k-Positivity of the Dual Canonical Basis

Sunita Chepuri (joint with Melissa Sherman-Bennett)

Combinatorial Algebra meets Algebraic Combinatorics

January 22, 2023

Sunita Chepuri (CAAC)

k-Positivity of the Dual Canonical Basis

January 22, 2023 1 / 20

Outline

Sunita Chepuri (CAAC)

3

イロト イヨト イヨト イヨト

• *k*-Positivity

Sunita Chepuri (CAAC)

イロト イヨト イヨト イヨト

- *k*-Positivity
- Immanants and the Dual Canonical Basis

- *k*-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem

Sunita Chepuri (CAAC)

- *k*-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

• *k*-Positivity

- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

Aminor of a matrix is the determinant of a square submatrix of the original matrix. A matrix is totally positive if all its minors are positive.

Aminor of a matrix is the determinant of a square submatrix of the original matrix. A matrix is *totally positive* if all its minors are positive.

Example:

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6 \end{bmatrix}$$

Aminor of a matrix is the determinant of a square submatrix of the original matrix. A matrix is *totally positive* if all its minors are positive.

Example:

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6 \end{bmatrix}$$

The minors of size 1 are the matrix entries, which are positive.

Aminor of a matrix is the determinant of a square submatrix of the original matrix. A matrix is *totally positive* if all its minors are positive.

Example:

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6 \end{bmatrix}$$

The minors of size 1 are the matrix entries, which are positive.

There are $\binom{3}{2}\binom{3}{2} = 9$ minors of size 2, all of which are positive.

Aminor of a matrix is the determinant of a square submatrix of the original matrix. A matrix is *totally positive* if all its minors are positive.

Example:

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6 \end{bmatrix}$$

The minors of size 1 are the matrix entries, which are positive.

There are $\binom{3}{2}\binom{3}{2} = 9$ minors of size 2, all of which are positive. det(A) = 2

A*minor* of a matrix is the determinant of a square submatrix of the original matrix. A matrix is *totally positive* if all its minors are positive.

Example:

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 5 & 4 & 3 \\ 6 & 5 & 6 \end{bmatrix}$$

The minors of size 1 are the matrix entries, which are positive.

There are $\binom{3}{2}\binom{3}{2} = 9$ minors of size 2, all of which are positive. det(A) = 2

So A is totally positive.

Sunita Chepuri (CAAC)

< 行

Sunita Chepuri (CAAC)

• Have variation diminishing property (Schoenberg, 1930)

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)
- Can be used in functional analysis, ODE's, probability, statistics

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)
- Can be used in functional analysis, ODE's, probability, statistics
- Relates combinatorially to networks (Lindström, 1973)

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)
- Can be used in functional analysis, ODE's, probability, statistics
- Relates combinatorially to networks (Lindström, 1973)
- Led to development of cluster algebras (Fomin–Zelevinsky, 2002)

- Have variation diminishing property (Schoenberg, 1930)
- Have nice eigenvalues (Gantmacher-Krein, 1935)
- Can be used in functional analysis, ODE's, probability, statistics
- Relates combinatorially to networks (Lindström, 1973)
- Led to development of cluster algebras (Fomin–Zelevinsky, 2002)
- Has nice topology (Hersh, 2013)

A matrix is k-positive if all its minors of size less than or equal to k are positive.

A matrix is k-positive if all its minors of size less than or equal to k are positive.

Example:

$$M = \begin{bmatrix} 22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6 \end{bmatrix}$$

A matrix is k-positive if all its minors of size less than or equal to k are positive.

Example:

$$M = \begin{bmatrix} 22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6 \end{bmatrix}$$

The minors of size 1 and 2 are all positive, so M is 1-positive and 2-positive.

A matrix is k-positive if all its minors of size less than or equal to k are positive.

Example:

$$M = \begin{bmatrix} 22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6 \end{bmatrix}$$

The minors of size 1 and 2 are all positive, so M is 1-positive and 2-positive.

 $|M_{\{1,2,3\},\{1,2,3\}}|<0,$ so M is not 3-positive or 4-positive (totally positive).

