Equations for $\bar{M}_{0, n}$

Jake Levinson
Simon Fraser University
joint with Maria Gillespie (Colorado State University) and Sean T. Griffin (University of California, Davis)

CAAC 2023
University of Waterloo
January 21, 2023

Moduli space of n distinct points on \mathbb{P}^{1}

$$
M_{0, n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}: p_{i} \neq p_{j} \text { for all } i \neq j\right\} / \mathrm{PGL}_{2}
$$

Moduli space of n distinct points on \mathbb{P}^{1}

$$
\begin{aligned}
M_{0, n} & =\left\{\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}: p_{i} \neq p_{j} \text { for all } i \neq j\right\} / \mathrm{PGL}_{2} \\
& \left.\cong\left\{t_{1}, \ldots, t_{n-3}, 0,1, \infty\right): t_{i} \neq t_{j}, 0,1, \infty\right\} \\
& =\mathbb{A}^{n-3} \backslash\left\{t_{i}=t_{j} \text { or } 0,1, \infty\right\}
\end{aligned}
$$

Moduli space of n distinct points on \mathbb{P}^{1}

$$
\begin{aligned}
M_{0, n} & =\left\{\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}: p_{i} \neq p_{j} \text { for all } i \neq j\right\} / \mathrm{PGL}_{2} \\
& \cong\left\{\left(t_{1}, \ldots, t_{n-3}, 0,1, \infty\right): t_{i} \neq t_{j}, 0,1, \infty\right\} \\
& =\mathbb{A}^{n-3} \backslash\left\{t_{i}=t_{j} \text { or } 0,1, \infty\right\}
\end{aligned}
$$

- This is not compact (points can't collide).
- $\bar{M}_{0, n}$: a nice compactification that "simulates" collisions. (Deligne-Mumford-Knudsen)

Stable curves and collisions

- Nodes represent collisions:

Stable curves and collisions

- Nodes represent collisions:

Stable curves and collisions

- Nodes represent collisions:

Stable curves

- $\bar{M}_{0, n}=\left\{\right.$ stable n-pointed genus 0 curves $\left.\left(C,\left(p_{i}\right)_{i=1}^{n}\right)\right\} / \sim$

Stable curves

- $\bar{M}_{0, n}=\left\{\right.$ stable n-pointed genus 0 curves $\left.\left(C,\left(p_{i}\right)_{i=1}^{n}\right)\right\} / \sim$
- $C=$ union of \mathbb{P}^{1} 's joined at simple nodes, in a tree structure
- $p_{1}, \ldots, p_{n} \in C$: distinct smooth points

Stable curves

- $\bar{M}_{0, n}=\left\{\right.$ stable n-pointed genus 0 curves $\left.\left(C,\left(p_{i}\right)_{i=1}^{n}\right)\right\} / \sim$
- $C=$ union of \mathbb{P}^{1} 's joined at simple nodes, in a tree structure
- $p_{1}, \ldots, p_{n} \in C$: distinct smooth points

Stable curves

- $\bar{M}_{0, n}=\left\{\right.$ stable n-pointed genus 0 curves $\left.\left(C,\left(p_{i}\right)_{i=1}^{n}\right)\right\} / \sim$
- $C=$ union of \mathbb{P}^{1} 's joined at simple nodes, in a tree structure
- $p_{1}, \ldots, p_{n} \in C$: distinct smooth points

- "stable": ≥ 3 marked points and/or nodes on each \mathbb{P}^{1} \Leftrightarrow no nontrivial automorphisms of $\left(C,\left(p_{1}, \ldots, p_{n}\right)\right)$.

