \mathbb{P}^1 \times \mathbb{P}^2$ is a surface of bi-degree (1,2).

Aside: Multidegrees and combinatorics

The map $\Omega_n : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \cdots \times \mathbb{P}^1$ has nice combinatorics:

Cavalieri–Gillespie–Monin (2021):
 Total degree (sum of multidegrees) of Ω_n(M
_{0,n+3}) is:

(2n-1)!! = # labelled trivalent trees on n+2 leaves.

Aside: Multidegrees and combinatorics

The map $\Omega_n : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \cdots \times \mathbb{P}^1$ has nice combinatorics:

Cavalieri–Gillespie–Monin (2021):
 Total degree (sum of multidegrees) of Ω_n(M
_{0.n+3}) is:

(2n-1)!! = # labelled trivalent trees on n+2 leaves.

Enumeration by column-restricted parking functions.

Aside: Multidegrees and combinatorics

The map $\Omega_n : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^n \times \cdots \times \mathbb{P}^1$ has nice combinatorics:

Cavalieri–Gillespie–Monin (2021):
 Total degree (sum of multidegrees) of Ω_n(M
_{0.n+3}) is:

(2n-1)!! = # labelled trivalent trees on n+2 leaves.

Enumeration by column-restricted parking functions.

 Gillespie–Griffin–L (2022): Enumeration by boundary points on M_{0,n+3} (*lazy tournaments*).

▶ Veronese $\mathbb{P}^n \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, Segre $\mathbb{P}^n \times \mathbb{P}^m \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$: cut out by quadrics $X_I X_J = X_K X_L$

- ▶ Veronese $\mathbb{P}^n \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, Segre $\mathbb{P}^n \times \mathbb{P}^m \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$: cut out by quadrics $X_I X_J = X_K X_L$
- ▶ Plücker embedding $Gr(k, n) \hookrightarrow \mathbb{P}^{\binom{n}{k}-1}$: cut out by Plücker relations $p_I p_J = \sum \pm p_{I'} p_{J'}$

- ▶ Veronese $\mathbb{P}^n \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, Segre $\mathbb{P}^n \times \mathbb{P}^m \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$: cut out by quadrics $X_I X_J = X_K X_L$
- ▶ Plücker embedding $Gr(k, n) \hookrightarrow \mathbb{P}^{\binom{n}{k}-1}$: cut out by Plücker relations $p_I p_J = \sum \pm p_{I'} p_{J'}$
- Keel–Tevelev (2005): M_{0,n+3} → P^{(n+1)!-1}: cut out by quadrics.

- ▶ Veronese $\mathbb{P}^n \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, Segre $\mathbb{P}^n \times \mathbb{P}^m \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$: cut out by quadrics $X_I X_J = X_K X_L$
- ▶ Plücker embedding $Gr(k, n) \hookrightarrow \mathbb{P}^{\binom{n}{k}-1}$: cut out by Plücker relations $p_I p_J = \sum \pm p_{I'} p_{J'}$
- Keel-Tevelev (2005): M_{0,n+3} → P^{(n+1)!-1}: cut out by quadrics.

Conjecture (Monin-Rana 2017)

The image of $\Omega_n : \overline{M}_{0,n+3} \hookrightarrow \mathbb{P}^1 \times \cdots \times \mathbb{P}^n$ is cut out by the 2 × 2 minors of several 2 × k matrices (for various $2 \le k \le n$).

• Equations from $\mathbb{P}^i \times \mathbb{P}^k$ for each $1 \leq i < k \leq n$.

• Coordinates: $\mathbb{P}^{i} = [X_{b} : X_{c} : X_{1} : \dots : X_{i-1}],$ $\mathbb{P}^{k} = [Y_{b} : Y_{c} : Y_{1} : \dots : Y_{k-1}]$

• Equations from $\mathbb{P}^i \times \mathbb{P}^k$ for each $1 \leq i < k \leq n$.

Coordinates:
$$\mathbb{P}^{i} = [X_{b} : X_{c} : X_{1} : \dots : X_{i-1}],$$

$$\mathbb{P}^{k} = [Y_{b} : Y_{c} : Y_{1} : \dots : Y_{k-1}]$$

$$\mathbb{MR}_{i,k} = 2 \times (i+1) \text{ matrix:}$$

$$\begin{bmatrix} X_{b}(Y_{b} - Y_{i}) & X_{c}(Y_{c} - Y_{i}) & \dots & X_{i-1}(Y_{i-1} - Y_{i}) \\ Y_{b} & Y_{c} & \dots & Y_{i-1} \end{bmatrix}$$

• Equations from $\mathbb{P}^i \times \mathbb{P}^k$ for each $1 \leq i < k \leq n$.

