

An SL₄-web basis from hourglass plabic graphs

Stephan Pfannerer

Recipient of a DOC Fellowship of the Austrian Academy of Sciences Institute of Discrete Mathematics and Geometry TU Wien

CAAC 2023, January 22

GOCC

Graduate Online Combinatorics Colloquium

The GOCC is an online combinatorics seminar organized for and run by graduate students following the principle:

- 1 We are all learning
- 2 Everyone has something to contribute
- 3 No one has all the answers
 - Starting again in February 2023
- GOCCcombinatorics@gmail.com

Joint work with Jessica Striker, Oliver Pechenik, Joshua Swanson and Christian Gaetz.

SYT(λ): set of all standard Young tableaux of shape $\lambda \vdash n$.

- Bijective filling: cells of $\lambda \rightarrow [n]$
- Increasing along rows and columns

1	2	4	10
3	5	8	11
6	7		
9			

SYT(λ): set of all standard Young tableaux of shape $\lambda \vdash n$.

- Bijective filling: cells of $\lambda \rightarrow [n]$
- Increasing along rows and columns

• Dimension of the *Specht module* S^{λ} : $|SYT(\lambda)|$

 $SYT(\lambda)$: set of all standard Young tableaux of shape $\lambda \vdash n$.

- Bijective filling: cells of $\lambda \rightarrow [n]$
- Increasing along rows and columns

- Dimension of the *Specht module* S^{λ} : $|SYT(\lambda)|$
- Let λ be a $r \times k$ rectangle, then

 $S^{\lambda} \cong$ some invariant space of SL_r

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

1	2	4	10
3	5	8	11
6	7		
9			

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

•	2	4	10
3	5	8	11
6	7		
9			

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

2	•	4	10
3	5	8	11
6	7		
9			

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

2	4	•	10
3	5	8	11
6	7		
9			

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

ſ	2	4	8	10
Γ	3	5	•	11
Γ	6	7		
	9			

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

2	4	8	10
3	5	11	•
6	7		
9			

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

2	4	8	10
3	5	11	12
6	7		
9			

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

	1	3	7	9
ſ	2	4	10	11
	5	6		
	8			

Schützenberger *promotion* pr : $SYT(\lambda) \rightarrow SYT(\lambda)$:

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

Fact

Promotion on $SYT(k^r)$ is isomorphic to the action of the *long* cycle c = (12...n) on $S^{(k^r)}$.

Schützenberger *promotion* pr : $SYT(\lambda) \rightarrow SYT(\lambda)$:

- 1 delete 1
- 2 slide entries up and left
- **3** fill last empty corner with n + 1 & subtract 1 from each entry

Fact

Promotion on $SYT(k^r)$ is isomorphic to the action of the *long* cycle c = (12...n) on $S^{(k^r)}$.

We want a *diagrammatic basis*. To obtain them we construct bijections between rectangular SYT and some diagrams intertwining promotion and rotation.

SL_2 -webs: Non crossing perfect matchings

SL_2 -webs: Non crossing perfect matchings

 Khovanov, Kuperberg 1999: 3 × n SYT are in bijection with irreducible SL₃-webs, i.e. certain plabic graphs.

• Khovanov, Kuperberg 1999:

 $3 \times n$ SYT are in bijection with irreducible SL₃-webs, i.e. certain *plabic graphs*.

• Khovanov, Kuperberg 1999:

 $3 \times n$ SYT are in bijection with irreducible SL₃-webs, i.e. certain *plabic graphs*.

• Khovanov, Kuperberg 1999:

 $3 \times n$ SYT are in bijection with irreducible SL₃-webs, i.e. certain *plabic graphs*.

• Khovanov, Kuperberg 1999:

 $3 \times n$ SYT are in bijection with irreducible SL₃-webs, i.e. certain *plabic graphs*.

• Khovanov, Kuperberg 1999:

 $3 \times n$ SYT are in bijection with irreducible SL₃-webs, i.e. certain *plabic graphs*.

- Khovanov, Kuperberg 1999: 3 × n SYT are in bijection with irreducible SL₃-webs, i.e. certain plabic graphs.
- *Petersen, Pylyavskyy, Rhoades 2009:* The bijection intertwines promotion and rotation.

• Kuperberg '96: "The main *open problem* [...] is how to generalize them to higher rank."