A matrix is k-positive if all its minors of size less than or equal to k are positive.

Example:

$$M = \begin{bmatrix} 22 & 18 & 6 & 3 \\ 8 & 7 & 3 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6 \end{bmatrix}$$

The minors of size 1 and 2 are all positive, so M is 1-positive and 2-positive.

 $|M_{\{1,2,3\},\{1,2,3\}}| < 0$, so M is not 3-positive or 4-positive (totally positive). These matrices have many similar but slightly weaker properties to totally positive matrices.

- *k*-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

Dual Canonical Basis

Let G be a reductive group.

Sunita Chepuri (CAAC)

The dual canonical basis of $\mathbb{C}[G]$ is a family of linear functionals on G.

Sunita Chepuri (CAAC)

The *dual canonical basis* of $\mathbb{C}[G]$ is a family of linear functionals on G. Lusztig (1994) defined $G_{>0}$ and showed that all elements of the dual canonical basis are positive on $G_{>0}$.

The *dual canonical basis* of $\mathbb{C}[G]$ is a family of linear functionals on G.

Lusztig (1994) defined $G_{>0}$ and showed that all elements of the dual canonical basis are positive on $G_{>0}$.

Fomin–Zelevinsky (2000) showed $G_{>0}$ is exactly the subset of G where certain dual canonical basis elements called *generalized minors* are positive.

The *dual canonical basis* of $\mathbb{C}[G]$ is a family of linear functionals on G.

Lusztig (1994) defined $G_{>0}$ and showed that all elements of the dual canonical basis are positive on $G_{>0}$.

Fomin–Zelevinsky (2000) showed $G_{>0}$ is exactly the subset of G where certain dual canonical basis elements called *generalized minors* are positive.

Question

What if only a subset of the generalized minors are positive? What does this tell us about the positivity of the rest of the dual canonical basis elements?

The *dual canonical basis* of $\mathbb{C}[G]$ is a family of linear functionals on G.

Lusztig (1994) defined $G_{>0}$ and showed that all elements of the dual canonical basis are positive on $G_{>0}$.

Fomin–Zelevinsky (2000) showed $G_{>0}$ is exactly the subset of G where certain dual canonical basis elements called *generalized minors* are positive.

Question

What if only a subset of the generalized minors are positive? What does this tell us about the positivity of the rest of the dual canonical basis elements?

Our setting: $G = SL_n$, generalized minors are just minors, we require the set of minors of size less than or equal to k be positive.

Definition

Sunita Chepuri (CAAC)

Given a function $f : S_n \to \mathbb{C}$, the *immanant* associated to f, Imm_f : Mat_{$n \times n$}(\mathbb{C}) $\to \mathbb{C}$, is the function

$$\operatorname{Imm}_f(X) := \sum_{w \in S_n} f(w) \ x_{1,w(1)} \cdots x_{n,w(n)}.$$

Definition

Given a function $f : S_n \to \mathbb{C}$, the *immanant* associated to f, Imm_f : Mat_{$n \times n$}(\mathbb{C}) $\to \mathbb{C}$, is the function

$$\operatorname{Imm}_{f}(X) := \sum_{w \in S_{n}} f(w) x_{1,w(1)} \cdots x_{n,w(n)}.$$

Ex: If $f(w) = \operatorname{sgn}(w)$ for all $w \in S_n$, then $\operatorname{Imm}_f(X) = \det(x)$.

Definition

Given a function $f : S_n \to \mathbb{C}$, the *immanant* associated to f, Imm_f : Mat_{$n \times n$}(\mathbb{C}) $\to \mathbb{C}$, is the function

$$\operatorname{Imm}_{f}(X) := \sum_{w \in S_{n}} f(w) x_{1,w(1)} \cdots x_{n,w(n)}.$$

Ex: If $f(w) = \operatorname{sgn}(w)$ for all $w \in S_n$, then $\operatorname{Imm}_f(X) = \det(x)$. Ex: If f(w) = 1 for all $w \in S_n$, then $\operatorname{Imm}_f(X) = \operatorname{per}(X)$.