Coordinates:

$$\mathbb{P}^{i} = [X_{b} : X_{c} : X_{1} : \dots : X_{i-1}],$$

 $\mathbb{P}^{k} = [Y_{b} : Y_{c} : Y_{1} : \dots : Y_{k-1}]$
 $\operatorname{MR}_{i,k} = 2 \times (i+1) \operatorname{matrix:}$
 $\begin{bmatrix} X_{b}(Y_{b} - Y_{i}) & X_{c}(Y_{c} - Y_{i}) & \dots & X_{i-1}(Y_{i-1} - Y_{i}) \\ Y_{b} & Y_{c} & \dots & Y_{i-1} \end{bmatrix}$
 $\operatorname{MR}_{n} = (2 \times 2 \operatorname{minors of MR}_{i,k} : 1 \le i < k \le n).$

• Equations from $\mathbb{P}^i \times \mathbb{P}^k$ for each $1 \leq i < k \leq n$.

Example

 $\overline{M}_{0,5} \hookrightarrow \mathbb{P}^1 \times \mathbb{P}^2$ (coordinates $[X_b : X_c], [Y_b : Y_c : Y_1]$) is:

$$\det \begin{bmatrix} X_b(Y_b - Y_1) & X_c(Y_c - Y_1) \\ Y_b & Y_c \end{bmatrix} = 0.$$

Combinatorial algebra

Theorem (Gillespie–Griffin–L 2022)

Monin-Rana's equations cut out $\Omega_n(\overline{M}_{0,n+3}) \hookrightarrow \mathbb{P}^1 \times \cdots \times \mathbb{P}^n$ for all n.

Combinatorial algebra

Theorem (Gillespie–Griffin–L 2022)

Monin–Rana's equations cut out $\Omega_n(\overline{M}_{0,n+3}) \hookrightarrow \mathbb{P}^1 \times \cdots \times \mathbb{P}^n$ for all n.

Sketch of proof:

- 0. Monin-Rana: $\Omega_n(\overline{M}_{0,n+3}) \subseteq \mathbb{V}(\mathrm{MR}_n)$.
- 1. Set-theoretic equality: $\Omega_n(\overline{M}_{0,n+3}) = \mathbb{V}(\mathrm{MR}_n)$ as sets.
- 2. Scheme-theoretic equality: tangent spaces agree.

Each step has combinatorics + algebra.

Combinatorial algebra

Theorem (Gillespie–Griffin–L 2022)

Monin–Rana's equations cut out $\Omega_n(\overline{M}_{0,n+3}) \hookrightarrow \mathbb{P}^1 \times \cdots \times \mathbb{P}^n$ for all n.

Sketch of proof:

- 0. Monin-Rana: $\Omega_n(\overline{M}_{0,n+3}) \subseteq \mathbb{V}(\mathrm{MR}_n)$.
- 1. Set-theoretic equality: $\Omega_n(\overline{M}_{0,n+3}) = \mathbb{V}(\mathrm{MR}_n)$ as sets.
- 2. Scheme-theoretic equality: tangent spaces agree.

Each step has combinatorics + algebra.

Focus on Step 1.

Let $x \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^n$ satisfy the Monin–Rana equations.

By induction: $\operatorname{pr}_n(x) \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^{n-1}$ = $\Omega_{n-1}(C_{n-1}, p_{\bullet})$ for some $(C_{n-1}, p_{\bullet}) \in \overline{M}_{0,n+2}$.

Let $x \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^n$ satisfy the Monin–Rana equations.

By induction: $\operatorname{pr}_n(x) \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^{n-1}$ = $\Omega_{n-1}(C_{n-1}, p_{\bullet})$ for some $(C_{n-1}, p_{\bullet}) \in \overline{M}_{0,n+2}$.

Let $x \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^n$ satisfy the Monin–Rana equations.

By induction: $\operatorname{pr}_n(x) \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^{n-1}$ = $\Omega_{n-1}(C_{n-1}, p_{\bullet})$ for some $(C_{n-1}, p_{\bullet}) \in \overline{M}_{0,n+2}$.