- Kuperberg '96: "The main *open problem* [...] is how to generalize them to higher rank."
- SL_r: *Spanning sets* and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis–Kamnitzer–Morrison '14, Fraser–Lam–Le '19

- Kuperberg '96: "The main *open problem* [...] is how to generalize them to higher rank."
- SL_r: Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis–Kamnitzer–Morrison '14, Fraser–Lam–Le '19
- SL₄: Web basis by Gaetz-Pechenik-P.-Striker-Swanson '23+

- Kuperberg '96: "The main *open problem* [...] is how to generalize them to higher rank."
- SL_r: Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis–Kamnitzer–Morrison '14, Fraser–Lam–Le '19
- SL₄: Web basis by Gaetz-Pechenik-P.-Striker-Swanson '23+
 - Over 100 growth rules

- Kuperberg '96: "The main *open problem* [...] is how to generalize them to higher rank."
- SL_r: Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis–Kamnitzer–Morrison '14, Fraser–Lam–Le '19
- SL₄: *Web basis* by Gaetz–Pechenik–P.–Striker–Swanson '23+
 - Over 100 growth rules and two families of infinitely many rules

- Kuperberg '96: "The main *open problem* [...] is how to generalize them to higher rank."
- SL_r: Spanning sets and relations, but NOT a basis by Kim '03, Morrison '07, Fontaine '12, Cautis–Kamnitzer–Morrison '14, Fraser–Lam–Le '19
- SL₄: *Web basis* by Gaetz–Pechenik–P.–Striker–Swanson '23+
 - Over 100 growth rules and two families of infinitely many rules
 - Applying the rules in different order can give different graphs

$$\stackrel{\text{trip}_1}{\longrightarrow}$$
 4 3 14 10 9 7 8 16 13 11 12 6 5 15 2 1

$\stackrel{trip_1}{\longrightarrow}$	4 3 14 10 9 7 8 16 13 11 12 <u>6 5</u> 15 <u>2 1</u>
$\stackrel{trip_2}{\longrightarrow}$	14 9 16 15 11 8 13 <u>6 2</u> 12 <u>5</u> <u>10 7 1 4 3</u>

$\stackrel{trip_1}{\longrightarrow}$	4 3 14 10 9 7 8 16 13 11 12 <u>6 5</u> 15 <u>2 1</u>
$\stackrel{trip_2}{\longrightarrow}$	14 9 16 15 11 8 13 <u>6 2</u> 12 <u>5 10 7 1 4 3</u>
$\stackrel{trip_3}{\longrightarrow}$	16 15 <u>2</u> <u>1</u> 13 12 <u>6</u> <u>7</u> <u>5</u> <u>4</u> <u>10</u> <u>11</u> <u>9</u> <u>3</u> <u>14</u> <u>8</u>

$\stackrel{trip_1}{\longrightarrow}$	4 3 14 10 9 7 8 16 13 11 12 <u>6 5</u> 15 <u>2 1</u>
$\stackrel{trip_2}{\longrightarrow}$	14 9 16 15 11 8 13 <u>6 2</u> 12 <u>5</u> <u>10 7 1 4 3</u>
$\stackrel{trip_3}{\longrightarrow}$	16 15 <u>2 1</u> 13 12 <u>6 7 5 4 10 11 9 3 14 8</u>

Anti-exceedances of a permutation π : Aexc $(\pi) = \{i \mid \pi^{-1}(i) > i\}$

 $Aexc(trip_i) = \{Entries of first i rows of the tableau\}$

$\stackrel{rip_1}{\rightarrow}$	4 3 14 10 9 7 8 16 13 11 12 <u>6</u> <u>5</u> 15 <u>2</u> <u>1</u>
$\xrightarrow{rip_2}$	14 9 16 15 11 8 13 <u>6 2</u> 12 <u>5 10 7 1 4 3</u>
$\xrightarrow{rip_3}$	16 15 <u>2</u> <u>1</u> 13 12 <u>6</u> <u>7</u> <u>5</u> <u>4</u> <u>10</u> <u>11</u> <u>9</u> <u>3</u> <u>14</u> <u>8</u>

Anti-exceedances of a permutation π : Aexc $(\pi) = \{i \mid \pi^{-1}(i) > i\}$

 $Aexc(trip_i) = \{Entries of first i rows of the tableau\}$

1	2	5	6
3	4	7	10
8	9	11	14
12	13	15	16

Further buzzwords

Further buzzwords

- Crystal graphs
- Statistical mechanics
- ASMs and plane partitions
- Quantum link invariants
- Cluster algebras
- Totally nonnegative Grassmannian