Stratification of $\bar{M}_{0, n}$

- Strata of $\bar{M}_{0, n}$ are indexed by at-least trivalent trees
- $X_{T}^{\circ}=\left\{\left(C, p_{\bullet}\right)\right.$: dual tree of $\left.C=T\right\}, X_{T}=\overline{X_{T}^{\circ}}$
- $\operatorname{codim}\left(X_{T}\right)=\#$ internal edges (T)

Stratification of $\bar{M}_{0, n}$

- Strata of $\bar{M}_{0, n}$ are indexed by at-least trivalent trees
- $X_{T}^{\circ}=\left\{\left(C, p_{\bullet}\right)\right.$: dual tree of $\left.C=T\right\}, X_{T}=\overline{X_{T}^{\circ}}$
$-\operatorname{codim}\left(X_{T}\right)=\#$ internal edges (T)

$$
X_{T}^{\circ} \cong M_{0,5} \times M_{0,5} \times M_{0,4}
$$

Stratification of $\bar{M}_{0, n}$

- Strata of $\bar{M}_{0, n}$ are indexed by at-least trivalent trees
- $X_{T}^{\circ}=\left\{\left(C, p_{\bullet}\right)\right.$: dual tree of $\left.C=T\right\}, X_{T}=\overline{X_{T}^{\circ}}$
$-\operatorname{codim}\left(X_{T}\right)=\#$ internal edges (T)

Stratification of $\bar{M}_{0, n}$

- Strata of $\bar{M}_{0, n}$ are indexed by at-least trivalent trees
- $X_{T}^{\circ}=\left\{\left(C, p_{\bullet}\right)\right.$: dual tree of $\left.C=T\right\}, X_{T}=\overline{X_{T}^{\circ}}$
- $\operatorname{codim}\left(X_{T}\right)=\#$ internal edges (T)

- Fractal structure!
$\partial \bar{M}_{0, n}=\bar{M}_{0, n} \backslash M_{0, n}=$ union of products of $\bar{M}_{0, n^{\prime}}$.
- Combinatorics of labeled trees
- Operads (category theory), $H^{*}\left(\bar{M}_{0, n}\right)$, rep theory, ...
- and algebraic geometry of course!

Analogy: $\bar{M}_{0, n}$ vs $\operatorname{Gr}(k, n)$

The Grassmannian is the moduli space of planes:

$\operatorname{Gr}(k, n)=\left\{\right.$ subspaces $\left.S \subseteq \mathbb{C}^{n}: \operatorname{dim} S=k\right\}$					
Aut (M)		$	$	$\operatorname{Gr}(k, n)$	$\bar{M}_{0, n}$
:---:	:---:				
	k-planes in \mathbb{C}^{n}				
PGL $_{n}$	n-pointed curves				
	S_{n}				

Analogy: $\bar{M}_{0, n}$ vs $\operatorname{Gr}(k, n)$

The Grassmannian is the moduli space of planes:

$\operatorname{Gr}(k, n)=\left\{\right.$ subspaces $\left.S \subseteq \mathbb{C}^{n}: \operatorname{dim} S=k\right\}$		
	$\operatorname{Gr}(k, n)$	$\bar{M}_{0, n}$
Aut (M)	k-planes in \mathbb{C}^{n}	n-pointed curves
	PGL $_{n}$	S_{n}
Strata	Schubert cells X_{λ}° partitions $\lambda \subseteq \boxplus$	strata X_{T}° stable trees T

Analogy: $\bar{M}_{0, n}$ vs $\operatorname{Gr}(k, n)$

The Grassmannian is the moduli space of planes:

$\operatorname{Gr}(k, n)=\left\{\right.$ subspaces $\left.S \subseteq \mathbb{C}^{n}: \operatorname{dim} S=k\right\}$		
	$\operatorname{Gr}(k, n)$	$\bar{M}_{0, n}$
Aut (M)	k-planes in \mathbb{C}^{n}	n-pointed curves
	PGL $_{n}$	S_{n}
Strata	Schubert cells X_{λ}°	strata X_{T}°
	partitions $\lambda \subseteq \boxplus \boxplus$	stable trees T
H^{*}	basis $\left[X_{\lambda}\right]$	generators $\left[X_{T}\right]$ with relations
Intersections	Young tableaux	Decorated trees

Analogy: $\bar{M}_{0, n}$ vs $\operatorname{Gr}(k, n)$

The Grassmannian is the moduli space of planes:

$\operatorname{Gr}(k, n)=\left\{\right.$ subspaces $\left.S \subseteq \mathbb{C}^{n}: \operatorname{dim} S=k\right\}$		
	$\operatorname{Gr}(k, n)$	$\bar{M}_{0, n}$
Aut (M)	k-planes in \mathbb{C}^{n}	n-pointed curves
	PGL $_{n}$	S_{n}
Strata	Schubert cells X_{λ}°	strata X_{T}°
	partitions $\lambda \subseteq \boxplus$	stable trees T
H^{*}	basis $\left[X_{\lambda}\right]$	generators $\left[X_{T}\right]$ with relations
Intersections	Young tableaux	Decorated trees
Maps to \mathbb{P}^{n}	Plücker coordinates	Kapranov coordinates

Kapranov maps

- Labels: $S=\{a, b, c, 1, \ldots, n\}$. Let $i \in\{1, \ldots, n\}$.
- i-th Kapranov map $\psi_{i}: \bar{M}_{0, S} \rightarrow \mathbb{P}^{n}$ by "zooming in on p_{i} ":

Kapranov maps

- Labels: $S=\{a, b, c, 1, \ldots, n\}$. Let $i \in\{1, \ldots, n\}$.
- i-th Kapranov map $\psi_{i}: \bar{M}_{0, S} \rightarrow \mathbb{P}^{n}$ by "zooming in on p_{i} ":

Kapranov maps

- Labels: $S=\{a, b, c, 1, \ldots, n\}$. Let $i \in\{1, \ldots, n\}$.
- i-th Kapranov map $\psi_{i}: \bar{M}_{0, S} \rightarrow \mathbb{P}^{n}$ by "zooming in on p_{i} ":

Kapranov maps

- Labels: $S=\{a, b, c, 1, \ldots, n\}$. Let $i \in\{1, \ldots, n\}$.
- i-th Kapranov map $\psi_{i}: \bar{M}_{0, S} \rightarrow \mathbb{P}^{n}$ by "zooming in on p_{i} ":

Kapranov maps

- Labels: $S=\{a, b, c, 1, \ldots, n\}$. Let $i \in\{1, \ldots, n\}$.
- i-th Kapranov map $\psi_{i}: \bar{M}_{0, S} \rightarrow \mathbb{P}^{n}$ by "zooming in on p_{i} ":

- Clearly not injective. But it is surjective.

Kapranov maps

- Labels: $S=\{a, b, c, 1, \ldots, n\}$. Let $i \in\{1, \ldots, n\}$.
- i-th Kapranov map $\psi_{i}: \bar{M}_{0, S} \rightarrow \mathbb{P}^{n}$ by "zooming in on p_{i} ":

- Clearly not injective. But it is surjective.
- Hyperplane section: the i-th psi class $\in H^{*}\left(\bar{M}_{0, n+3}\right)$.

Log-canonical embedding

- Forgetful map: $\pi_{i}: \bar{M}_{0, S} \rightarrow \bar{M}_{0, S \backslash\{i\}}$: forget p_{i}, then stabilize if necessary.

Log-canonical embedding

- Forgetful map: $\pi_{i}: \bar{M}_{0, S} \rightarrow \bar{M}_{0, S \backslash\{i\}}$: forget p_{i}, then stabilize if necessary.
- Kapranov: $\left(\psi_{n}, \pi_{n}\right): \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \bar{M}_{0, n+2}$

Log-canonical embedding

- Forgetful map: $\pi_{i}: \bar{M}_{0, S} \rightarrow \bar{M}_{0, S \backslash\{i\}}:$ forget p_{i}, then stabilize if necessary.
- Kapranov: $\left(\psi_{n}, \pi_{n}\right): \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \bar{M}_{0, n+2}$
- Keel-Tevelev: $\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \mathbb{P}^{n-1} \times \cdots \times \mathbb{P}^{1}$ "Zoom in on p_{n}, then forget $p_{n} \ldots$ ", repeat.

