An $S L_{4}$-web basis from hourglass plabic graphs

Stephan Pfannerer

Recipient of a DOC Fellowship of the Austrian Academy of Sciences
Institute of Discrete Mathematics and Geometry
TU Wien
CAAC 2023, January 22

GOCC

Graduate Online Combinatorics Colloquium

The GOCC is an online combinatorics seminar organized for and run by graduate students following the principle:
(1) We are all learning
(2) Everyone has something to contribute
(3) No one has all the answers

- Starting again in February 2023
- GOCCcombinatorics@gmail.com

Joint work with Jessica Striker, Oliver Pechenik, Joshua Swanson and Christian Gaetz.

Standard Young tableaux

Standard Young tableaux

$\operatorname{SYT}(\lambda)$: set of all standard Young tableaux of shape $\lambda \vdash n$.

- Bijective filling: cells of $\lambda \rightarrow[n]$
- Increasing along rows and columns

1	2	4	10
3	5	8	11
6	7		
9			

Standard Young tableaux

$\operatorname{SYT}(\lambda)$: set of all standard Young tableaux of shape $\lambda \vdash n$.

- Bijective filling: cells of $\lambda \rightarrow[n]$
- Increasing along rows and columns

1	2	4	10
3	5	8	11
6	7		
9			

- Dimension of the Specht module $S^{\lambda}:|\operatorname{SYT}(\lambda)|$

Standard Young tableaux

$\operatorname{SYT}(\lambda)$: set of all standard Young tableaux of shape $\lambda \vdash n$.

- Bijective filling: cells of $\lambda \rightarrow[n]$
- Increasing along rows and columns

1	2	4	10
3	5	8	11
6	7		
9			

- Dimension of the Specht module S^{λ} : $|\operatorname{SYT}(\lambda)|$
- Let λ be a $r \times k$ rectangle, then

$$
S^{\lambda} \cong \text { some invariant space of } \mathrm{SL}_{r}
$$

Promotion

Schützenberger promotion pr : $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

1	2	4	10
3	5	8	11
6	7		
9			

Promotion

Schützenberger promotion pr: $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

-	2	4	10
3	5	8	11
6	7		
9			

Promotion

Schützenberger promotion pr: $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

2		4	10
3	5	8	11
6	7		
9			

Promotion

Schützenberger promotion pr: $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

2	4	\cdot	10
3	5	8	11
6	7		
9			

Promotion

Schützenberger promotion pr: $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

2	4	8	10
3	5	\cdot	11
6	7		
9			

Promotion

Schützenberger promotion pr : $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

2	4	8	10
3	5	11	\cdot
6	7		
9			

Promotion

Schützenberger promotion pr : $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

2	4	8	10
3	5	11	12
6	7		
9			

Promotion

Schützenberger promotion pr : $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

1	3	7	9
2	4	10	11
5	6		
8			

Promotion

Schützenberger promotion pr : $\operatorname{SYT}(\lambda) \rightarrow \operatorname{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

1	3	7	9
2	4	10	11
5	6		
8			

Fact

Promotion on $\operatorname{SYT}\left(k^{r}\right)$ is isomorphic to the action of the long cycle $c=(12 \ldots n)$ on $S^{\left(k^{r}\right)}$.

Promotion

Schützenberger promotion pr : $\operatorname{SYT}(\lambda) \rightarrow \mathrm{SYT}(\lambda)$:
(1) delete 1
(2) slide entries up and left
(3) fill last empty corner with $n+1$ \& subtract 1 from each entry

1	3	7	9
2	4	10	11
5	6		
8			

Fact

Promotion on $\operatorname{SYT}\left(k^{r}\right)$ is isomorphic to the action of the long cycle $c=(12 \ldots n)$ on $S^{\left(k^{r}\right)}$.

We want a diagrammatic basis. To obtain them we construct bijections between rectangular SYT and some diagrams intertwining promotion and rotation.

SL_{2}-webs: Non crossing perfect matchings

1	3	4	6
2	5	7	8

SL_{2}-webs: Non crossing perfect matchings

This bijection intertwines promotion and rotation. A simple transposition s_{i} acts by attaching an "uncrossing" and resolving "bubbles".

SL_{2}-webs: Non crossing perfect matchings

This bijection intertwines promotion and rotation. A simple transposition s_{i} acts by attaching an "uncrossing" and resolving "bubbles".

SL_{2}-webs: Non crossing perfect matchings

This bijection intertwines promotion and rotation. A simple transposition s_{i} acts by attaching an "uncrossing" and resolving "bubbles".

