Twists of Grassmannian Cluster Variables

Moriah Elkin (joint with Gregg Musiker and Kayla Wright)

Twists of Grassmannian Cluster Variables

Moriah Elkin
(joint with Gregg Musiker and Kayla Wright)

University of Minnesota

January 21, 2023

The Grassmannian and Plücker coordinates

The Grassmannian $\operatorname{Gr}(\mathrm{k}, \mathrm{n})$ is the space of all k -dimensional subspaces of an n-dimensional space. $E_{g} k=1$ is $(n-1)$ projective space
We can represent its points as rowspans of k-by- n matrices.

Example $(k=2, n=4)$
$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right]$

The Grassmannian and Plücker coordinates

The Grassmannian $\operatorname{Gr}(\mathrm{k}, \mathrm{n})$ is the space of all k -dimensional subspaces of an n-dimensional space.

We can represent its points as rowspans of k-by- n matrices.

Example $(k=2, n=4)$

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right] \quad \Delta_{13}=(13)=2-12=-10
$$

Plücker coordinates are the $k \times k$ minors of a $k \times n$ matrix.
They embed $\operatorname{Gr}(k, n)$ into $\left.\binom{n}{k}-1\right)$-dimensional projective space.

Moriah Elkin

 Wright)
Cluster algebra structure

A cluster algebra is a commutative ring with distinguished generators called cluster variables, which are produced recursively from an initial set of generators via mutation.

Determinants of overlapping sets of columns are related by Plücker relations.

Mutation relations are complicated, but they work well with Plücker relations.

Cluster algebra structure, part 2

Theorem (J. Scott)
The homogeneous coordinate ring of the Grassmannian is a cluster algebra.

Many Grassmannian cluster variables are Plücker coordinates, but not all:

Quadratic differences: $\operatorname{Gr}(\mathbf{3}, \mathbf{6})$ $X=(124)(356)-(123)(456), Y=(145)(236)-(123)(456)$

Cubic differences: $\operatorname{Gr}(\mathbf{3}, \mathbf{8})$

$$
\begin{aligned}
& A=(134)(258)(167)-(134)(678)(125)-(158)(234)(167) \\
& B=(147)(156)(238)-(123)(178)(456)-(123)(147)(568)
\end{aligned}
$$

Moriah Elkin

 Wright)
Plabic Graphs

Postnikov introduced plabic graphs, which encode the cluster algebra structure of $\operatorname{Gr}(\mathrm{k}, \mathrm{n})$.

Dimers

A dimer is a collection of edges that uses each interior vertex exactly once, and some subset of the boundary vertices.

Boundary condition (156)

Dimers
Twists of Grassmannian Cluster Variables

A dimer is a collection of edges that uses each interior vertex exactly once, and some subset of the boundary vertices.

Bound ar condition (145)

The twist map

We can assign a weight to each dimer based on the faces it borders.

The sum of the dimer weights is called the twist \mathcal{T}^{*} of the boundary condition.

Twists of Grassmannian Cluster Variables

Moriah Elkin

The twist map

We can assign a weight to each dimer based on the faces it borders.

The sum of the dimer weights is called the twist \mathcal{T}^{*} of the boundary condition.

The twist distributes over addition and multiplication:

$$
\begin{aligned}
& \mathcal{T}^{*}(X)=\mathcal{T}^{*}((124)(356)-(123)(456)) \\
& =\mathcal{T}^{*}((124)) \mathcal{T}^{*}((356))-\mathcal{T}^{*}((123)) \mathcal{T}^{*}((456))
\end{aligned}
$$

But can we compute the twists of quadratic and cubic differences directly, by viewing them as "boundary conditions"?

Twisting quadratic differences $\left\{\begin{array}{l}x=(124)(356)-(123)(456) \\ Y=(145)(236)-(123)(456)\end{array}\right.$
To twist a quadratic difference, we need a double dimer: a collection of edges that uses each vertex twice. It looks like a collection of paths, cycles, and doubled edges.

But which double dimers?

Connectivity for X

Connectivity for Y

ntro to the Grassmannian

Defining the twist
Twisting quadratic differences

Twisting X

Moriah Elkin (joint with Gregg Musiker and Kayla Wright) differences

Triple dimers and webs
To twist a cubic difference, we need a triple dimer: a collection of edges that uses each vertex three times.

It looks like a web: a collection of paths, cycles, and components with interior trivalent vertices.

Decomposing webs
A nonelliptic web is a web without squares, bigots, or cycles.
Twists of Grassmannian Cluster Variables

Moriah Elvin

Every web may be expressed as a sum of nonelliptic webs via Skein relations: $\bigcirc=3,-\infty-=2-$

Webs for A and B

Web for A : the batwing

Web for B : the octopus

Twisting A and B

1. Take a triple dimer.

Intro to the
Grassmannian
Defining the twist

Twisting cubic differences

Twisting A and B

1. Take a triple dimer.

2. Find the corresponding web.

Moriah Elkin

ntro to the Grassmannian

Defining the twist

Twisting quadratic differences

Twisting cubic differences

Twisting A and B

1. Take a triple dimer.

2. Find the corresponding web.

3. Decompose it into nonelliptic summands.

Twisting A and B

1. Take a triple dimer.

2. Decompose it into nonelliptic summands.

3. The coefficient of the octopus should be the coefficient of the dimer's weight in the twist of B.

Twisting A and B

1. Take a triple dimer.

2. Find the corresponding web.

3. Decompose it into nonelliptic summands.

4. The coefficient of the octopus should be the coefficient of the dimer's weight in the twist of B. (And the coefficient of the batwing should be the coefficient of the dimer's weight in the twist of A.)

Twists of Grassmannian
Cluster Variables
Moriah Elkin

Intro to the
Grassmannian
Defining the twist
Twisting quadratic

differences

Twisting cubic differences

Thank you! elkin048@umn.edu

Proof idea: twisting quadratic differences

$$
(124)(356)-(123)(456)=X
$$

$$
\int_{3}^{5} C_{2}^{6} \cdot \underbrace{5}_{3} \int_{2}^{6}
$$

$$
{ }_{3}^{5} \int_{2}^{6}=
$$

$$
=\int_{3}^{5} \int_{2}^{6}
$$