Log-canonical embedding

- Forgetful map: $\pi_{i}: \bar{M}_{0, S} \rightarrow \bar{M}_{0, S \backslash\{i\}}:$ forget p_{i}, then stabilize if necessary.
- Kapranov: $\left(\psi_{n}, \pi_{n}\right): \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \bar{M}_{0, n+2}$
- Keel-Tevelev: $\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \mathbb{P}^{n-1} \times \cdots \times \mathbb{P}^{1}$ "Zoom in on p_{n}, then forget $p_{n} \ldots$ ", repeat.
- Composing with the Segre map gives the log-canonical embedding: $\bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{(n+1)!-1}$.

$$
\text { (Corresponds to the divisor class } K_{\bar{M}_{0, n+3}}+\partial \bar{M}_{0, n+3 .} \text {) }
$$

Log-canonical embedding

- Forgetful map: $\pi_{i}: \bar{M}_{0, S} \rightarrow \bar{M}_{0, S \backslash\{i\}}:$ forget p_{i}, then stabilize if necessary.
- Kapranov: $\left(\psi_{n}, \pi_{n}\right): \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \bar{M}_{0, n+2}$
- Keel-Tevelev: $\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \mathbb{P}^{n-1} \times \cdots \times \mathbb{P}^{1}$ "Zoom in on p_{n}, then forget $p_{n} \ldots$ ", repeat.
- Composing with the Segre map gives the log-canonical embedding: $\bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{(n+1)!-1}$.

$$
\text { (Corresponds to the divisor class } \left.K_{\bar{M}_{0, n+3}}+\partial \bar{M}_{0, n+3 .}\right)
$$

Bottom line: These are two of the most natural ways to present $\bar{M}_{0, n+3}$ as a (multi)projective variety.

Log-canonical embedding

- Forgetful map: $\pi_{i}: \bar{M}_{0, S} \rightarrow \bar{M}_{0, S \backslash\{i\}}$: forget p_{i}, then stabilize if necessary.
- Kapranov: $\left(\psi_{n}, \pi_{n}\right): \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \bar{M}_{0, n+2}$
- Keel-Tevelev: $\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \mathbb{P}^{n-1} \times \cdots \times \mathbb{P}^{1}$ "Zoom in on p_{n}, then forget $p_{n} \ldots$ ", repeat.
- Composing with the Segre map gives the log-canonical embedding: $\bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{(n+1)!-1}$.
(Corresponds to the divisor class $K_{\bar{M}_{0, n+3}}+\partial \bar{M}_{0, n+3}$.)
Bottom line: These are two of the most natural ways to present $\bar{M}_{0, n+3}$ as a (multi)projective variety.

Example

$\bar{M}_{0,5} \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$ is a surface of bi-degree $(1,2)$.

Aside: Multidegrees and combinatorics

The map $\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \cdots \times \mathbb{P}^{1}$ has nice combinatorics:

- Cavalieri-Gillespie-Monin (2021): Total degree (sum of multidegrees) of $\Omega_{n}\left(\bar{M}_{0, n+3}\right)$ is:
$(2 n-1)!!=\#$ labelled trivalent trees on $n+2$ leaves.

Aside: Multidegrees and combinatorics

The map $\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \cdots \times \mathbb{P}^{1}$ has nice combinatorics:

- Cavalieri-Gillespie-Monin (2021): Total degree (sum of multidegrees) of $\Omega_{n}\left(\bar{M}_{0, n+3}\right)$ is:
$(2 n-1)!!=\#$ labelled trivalent trees on $n+2$ leaves.
Enumeration by column-restricted parking functions.

Aside: Multidegrees and combinatorics

The map $\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{n} \times \cdots \times \mathbb{P}^{1}$ has nice combinatorics:

- Cavalieri-Gillespie-Monin (2021): Total degree (sum of multidegrees) of $\Omega_{n}\left(\bar{M}_{0, n+3}\right)$ is:

$$
(2 n-1)!!=\# \text { labelled trivalent trees on } n+2 \text { leaves. }
$$

Enumeration by column-restricted parking functions.