SL_{2}-webs: Non crossing perfect matchings

This bijection intertwines promotion and rotation. A simple transposition s_{i} acts by attaching an "uncrossing" and resolving "bubbles".

SL_{3}-webs

- Khovanov, Kuperberg 1999:
$3 \times n$ SYT are in bijection with irreducible SL_{3}-webs, i.e. certain plabic graphs.

1	2	3
4	5	7
6	8	9

SL_{3}-webs

- Khovanov, Kuperberg 1999:

Growth rules:
$3 \times n$ SYT are in bijection with irreducible SL_{3}-webs, i.e. certain
 plabic graphs.

1	2	3
4	5	7
6	8	9

SL_{3}-webs

- Khovanov, Kuperberg 1999:

Growth rules:
$3 \times n$ SYT are in bijection with irreducible SL_{3}-webs, i.e. certain
 plabic graphs.

SL_{3}-webs

- Khovanov, Kuperberg 1999:

Growth rules:

$3 \times n$ SYT are in bijection with irreducible SL_{3}-webs, i.e. certain plabic graphs.

SL_{3}-webs

- Khovanov, Kuperberg 1999:

Growth rules:

$3 \times n$ SYT are in bijection with irreducible SL_{3}-webs, i.e. certain plabic graphs.

SL_{3}-webs

- Khovanov, Kuperberg 1999:

Growth rules:

 $3 \times n$ SYT are in bijection with irreducible SL_{3}-webs, i.e. certain plabic graphs.

SL_{3}-webs

- Khovanov, Kuperberg 1999:

Growth rules:
$3 \times n$ SYT are in bijection with irreducible SL_{3}-webs, i.e. certain
 plabic graphs.

- Petersen, Pylyavskyy, Rhoades 2009:

The bijection intertwines promotion and rotation.

\mathfrak{S}_{n} action

\mathfrak{S}_{n} action

Attach "uncrossing" and reduce according to

\mathfrak{S}_{n} action

Attach "uncrossing" and reduce according to ${ }_{0}^{\circ}=\prod_{0}^{\circ}+$

\mathfrak{S}_{n} action

Attach "uncrossing" and reduce according to ${ }^{\circ}+\prod_{0}^{\circ}$.

8

Beyond three rows

- Kuperberg '96: "The main open problem [...] is how to generalize them to higher rank."

Beyond three rows

- Kuperberg '96: "The main open problem [...] is how to generalize them to higher rank."
- SL_{r} : Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis-Kamnitzer-Morrison '14, Fraser-Lam-Le '19

Beyond three rows

- Kuperberg '96: "The main open problem [...] is how to generalize them to higher rank."
- SL_{r} : Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis-Kamnitzer-Morrison '14, Fraser-Lam-Le '19
- SL4: Web basis by Gaetz-Pechenik-P.-Striker-Swanson '23+

Beyond three rows

- Kuperberg '96: "The main open problem [...] is how to generalize them to higher rank."
- SL_{r} : Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis-Kamnitzer-Morrison '14, Fraser-Lam-Le '19
- SL4: Web basis by Gaetz-Pechenik-P.-Striker-Swanson '23+
- Over 100 growth rules

1	2	5	6
3	4	7	10
8	9	11	14
12	13	15	16

Beyond three rows

- Kuperberg '96: "The main open problem [...] is how to generalize them to higher rank."
- SL_{r} : Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis-Kamnitzer-Morrison '14, Fraser-Lam-Le '19
- SL4: Web basis by Gaetz-Pechenik-P.-Striker-Swanson '23+
- Over 100 growth rules and two families of infinitely many rules

1	2	5	6
3	4	7	10
8	9	11	14
12	13	15	16

Beyond three rows

- Kuperberg '96: "The main open problem [...] is how to generalize them to higher rank."
- SL_{r} : Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis-Kamnitzer-Morrison '14, Fraser-Lam-Le '19
- SL4: Web basis by Gaetz-Pechenik-P.-Striker-Swanson '23+
- Over 100 growth rules and two families of infinitely many rules
- Applying the rules in different order can give different graphs

1	2	5	6
3	4	7	10
8	9	11	14
12	13	15	16

Trip permutations

i-th rule of the road: take the i-th exit from the left (right) at an unifilled (filled) vertex.