Definition

Given a function $f : S_n \to \mathbb{C}$, the *immanant* associated to f, Imm_f : Mat_{$n \times n$}(\mathbb{C}) $\to \mathbb{C}$, is the function

$$\operatorname{Imm}_{f}(X) := \sum_{w \in S_{n}} f(w) x_{1,w(1)} \cdots x_{n,w(n)}.$$

Ex: If $f(w) = \operatorname{sgn}(w)$ for all $w \in S_n$, then $\operatorname{Imm}_f(X) = \det(x)$.

Ex: If f(w) = 1 for all $w \in S_n$, then $\text{Imm}_f(X) = \text{per}(X)$.

The most commonly studied immanants are irreducible character immanants ($f = \chi^{\lambda}$ an irreducible character of S_n).

Let $v \in S_n$. The Kazhdan-Lusztig immanant indexed by v is

$$\mathsf{Imm}_{v}(X) := \sum_{w \in \mathcal{S}_{n}} (-1)^{\ell(w) - \ell(v)} \mathsf{P}_{w_{0}w, w_{0}v}(1) \; x_{1,w(1)} \cdots x_{n,w(n)}$$

where $P_{x,y}(q)$ is the Kazhdan-Lusztig polynomial associated to $x, y \in S_n$ and $w_0 \in S_n$ is the longest permutation. Let $M = (m_{ij})$ be an $m \times m$ matrix, $R = \{r_1 \leq \cdots \leq r_n\}, C = \{c_1 \leq \cdots \leq c_n\} \in \binom{[m]}{n}.$ Let $M = (m_{ij})$ be an $m \times m$ matrix, $R = \{r_1 \leq \cdots \leq r_n\}, C = \{c_1 \leq \cdots \leq c_n\} \in \binom{[m]}{n}.$

We define M(R, C) to be the matrix with element m_{r_i,c_i} in row *i*, column *j*.

Let $M = (m_{ij})$ be an $m \times m$ matrix, $R = \{r_1 \le \dots \le r_n\}, C = \{c_1 \le \dots \le c_n\} \in (\binom{[m]}{n})$. We define M(R, C) to be the matrix with element m_{r_i, c_j} in row *i*, column *j*. Example: Let $R = \{1, 1, 3\}, C = \{2, 3, 4\}$. $M = \begin{bmatrix} 22 & 18 & 6 & 3\\ 8 & 7 & 3 & 2\\ 2 & 2 & 1 & 2 \end{bmatrix}, M(R, C) = \begin{bmatrix} 18 & 6 & 3\\ 18 & 6 & 3\\ 2 & 4 & -4 \end{bmatrix}$

$$M = \begin{bmatrix} 3 & 1 & 2 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 6 \end{bmatrix}, \quad M(R, C) = \begin{bmatrix} 18 & 6 & 3 \\ 2 & 1 & 2 \end{bmatrix}$$

Theorem (Skandera, 2008)

The dual canonical basis of $\mathbb{C}[SL_m]$ consists of the nonzero elements of the set $\{\operatorname{Imm}_v X(R, C) \mid v \in S_n \text{ for some } n \in \mathbb{N} \text{ and } R, C \in \binom{[m]}{n}\}$.

- *k*-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same relative order as v in one-line notation.

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same relative order as v in one-line notation.

Ex: *w* = 25341

Sunita Chepuri (CAAC)

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same relative order as v in one-line notation.

Ex: *w* = 25341

Is w 321-avoiding?

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same relative order as v in one-line notation.

- Ex: *w* = 25341
 - Is w 321-avoiding?

No: w contains the subsequence 531 and 5 > 3 > 1.

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same relative order as v in one-line notation.

- Ex: *w* = 25341
 - Is w 321-avoiding?

No: w contains the subsequence 531 and 5 > 3 > 1.

Is w is 3412-avoiding?

We say w is v-avoiding if w does not contain a sub-sequence in one-line notation where the digits have the same relative order as v in one-line notation.

- Ex: *w* = 25341
 - Is w 321-avoiding?

No: w contains the subsequence 531 and 5 > 3 > 1.

Is w is 3412-avoiding?