- Gillespie-Griffin-L (2022): Enumeration by boundary points on $\bar{M}_{0, n+3}$ (lazy tournaments).

Embeddings and homogeneous equations

Embeddings and homogeneous equations

- Veronese $\mathbb{P}^{n} \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, Segre $\mathbb{P}^{n} \times \mathbb{P}^{m} \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$: cut out by quadrics $X_{I} X_{J}=X_{K} X_{L}$

Embeddings and homogeneous equations

- Veronese $\mathbb{P}^{n} \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, Segre $\mathbb{P}^{n} \times \mathbb{P}^{m} \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$: cut out by quadrics $X_{I} X_{J}=X_{K} X_{L}$
- Plücker embedding $\operatorname{Gr}(k, n) \hookrightarrow \mathbb{P}\binom{n}{k}-1$: cut out by Plücker relations $p_{I} p_{J}=\sum \pm p_{I^{\prime}} p_{J^{\prime}}$

Embeddings and homogeneous equations

- Veronese $\mathbb{P}^{n} \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, Segre $\mathbb{P}^{n} \times \mathbb{P}^{m} \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$: cut out by quadrics $X_{I} X_{J}=X_{K} X_{L}$
- Plücker embedding $\operatorname{Gr}(k, n) \hookrightarrow \mathbb{P}\binom{n}{k}-1$: cut out by Plücker relations $p_{I} p_{J}=\sum \pm p_{I^{\prime}} p_{J^{\prime}}$
- Keel-Tevelev (2005): $\bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{(n+1)!-1}$: cut out by quadrics.

Embeddings and homogeneous equations

- Veronese $\mathbb{P}^{n} \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$, Segre $\mathbb{P}^{n} \times \mathbb{P}^{m} \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$: cut out by quadrics $X_{I} X_{J}=X_{K} X_{L}$
- Plücker embedding $\operatorname{Gr}(k, n) \hookrightarrow \mathbb{P}^{\binom{n}{k}-1}$: cut out by Plücker relations $p_{I} p_{J}=\sum \pm p_{I^{\prime}} p_{J^{\prime}}$
- Keel-Tevelev (2005): $\bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{(n+1)!-1}$: cut out by quadrics.

Conjecture (Monin-Rana 2017)

The image of $\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n}$ is cut out by the 2×2 minors of several $2 \times k$ matrices (for various $2 \leq k \leq n$).

- Shown for $n \leq 8$ using Macaulay2.

Equations for $\bar{M}_{0, n}$

- Equations from $\mathbb{P}^{i} \times \mathbb{P}^{k}$ for each $1 \leq i<k \leq n$.
- Coordinates:

$$
\begin{aligned}
& \mathbb{P}^{i}=\left[X_{b}: X_{c}: X_{1}: \cdots: X_{i-1}\right], \\
& \mathbb{P}^{k}=\left[Y_{b}: Y_{c}: Y_{1}: \cdots \cdots: Y_{k-1}\right]
\end{aligned}
$$

Equations for $\bar{M}_{0, n}$

- Equations from $\mathbb{P}^{i} \times \mathbb{P}^{k}$ for each $1 \leq i<k \leq n$.
- Coordinates:

$$
\begin{aligned}
& \mathbb{P}^{i}=\left[X_{b}: X_{c}: X_{1}: \cdots: X_{i-1}\right], \\
& \mathbb{P}^{k}=\left[Y_{b}: Y_{c}: Y_{1}: \cdots \cdots: Y_{k-1}\right]
\end{aligned}
$$

- $\mathrm{MR}_{i, k}=2 \times(i+1)$ matrix:

$$
\left[\begin{array}{cccc}
X_{b}\left(Y_{b}-Y_{i}\right) & X_{c}\left(Y_{c}-Y_{i}\right) & \cdots & X_{i-1}\left(Y_{i-1}-Y_{i}\right) \\
Y_{b} & Y_{c} & \cdots & Y_{i-1}
\end{array}\right]
$$