Trip permutations

i-th rule of the road: take the i-th exit from the left (right) at an unifilled (filled) vertex.

$$
\xrightarrow{\text { trip }_{P}} \quad 43141097816131112 \underline{6} \underline{5} 15 \underline{2} \underline{1}
$$

Trip permutations

i-th rule of the road: take the i-th exit from the left (right) at an unifilled (filled) vertex.

$$
\begin{array}{ll}
\xrightarrow{\text { trip }_{P}} & 43141097816131112 \underline{6} \underline{5} 15 \underline{2} \underline{1} \\
\xrightarrow{\text { trip }_{2}} & 149161511813 \underline{6} \underline{2} 12 \underline{5} \underline{10} \underline{1} \underline{1} \underline{3} \underline{3}
\end{array}
$$

Trip permutations

i-th rule of the road: take the i-th exit from the left (right) at an unifilled (filled) vertex.

$$
\begin{array}{ll}
\xrightarrow{\text { rrip }_{7}} & 43141097816131112 \underline{6} \underline{5} 15 \underline{1} \underline{1} \\
\xrightarrow{\text { trip }_{P}} & 149161511813 \underline{6} \underline{12} \underline{\underline{1}} \underline{10} \underline{1} \underline{4} \underline{3} \\
\xrightarrow{\text { trip }_{3}} & 1615 \underline{1} \underline{1} 1312 \underline{6} \underline{\underline{5}} \underline{4} \underline{10} \underline{11} \underline{\underline{3}} \underline{14} \underline{8}
\end{array}
$$

Trip permutations

i-th rule of the road: take the i-th exit from the left (right) at an unifilled (filled) vertex.

$$
\begin{array}{ll}
\xrightarrow{\text { rrip }_{7}} & 43141097816131112 \underline{6} \underline{5} 15 \underline{1} \underline{1} \\
\xrightarrow{\text { trip }_{P}} & 149161511813 \underline{6} \underline{12} \underline{\underline{1}} \underline{10} \underline{1} \underline{4} \underline{3} \\
\xrightarrow{\text { trip }_{3}} & 1615 \underline{1} \underline{1} 1312 \underline{6} \underline{\underline{5}} \underline{4} \underline{10} \underline{11} \underline{\underline{3}} \underline{14} \underline{8}
\end{array}
$$

Trip permutations

i-th rule of the road: take the i-th exit from the left (right) at an unifilled (filled) vertex.

$$
\begin{array}{ll}
\xrightarrow{\text { rrip }_{7}} & 43141097816131112 \underline{6} \underline{5} 15 \underline{1} \underline{1} \\
\text { trip }_{\rightarrow} & 149161511813 \underline{6} \underline{12} \underline{\underline{1}} \underline{10} \underline{1} \underline{4} \underline{3} \\
\xrightarrow{\text { trip }_{3}} & 1615 \underline{1} \underline{1} 1312 \underline{6} \underline{\underline{5}} \underline{4} \underline{10} \underline{11} \underline{\underline{3}} \underline{14} \underline{8}
\end{array}
$$

Anti-exceedances of a permutation π :
$\operatorname{Aexc}(\pi)=\left\{i \mid \pi^{-1}(i)>i\right\}$
$\operatorname{Aexc}\left(\operatorname{trip}_{i}\right)=\{$ Entries of first i rows of the tableau $\}$

Trip permutations

i-th rule of the road: take the i-th exit from the left (right) at an unifilled (filled) vertex.

$$
\begin{array}{ll}
\xrightarrow{\text { rrip }_{7}} & 43141097816131112 \underline{6} \underline{5} 15 \underline{1} \underline{1} \\
\text { trip }_{\rightarrow} & 149161511813 \underline{6} \underline{12} \underline{\underline{1}} \underline{10} \underline{1} \underline{4} \underline{3} \\
\xrightarrow{\text { trip }_{3}} & 1615 \underline{1} \underline{1} 1312 \underline{6} \underline{\underline{5}} \underline{4} \underline{10} \underline{11} \underline{\underline{3}} \underline{14} \underline{8}
\end{array}
$$

Anti-exceedances of a permutation π :
$\operatorname{Aexc}(\pi)=\left\{i \mid \pi^{-1}(i)>i\right\}$
$\operatorname{Aexc}\left(\operatorname{trip}_{i}\right)=\{$ Entries of first i rows of the tableau $\}$

1	2	5	6
3	4	7	10
8	9	11	14
12	13	15	16

Further buzzwords

Further buzzwords

- Crystal graphs
- Statistical mechanics
- ASMs and plane partitions
- Quantum link invariants
- Cluster algebras
- Totally nonnegative Grassmannian

