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GOCC

Graduate Online Combinatorics Colloquium

The GOCC is an online combinatorics seminar organized for and
run by graduate students following the principle:

1 We are all learning

2 Everyone has something to contribute

3 No one has all the answers

• Starting again in February 2023

• GOCCcombinatorics@gmail.com
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and Christian Gaetz.
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Standard Young tableaux

SYT(λ): set of all standard Young tableaux of shape λ ` n.

• Bijective filling: cells of λ→ [n]

• Increasing along rows and columns

• Dimension of the Specht module Sλ: |SYT(λ)|
• Let λ be a r × k rectangle, then

Sλ ∼= some invariant space of SLr

4



Standard Young tableaux

SYT(λ): set of all standard Young tableaux of shape λ ` n.

• Bijective filling: cells of λ→ [n]

• Increasing along rows and columns

1 2 4 10
3 5 8 11
6 7
9

• Dimension of the Specht module Sλ: |SYT(λ)|
• Let λ be a r × k rectangle, then

Sλ ∼= some invariant space of SLr

4



Standard Young tableaux

SYT(λ): set of all standard Young tableaux of shape λ ` n.

• Bijective filling: cells of λ→ [n]

• Increasing along rows and columns

1 2 4 10
3 5 8 11
6 7
9

• Dimension of the Specht module Sλ: |SYT(λ)|

• Let λ be a r × k rectangle, then

Sλ ∼= some invariant space of SLr

4



Standard Young tableaux

SYT(λ): set of all standard Young tableaux of shape λ ` n.

• Bijective filling: cells of λ→ [n]

• Increasing along rows and columns

1 2 4 10
3 5 8 11
6 7
9

• Dimension of the Specht module Sλ: |SYT(λ)|
• Let λ be a r × k rectangle, then

Sλ ∼= some invariant space of SLr

4



Promotion

Schützenberger promotion pr : SYT(λ)→ SYT(λ):

1 delete 1

2 slide entries up and left

3 fill last empty corner with n + 1 & subtract 1 from each entry

1 2 4 10
3 5 8 11
6 7
9

Fact

Promotion on SYT(k r ) is isomorphic to the action of the long
cycle c = (12 . . . n) on S (k r ).

We want a diagrammatic basis. To obtain them we construct
bijections between rectangular SYT and some diagrams
intertwining promotion and rotation.
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SL2-webs: Non crossing perfect matchings

1 3 4 6
2 5 7 8

→

1 2 1 1 2 1 2 2

→
3

2

18

7

6

5 4

This bijection intertwines promotion and rotation. A simple
transposition si acts by attaching an “uncrossing” and resolving
“bubbles”.

s3 ·
3

2
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7

6

5 4

=
3

2
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7

6

5 4

+
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SL3-webs

• Khovanov, Kuperberg 1999:
3× n SYT are in bijection with
irreducible SL3-webs, i.e. certain
plabic graphs.

• Petersen, Pylyavskyy, Rhoades 2009:
The bijection intertwines promotion
and rotation.

Growth rules:
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Sn action

Attach “uncrossing” and reduce according to = + .
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Beyond three rows

• Kuperberg ’96: “The main open problem [...] is how to
generalize them to higher rank.”

• SLr : Spanning sets and relations, but NOT a basis by Kim
’03, Morrison ’07, Fontaine ’12, Cautis–Kamnitzer–Morrison
’14, Fraser–Lam–Le ’19
• SL4: Web basis by Gaetz–Pechenik–P.–Striker–Swanson ’23+

• Over 100 growth rules

and two families of infinitely many rules

• Applying the rules in different order can give different graphs

1 2 5 6
3 4 7 10
8 9 11 14

12 13 15 16

→



1
2

3

4

5

6

7

9
810

12

13

11

14

15

16


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Trip permutations

i -th rule of the road: take the i-th exit from the left (right) at an
unifilled (filled) vertex.

1
2

3

4

5

6

7

9
810

12

13

11

14

15

16



trip1−→ 4 3 14 10 9 7 8 16 13 11 12 6 5 15 2 1

trip2−→ 14 9 16 15 11 8 13 6 2 12 5 10 7 1 4 3
trip3−→ 16 15 2 1 13 12 6 7 5 4 10 11 9 3 14 8

Anti-exceedances of a permutation π:
Aexc(π) = {i | π−1(i) > i}

Aexc(tripi ) = {Entries of first i rows of the tableau}

1 2 5 6
3 4 7 10
8 9 11 14

12 13 15 16
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Further buzzwords
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• Crystal graphs

• Statistical mechanics

• ASMs and plane partitions

• Quantum link invariants

• Cluster algebras

• Totally nonnegative Grassmannian
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