- Graph coloring of the dual tree of C_{n-1} .
- Monin–Rana equations \Rightarrow "strong separation property".

Let $x \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^n$ satisfy the Monin–Rana equations.

By induction: $\operatorname{pr}_n(x) \in \mathbb{P}^1 \times \cdots \times \mathbb{P}^{n-1}$ = $\Omega_{n-1}(C_{n-1}, p_{\bullet})$ for some $(C_{n-1}, p_{\bullet}) \in \overline{M}_{0,n+2}$.

- Graph coloring of the dual tree of C_{n-1} .
- Monin−Rana equations ⇒ "strong separation property".
- Identifies a unique vertex (\leftrightarrow component $\mathbb{P}^1 \subseteq C_{n-1}$).

Noncrossing colorings

Roughly, we show that if a 2×2 minor of $MR_{i,k}$ is nonzero, then there's a "crossing coloring" of this form:

Where should p_n be inserted on $\mathbb{P}^1 \subseteq C_{n-1}$?

Where should p_n be inserted on $\mathbb{P}^1 \subseteq C_{n-1}$?

• 2×2 minors vanish \Leftrightarrow matrix $MR_{i,n}$ factors:

$$MR_{i,n} = \begin{bmatrix} X_b(Y_b - Y_i) & X_c(Y_c - Y_i) & \cdots & X_{i-1}(Y_{i-1} - Y_i) \\ Y_b & Y_c & \cdots & Y_{i-1} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda \\ 1 \end{bmatrix} \cdot \begin{bmatrix} Y_b & \cdots & Y_{i-1} \end{bmatrix}$$

Where should p_n be inserted on $\mathbb{P}^1 \subseteq C_{n-1}$?

• 2×2 minors vanish \Leftrightarrow matrix $MR_{i,n}$ factors:

$$MR_{i,n} = \begin{bmatrix} X_b(Y_b - Y_i) & X_c(Y_c - Y_i) & \cdots & X_{i-1}(Y_{i-1} - Y_i) \\ Y_b & Y_c & \cdots & Y_{i-1} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda \\ 1 \end{bmatrix} \cdot \begin{bmatrix} Y_b & \cdots & Y_{i-1} \end{bmatrix}$$

• λ (up to coordinate change) says where to insert p_n on the \mathbb{P}^1 .

Where should p_n be inserted on $\mathbb{P}^1 \subseteq C_{n-1}$?

• 2×2 minors vanish \Leftrightarrow matrix $MR_{i,n}$ factors:

$$MR_{i,n} = \begin{bmatrix} X_b(Y_b - Y_i) & X_c(Y_c - Y_i) & \cdots & X_{i-1}(Y_{i-1} - Y_i) \\ Y_b & Y_c & \cdots & Y_{i-1} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda \\ 1 \end{bmatrix} \cdot \begin{bmatrix} Y_b & \cdots & Y_{i-1} \end{bmatrix}$$

λ (up to coordinate change) says where to insert p_n on the P¹.
 Gives (C_n, p_•) such that Ω_n(C_n, p_•) = x.

We linearize the Monin–Rana equations near each x = Ω_n(C) for C ∈ M_{0,n+3}.

- We linearize the Monin–Rana equations near each x = Ω_n(C) for C ∈ M_{0,n+3}.
- ▶ We decompose the tangent space according to "branches" of the dual tree near $p_n \in C$.

- We linearize the Monin–Rana equations near each x = Ω_n(C) for C ∈ M_{0,n+3}.
- We decompose the tangent space according to "branches" of the dual tree near p_n ∈ C.
- We show: dim $T_{X}\Omega_{n}(\overline{M}_{0,n+3}) = \dim T_{X}\mathbb{V}(\mathrm{MR}_{n}).$

Some questions for all of you

- Minimal generators for the ideal? (Recall: I_d = J_d for d ≫ 0 ↔ Proj(R/I) ≅ Proj(R/J).)
- Minimal free resolution?
- ► Equations for $\overline{M}_{0,n}$ in other embeddings? e.g. $\overline{M}_{0,n} \hookrightarrow (\mathbb{P}^1)^{\binom{n}{4}}$?
- Equations for variations on M
 _{0,n}?
 Losev–Manin space LM_n (permutohedral variety)?
 Hassett spaces?

Thank you!