Equations for $\bar{M}_{0, n}$

- Equations from $\mathbb{P}^{i} \times \mathbb{P}^{k}$ for each $1 \leq i<k \leq n$.
- Coordinates:

$$
\begin{aligned}
& \mathbb{P}^{i}=\left[X_{b}: X_{c}: X_{1}: \cdots: X_{i-1}\right], \\
& \mathbb{P}^{k}=\left[Y_{b}: Y_{c}: Y_{1}: \cdots \cdots: Y_{k-1}\right]
\end{aligned}
$$

- $\mathrm{MR}_{i, k}=2 \times(i+1)$ matrix:

$$
\left[\begin{array}{cccc}
X_{b}\left(Y_{b}-Y_{i}\right) & X_{c}\left(Y_{c}-Y_{i}\right) & \cdots & X_{i-1}\left(Y_{i-1}-Y_{i}\right) \\
Y_{b} & Y_{c} & \cdots & Y_{i-1}
\end{array}\right]
$$

$-\mathrm{MR}_{n}=\left(2 \times 2\right.$ minors of $\left.\mathrm{MR}_{i, k}: 1 \leq i<k \leq n\right)$.

Equations for $\bar{M}_{0, n}$

- Equations from $\mathbb{P}^{i} \times \mathbb{P}^{k}$ for each $1 \leq i<k \leq n$.
- Coordinates:

$$
\begin{aligned}
& \mathbb{P}^{i}=\left[X_{b}: X_{c}: X_{1}: \cdots: X_{i-1}\right], \\
& \mathbb{P}^{k}=\left[Y_{b}: Y_{c}: Y_{1}: \cdots \cdots: Y_{k-1}\right]
\end{aligned}
$$

- $\mathrm{MR}_{i, k}=2 \times(i+1)$ matrix:

$$
\left[\begin{array}{cccc}
X_{b}\left(Y_{b}-Y_{i}\right) & X_{c}\left(Y_{c}-Y_{i}\right) & \cdots & X_{i-1}\left(Y_{i-1}-Y_{i}\right) \\
Y_{b} & Y_{c} & \cdots & Y_{i-1}
\end{array}\right]
$$

$-\mathrm{MR}_{n}=\left(2 \times 2\right.$ minors of $\left.\mathrm{MR}_{i, k}: 1 \leq i<k \leq n\right)$.

Example

$\bar{M}_{0,5} \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}\left(\right.$ coordinates $\left.\left[X_{b}: X_{c}\right],\left[Y_{b}: Y_{c}: Y_{1}\right]\right)$ is:

$$
\operatorname{det}\left[\begin{array}{cc}
X_{b}\left(Y_{b}-Y_{1}\right) & X_{c}\left(Y_{c}-Y_{1}\right) \\
Y_{b} & Y_{c}
\end{array}\right]=0
$$

Combinatorial algebra

Theorem (Gillespie-Griffin-L 2022)
Monin-Rana's equations cut out $\Omega_{n}\left(\bar{M}_{0, n+3}\right) \hookrightarrow \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n}$ for all n.

Combinatorial algebra

Theorem (Gillespie-Griffin-L 2022)

Monin-Rana's equations cut out $\Omega_{n}\left(\bar{M}_{0, n+3}\right) \hookrightarrow \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n}$ for all n.

Sketch of proof:
0. Monin-Rana: $\Omega_{n}\left(\bar{M}_{0, n+3}\right) \subseteq \mathbb{V}\left(\mathrm{MR}_{n}\right)$.

1. Set-theoretic equality: $\Omega_{n}\left(\bar{M}_{0, n+3}\right)=\mathbb{V}\left(\mathrm{MR}_{n}\right)$ as sets.
2. Scheme-theoretic equality: tangent spaces agree.

Each step has combinatorics + algebra.

Combinatorial algebra

Theorem (Gillespie-Griffin-L 2022)

Monin-Rana's equations cut out $\Omega_{n}\left(\bar{M}_{0, n+3}\right) \hookrightarrow \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n}$ for all n.

