Unipotent Wilf Conjecture

Mahir Bilen Can ${ }^{1} \quad$ Naufil Sakran ${ }^{2}$

Combinatorial Algebra meets Algebraic Combinatorics 2023

Wilf Conjecture

Let S be a complement finite submonoid of \mathbb{N}_{o}, (a.k.a numerical semigroup).

- The conductor of S, denoted by $c(S)$ is the smallest integer c such that $c+\mathbb{N} \subseteq S$.
- Let $n(S)$ denote the cardinality of the set

$$
\{x \in S: x<c\} .
$$

- Let $e(S)$ denote the cardinality of the minimal generating set of $S \backslash\{0\}$.
In 1978, Wilf conjectured that [1] for any numerical semigroup $S \subseteq \mathbb{N}_{0}$, we have

$$
c(S) \leq e(S) n(S)
$$

Example: Let $S=\{0,3,5,6,8 \ldots\}$. Then $c(S)=7, n(S)=4$ and $e(S)=2$.

Previous Generalization

Let S be a complement finite submonoid of \mathbb{N}_{0}^{d} (a.k.a generalized numerical semigroup). Let \leq be a partial order on \mathbb{N}_{0}^{d} such that for $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{N}_{0}^{d}, x \leq y$ if and only if $x_{i} \leq y_{i}$ for all $i=1, \ldots, r$. Let $H(S)=\mathbb{N}_{0}^{d} \backslash S$. We define

- The conductor of S, denoted by $\mathrm{c}(S)$ is the cardinality of the set

$$
\left\{x \in \mathbb{N}_{0}^{d}: x \leq h \text { for some } h \in H(S)\right\}
$$

- Let $\mathrm{n}(\mathrm{S})$ denote the cardinality of the set

$$
\{x \in S: x \leq h \text { for some } h \in H(S)\}
$$

- Let $e(S)$ denote the cardinality of the minimal set of generators of S.
Generalized Wilf Conjecture [2] states that

$$
d \mathrm{c}(\mathrm{~S}) \leq \mathrm{e}(\mathrm{~S}) \mathrm{n}(\mathrm{~S})
$$

Important families

Let G be a unipotent complex linear algebraic group. It is well known that G is isomorphic to a closed subgroup of the unipotent upper triangular $n \times n$ matrices with entries in \mathbb{C}, denoted as $\mathbf{U}(n, \mathbb{C})$. Define

$$
U\left(n, \mathbb{N}_{o}\right)_{k}=\left\{\left(x_{i j}\right): k \leq \max _{1 \leq i<j \leq n}\left\{x_{i j}\right\}\right\} .
$$

The commutative subgroup lives in

$$
\mathbf{P}\left(n, \mathbb{N}_{0}\right):=\left\{\left(\begin{array}{cccc}
1 & a_{1} & a_{2} & \cdots \\
0 & 1 & a_{n-1} \\
\vdots & 0 & 0 & \vdots \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & \vdots
\end{array}\right): a_{i} \in \mathbb{N}_{0}\right\} \cong \mathbb{N}_{0}^{n-1}
$$

Our Notations

Let G be a unipotent complex linear algebraic group and let $M=G_{\mathbb{N}} \subseteq U\left(n, \mathbb{N}_{0}\right)$. Let $S \subseteq M$ be complement finite submonoid.

- The generating number of S is defined as
$r_{M}(s)=\min \left\{k \in \mathbb{N}: U\left(n, \mathbb{N}_{0}\right)_{k} \cap M \subseteq s\right\}$.
- $\mathrm{d}_{\mathrm{M}}:=\operatorname{dim} \mathrm{G}$.
- $c_{M}(S):=r(S)^{d_{M}}$. (Conductor of S.)
- $\mathrm{n}_{M}(S):=\left|S \backslash \cup(\mathrm{n}, \mathbb{N})_{r_{M}(s)}\right|+1$.
- e(S) $:=\min \left\{|\mathscr{G}|: \mathscr{G}\right.$ generates $\left.S \backslash\left\{1_{n}\right\}\right\}$.
$\bullet g(S):=|M \backslash S|$. (Genus of S relative to M.)