Yes: length 4 subsequences are 2534, 2531, 2541, 2341, 5341.

We say a matrix functional is k-positive if it is positive when evaluated on all k-positive matrices.

We say a matrix functional is k-positive if it is positive when evaluated on all k-positive matrices.

Theorem (C.–Sherman-Bennet, 2023+)

Let $v \in S_n$ be 1324-, 2143-avoiding and suppose that for all i < j with v(i) < v(j) we have $j - i \le k$ or $v(j) - v(i) \le k$. Let $R, C \in (\binom{[m]}{n})$. Then $\operatorname{Imm}_v X(R, C)$ is identically 0 or it is k-positive.

We say a matrix functional is k-positive if it is positive when evaluated on all k-positive matrices.

Theorem (C.–Sherman-Bennet, 2023+)

Let $v \in S_n$ be 1324-, 2143-avoiding and suppose that for all i < j with v(i) < v(j) we have $j - i \le k$ or $v(j) - v(i) \le k$. Let $R, C \in \binom{[m]}{n}$. Then $\operatorname{Imm}_v X(R, C)$ is identically 0 or it is k-positive.

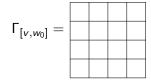
Corollary (C.–Sherman-Bennet, 2023+)

The elements of the dual canonical basis of $\mathbb{C}[SL_m]$ described above are *k*-positive.

For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .

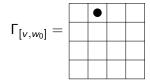
For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .

For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .

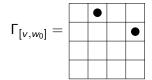


For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .

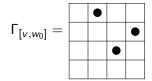
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・



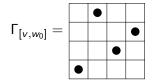
For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .



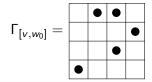
For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .



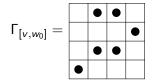
For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .



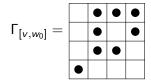
For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .



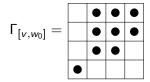
For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .



For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .



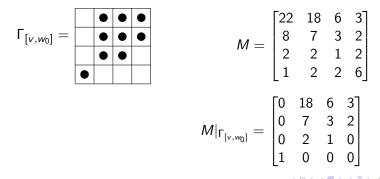
For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .



Sunita Chepuri (CAAC)

For $P \subseteq S_n$, define Γ_P to be the $n \times n$ array with dots in entries $\{(i, w(i)) \mid w \in P\}$. Let $M|_{\Gamma_P}$ be the matrix M with entries changed to 0 wherever there is no dot in Γ_P .

Ex:
$$v = 2431$$
, $P = [v, w_0] = \{2431, 3421, 4231, 4321\}$.



Proposition (C.–Sherman-Bennet, 2020)

If $v \in S_n$ is 1324-, 2143-avoiding then

$$\mathsf{Imm}_{v}\,X(R,C)=(-1)^{\ell(v)}\,\mathsf{det}(X(R,C)|_{\mathsf{F}_{[v,w_0]}}).$$

Proposition (C.–Sherman-Bennet, 2020)

If $v \in S_n$ is 1324-, 2143-avoiding then

$$\mathsf{Imm}_{v}\,X(R,\mathcal{C})=(-1)^{\ell(v)}\,\mathsf{det}(X(R,\mathcal{C})|_{\mathsf{\Gamma}_{[v,w_0]}}).$$

We then used Lewis Carroll's identity to do induction.

- *k*-Positivity
- Immanants and the Dual Canonical Basis
- Main Theorem
- Future Work

Sunita Chepuri (CAAC)

• Extend result from 1324-, 2143-avoiding permutations to a larger class.

• Extend result from 1324-, 2143-avoiding permutations to a larger class.

• Explore the relationship between these immanants and cluster algebras.

S. Chepuri and M. Sherman-Bennett, *1324- and 2143-avoiding Kazhdan-Lusztig immanants and k-positivity*, Canadian Journal of Mathematics (2021), 1-33.

S. Chepuri and M. Sherman-Bennett, *k-positivity of dual canonical basis elements from 1324-and 2143-avoiding Kazhdan-Lusztig immanants*, preprint (2021), arXiv:2106.09150.