Sketch of proof:
0. Monin-Rana: $\Omega_{n}\left(\bar{M}_{0, n+3}\right) \subseteq \mathbb{V}\left(\mathrm{MR}_{n}\right)$.

1. Set-theoretic equality: $\Omega_{n}\left(\bar{M}_{0, n+3}\right)=\mathbb{V}\left(\mathrm{MR}_{n}\right)$ as sets.
2. Scheme-theoretic equality: tangent spaces agree.

Each step has combinatorics + algebra.
Focus on Step 1.

Set-theoretic equality: Graph coloring

Let $x \in \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n}$ satisfy the Monin-Rana equations.
By induction: $\operatorname{pr}_{n}(x) \in \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n-1}$

$$
=\Omega_{n-1}\left(C_{n-1}, p_{\bullet}\right) \text { for some }\left(C_{n-1}, p_{\bullet}\right) \in \bar{M}_{0, n+2}
$$

Where should p_{n} be inserted on C_{n-1} ?

Set-theoretic equality: Graph coloring

Let $x \in \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n}$ satisfy the Monin-Rana equations.
By induction: $\operatorname{pr}_{n}(x) \in \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n-1}$

$$
=\Omega_{n-1}\left(C_{n-1}, p_{\bullet}\right) \text { for some }\left(C_{n-1}, p_{\bullet}\right) \in \bar{M}_{0, n+2}
$$

Where should p_{n} be inserted on C_{n-1} ?

$$
\text { dual tree of } C_{n-1} \text { : }
$$

Set-theoretic equality: Graph coloring

Let $x \in \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n}$ satisfy the Monin-Rana equations.
By induction: $\operatorname{pr}_{n}(x) \in \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n-1}$

$$
=\Omega_{n-1}\left(C_{n-1}, p_{\bullet}\right) \text { for some }\left(C_{n-1}, p_{\bullet}\right) \in \bar{M}_{0, n+2} .
$$

Where should p_{n} be inserted on C_{n-1} ?

$$
\text { dual tree of } C_{n-1} \text { : }
$$

- Graph coloring of the dual tree of C_{n-1}.
- Monin-Rana equations \Rightarrow "strong separation property".

Set-theoretic equality: Graph coloring

Let $x \in \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n}$ satisfy the Monin-Rana equations.
By induction: $\operatorname{pr}_{n}(x) \in \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{n-1}$

$$
=\Omega_{n-1}\left(C_{n-1}, p_{\bullet}\right) \text { for some }\left(C_{n-1}, p_{\bullet}\right) \in \bar{M}_{0, n+2}
$$

Where should p_{n} be inserted on C_{n-1} ?

$$
\text { dual tree of } C_{n-1} \text { : }
$$

- Graph coloring of the dual tree of C_{n-1}.
- Monin-Rana equations \Rightarrow "strong separation property".
- Identifies a unique vertex $\left(\leftrightarrow\right.$ component $\left.\mathbb{P}^{1} \subseteq C_{n-1}\right)$.

Noncrossing colorings

Roughly, we show that if a 2×2 minor of $M R_{i, k}$ is nonzero, then there's a "crossing coloring" of this form:

Set-theoretic equality: Matrix factorization

Where should p_{n} be inserted on $\mathbb{P}^{1} \subseteq C_{n-1}$?

Set-theoretic equality: Matrix factorization

Where should p_{n} be inserted on $\mathbb{P}^{1} \subseteq C_{n-1}$?

- 2×2 minors vanish \Leftrightarrow matrix $\mathrm{MR}_{i, n}$ factors:

$$
\begin{aligned}
\mathrm{MR}_{i, n} & =\left[\begin{array}{cccc}
X_{b}\left(Y_{b}-Y_{i}\right) & X_{c}\left(Y_{c}-Y_{i}\right) & \cdots & X_{i-1}\left(Y_{i-1}-Y_{i}\right) \\
Y_{b} & Y_{c} & \cdots & Y_{i-1}
\end{array}\right] \\
& =\left[\begin{array}{c}
\lambda \\
1
\end{array}\right] \cdot\left[\begin{array}{lll}
Y_{b} & \cdots & Y_{i-1}
\end{array}\right]
\end{aligned}
$$

Set-theoretic equality: Matrix factorization

Where should p_{n} be inserted on $\mathbb{P}^{1} \subseteq C_{n-1}$?