Unipotent Wilf Conjecture!!! (Can, Sakran)

Let G be a unipotent linear algebraic group. If S is a complement finite submonoid of the arithmetic submonoid $M=G_{\mathbb{N}}$, then we have

$$
\mathbf{d}_{M} \mathbf{c}_{M}(S) \leq \mathbf{e}(S) \mathbf{n}_{M}(S)
$$

Thick families in $\mathrm{P}\left(n, \mathbb{N}_{\mathrm{O}}\right)$

Let $S \subseteq M=P\left(n, \mathbb{N}_{0}\right)$ be complement finite submonoid. Let

$$
s_{j}=s \cap\left(\{0\} \times \cdots \times \mathbb{N}_{0} \times \cdots \times\{0\}\right) .
$$

Define n_{j}, c_{j} and g_{j} of S_{j} accordingly.
If $\sum_{j=1}^{n-1} g_{j}=\mathrm{g}_{\mathrm{M}}(\mathrm{S})$ then S is called thick submonoid of M. For example

Thin families in $\mathbf{P}\left(n, \mathbb{N}_{0}\right)$

If $\prod_{j=1}^{n-1} n_{j}=\mathbf{n}_{M}(S)$ then S is called thin submonoid of M.
Define $S=\left\langle 1_{2},(2,0),(0.2), P_{5}\right\rangle \subseteq M$

We have $\mathbf{e}(S)=8, n_{M}(S)=9$ and $c_{M}(S)=36$. If S is thin and $\prod_{j=1}^{n-1} c_{j}=k^{n-1}$ then UWC holds. (Can, Sakran)

Connection with Algebraic Geometry
Let $X=\mathscr{V}\left(y^{2}-x^{3}+x\right)$ be a smooth curve of genus 1. Let $P=(1,0), Q=(-1,0) \in X$ and let \mathfrak{m}_{P} and \mathfrak{m}_{Q} denote the maximal ideal of $k[X]_{P}$ and $k[X]_{Q}$ respectively. Consider the set $H=\left\{\left(n_{1}, n_{2}\right): \exists f \in k(X),(f)_{\infty}=n_{1} P+n_{2} Q\right\}$ Here $(f)_{\infty}=\operatorname{ord}_{P}(h) P+\operatorname{ord}_{Q}(h) Q$ where $f=\frac{g}{h} \in k(X)$ and
$\operatorname{ord}_{p}(h):=\max \left\{k: h \in \mathfrak{m}_{\rho^{\prime}}^{k} h \notin \mathfrak{m}_{\rho}^{k+1}\right\}$
From [3], we have that H is a complement finite submonoid of \mathbb{N}_{0}^{2} with $\left|\mathbb{N}_{0}^{2} \backslash H\right|=2$. In general, for smooth curve X of genus g, we have
$\binom{g+2}{2}-1 \leq\left|\mathbb{N}_{0}^{2} \backslash H\right| \leq\binom{ g+2}{2}+\frac{(g+1)(g-2)}{2}$.

References

[1] Herbert S Wilf.
A circle-of-lights algorithm for the "money-changing problem".
The American Mathematical Monthly, 85(7):562-565, 1978.
[2] Carmelo Cisto, Michael DiPasquale, Gioia Failla, Zachary Flores, Chris Peterson, and Rosanna Utano. A generalization of Wilf's Conjecture for generalized numerical semigroups.
In Semigroup Forum, volume 101, pages 303-325. Springer, 2020.
[3] Seon Jeong Kim.
On the index of the Weierstrass semigroup of a pair of points on a curve.
Archiv der Mathematik, 62(1):73-82, 1994.
[4] Mahir Bilen Can and Naufil Sakran.
On Generalized Wilf Conjecture
Submitted, 2022.

Contact Information

- Web: www.naufilsakran.com
- Email: nsakran@tulane.edu