- 2×2 minors vanish \Leftrightarrow matrix $\mathrm{MR}_{i, n}$ factors:

$$
\begin{aligned}
\operatorname{MR}_{i, n} & =\left[\begin{array}{cccc}
X_{b}\left(Y_{b}-Y_{i}\right) & X_{c}\left(Y_{c}-Y_{i}\right) & \cdots & X_{i-1}\left(Y_{i-1}-Y_{i}\right) \\
Y_{b} & Y_{c} & \cdots & Y_{i-1}
\end{array}\right] \\
& =\left[\begin{array}{c}
\lambda \\
1
\end{array}\right] \cdot\left[\begin{array}{lll}
Y_{b} & \cdots & Y_{i-1}
\end{array}\right]
\end{aligned}
$$

- λ (up to coordinate change) says where to insert p_{n} on the \mathbb{P}^{1}.

Set-theoretic equality: Matrix factorization

Where should p_{n} be inserted on $\mathbb{P}^{1} \subseteq C_{n-1}$?

- 2×2 minors vanish \Leftrightarrow matrix $\mathrm{MR}_{i, n}$ factors:

$$
\begin{aligned}
\mathrm{MR}_{i, n} & =\left[\begin{array}{cccc}
X_{b}\left(Y_{b}-Y_{i}\right) & X_{c}\left(Y_{c}-Y_{i}\right) & \cdots & X_{i-1}\left(Y_{i-1}-Y_{i}\right) \\
Y_{b} & Y_{c} & \cdots & Y_{i-1}
\end{array}\right] \\
& =\left[\begin{array}{c}
\lambda \\
1
\end{array}\right] \cdot\left[\begin{array}{lll}
Y_{b} & \cdots & Y_{i-1}
\end{array}\right]
\end{aligned}
$$

- λ (up to coordinate change) says where to insert p_{n} on the \mathbb{P}^{1}.
- Gives $\left(C_{n}, p_{\bullet}\right)$ such that $\Omega_{n}\left(C_{n}, p_{\bullet}\right)=x$.

Scheme-theoretic equality: Tangent spaces

Scheme-theoretic equality: Tangent spaces

- We linearize the Monin-Rana equations near each $x=\Omega_{n}(C)$ for $C \in \bar{M}_{0, n+3}$.

Scheme-theoretic equality: Tangent spaces

- We linearize the Monin-Rana equations near each $x=\Omega_{n}(C)$ for $C \in \bar{M}_{0, n+3}$.
- We decompose the tangent space according to "branches" of the dual tree near $p_{n} \in C$.

Scheme-theoretic equality: Tangent spaces

- We linearize the Monin-Rana equations near each $x=\Omega_{n}(C)$ for $C \in \bar{M}_{0, n+3}$.
- We decompose the tangent space according to "branches" of the dual tree near $p_{n} \in C$.
- We show: $\operatorname{dim} T_{x} \Omega_{n}\left(\bar{M}_{0, n+3}\right)=\operatorname{dim} T_{x} \mathbb{V}\left(\mathrm{MR}_{n}\right)$.

Some questions for all of you

- Minimal generators for the ideal?
(Recall: $I_{d}=J_{d}$ for $d \gg 0 \leftrightarrow \operatorname{Proj}(R / I) \cong \operatorname{Proj}(R / J)$.)
- Minimal free resolution?
- Equations for $\bar{M}_{0, n}$ in other embeddings? e.g. $\bar{M}_{0, n} \hookrightarrow\left(\mathbb{P}^{1}\right)^{\binom{n}{4} ?}$
- Equations for variations on $\bar{M}_{0, n}$? Losev-Manin space LM_{n} (permutohedral variety)? Hassett spaces?

Thank you!

