Minimal resolutions of monomial ideals

Ezra Miller
Duke University, Department of Mathematics
and Department of Statistical Science
ezra@math.duke.edu
joint with John Eagon (Minnesota)
Erika Ordog (Duke)

Combinatorial Algebra Meets Algebraic Combinatorics \#17
Dalhousie University Halifax, NS Canada

25 January 2020

Outline

1. Kaplansky's problem
2. Sylvan matrices
3. Canonical sylvan morphism
4. Chain-link fences
5. Hedges, stakes, and shrubberies
6. Linkages and coefficients
7. Proof ingredients
8. Future directions

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor $\left(\mathbb{i}(\mathbb{k}, I)_{\mathrm{b}} \cong \widetilde{H}_{i-1}\left(K^{\mathrm{b}} I ; \mathbb{k}\right)\right.$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I
\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathrm{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathrm{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathrm{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathrm{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \widetilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I
\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathrm{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathrm{b}} r ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathrm{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathrm{b}} \cong \widetilde{H}_{i-1}\left(K^{\mathrm{b}} ; ; \mathbb{k}\right)$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I
\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{b \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathrm{b}} r ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathrm{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \widetilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathrm{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathrm{b}} I ; \mathbb{k}\right) \otimes_{\mathbf{k}} \mathbb{k}[\mathbf{x}](-\mathrm{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathrm{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor $(\mathbb{(k , ~} I)_{\mathrm{b}} \cong \widetilde{H}_{i-1}\left(K^{\mathbf{b}} ; ; \mathbb{k}\right)$

Grading. $F_{\mathrm{F}}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{b \in \mathbb{N}^{n}} \tilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathrm{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor $(\mathbb{(k , I})_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} ; ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\quad \operatorname{dim}_{\underline{k}}
$$

Grading. $F_{0}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \tilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor ${ }_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I_{; k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\quad \operatorname{dim}_{\mathbf{k}}
$$

Grading. $F_{\text {. }}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} H_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\operatorname{dim}_{\mathbb{k}}
$$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\tilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathrm{b}} I$ for $\mathbf{a} \prec \mathrm{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor ${ }_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\operatorname{dim}_{k \mathbf{k}}
$$

Grading. $F_{\text {. }}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong$
$\mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor ${ }_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\operatorname{dim}_{\underline{k}}
$$

Grading. $F_{\text {. }}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong$

$$
\begin{gathered}
\mathbb{k}[\mathbf{x}](-\mathbf{b}) \\
=\left\langle\mathbf{x}^{\mathbf{b}}\right\rangle
\end{gathered}
$$

Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathrm{b}} I$ for $\mathrm{a} \prec \mathrm{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor ${ }_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\quad \operatorname{dim}_{\mathbf{k}}
$$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong$
$\mathbb{k}[\mathbf{x}](-\mathbf{b})^{\beta_{i, \mathbf{b}}(I)}$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor ${ }_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\operatorname{dim}_{\underline{k}}
$$

Grading. $F_{\text {. }}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \quad \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathfrak{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\operatorname{dim}_{\mathbb{k}}
$$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\tilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathrm{b}} I$ for $\mathbf{a} \prec \mathrm{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\widetilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\operatorname{dim}_{\mathbb{k}}
$$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\tilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathrm{b}} I$ for $\mathbf{a} \prec \mathrm{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\widetilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\quad \operatorname{dim}_{\mathbb{k}}
$$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})=\bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} F_{i+1}^{\mathbf{b}}$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathrm{b}} I$ for $\mathrm{a} \prec \mathrm{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor $_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\widetilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\quad \operatorname{dim}_{\mathbb{k}}
$$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})=\bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} F_{i+1}^{\mathbf{b}}$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I$
Note. $\left(F_{i}^{\mathrm{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathrm{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}_{z}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\widetilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\quad \operatorname{dim}_{\mathbb{k}}
$$

Grading. $F_{.}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})=\bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} F_{i+1}^{\mathbf{b}}$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I \otimes 1$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. $\operatorname{Tor}_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I ; \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\quad \operatorname{dim}_{\underline{k}}
$$

Grading. $F_{\text {. }}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})=\bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} F_{i+1}^{\mathbf{b}}$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I \otimes 1$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathrm{a}} I \leftarrow \widetilde{H}_{i} K^{\mathrm{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Fix $I \subseteq \mathbb{k}[\mathbf{x}]$ monomial ideal $\quad \mathbf{x}=x_{1}, \ldots, x_{n}$
[Kaplansky, early 1960s]. Find minimal free resolution of I
Def. Koszul simplicial complex $K^{\mathbf{b}} I=\left\{\sigma \in\{0,1\}^{n} \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\right\}$ at $\mathbf{b} \in \mathbb{N}^{n}$ [Hochster's Formula]. Tor $r_{i}(\mathbb{k}, I)_{\mathbf{b}} \cong \underbrace{\tilde{H}_{i-1}\left(K^{\mathbf{b}} I_{i} \mathbb{k}\right)}$ Cor.

$$
\beta_{i, \mathbf{b}}(I)=\underbrace{}_{\operatorname{dim}_{k \mathbf{k}}}
$$

Grading. $F_{\text {. }}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I

\mathbb{N}^{n}-graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}\left(K^{\mathbf{b}} I ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})=\bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} F_{i+1}^{\mathbf{b}}$
Note. $F_{i} \leftarrow F_{i+1}$ on F_{i+1}^{b} determined by action on $\widetilde{H}_{i} K^{\mathrm{b}} I \otimes 1$
Note. $\left(F_{i}^{\mathbf{a}}\right)_{\mathbf{b}}= \begin{cases}\widetilde{H}_{i-1} K^{\mathbf{a}} I & \text { if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text { otherwise }\end{cases}$
Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}$ constitute a free resolution of I.

Kaplansky's problem

Wish List. • universal

- canonical
- closed form
- minimal

Past progress

- [Taylor 1966] not minimal
- [Lyubeznik 1988] not minimal or canonical
- Wall resolutions [Eagon 1990] not proved combinatorial or universal
- stable ideals [Eliahou-Kervaire 1990] not universal
- hull resolutions [Bayer-Sturmfels 1998] not minimal
- [Bayer-Peeva-Sturmfels 1998, M-Sturmfels-Yanagawa 2000]
- generic monomial ideals: not universal
- degenerate Scarf resolutions: not minimal or canonical
- [Yuzvinsky 1999] not combinatorial (and claimed not canonical)
- shellable monomial ideals [Batzies-Welker 2002] not universal
- trivariate monomial ideals [M 2002] not canonical
- order complex of Betti poset [Tchernev-Varisco 2015] not minimal
- Buchberger resolutions [Olteanu-Welker 2016] not canonical or minimal Subsequent development
- [Tchernev 2019] not closed-form (algorithmically combinatorial)

Kaplansky's problem

Wish List. • universal

- canonical
- closed form
- minimal

Past progress

- [Taylor 1966] not minimal
- [Lyubeznik 1988] not minimal or canonical
- Wall resolutions [Eagon 1990] not proved combinatorial or universal
- stable ideals [Eliahou-Kervaire 1990] not universal
- hull resolutions [Bayer-Sturmfels 1998] not minimal
- [Bayer-Peeva-Sturmfels 1998, M-Sturmfels-Yanagawa 2000]
- generic monomial ideals: not universal
- degenerate Scarf resolutions: not minimal or canonical
- [Yuzvinsky 1999] not combinatorial (and claimed not canonical)
- shellable monomial ideals [Batzies-Welker 2002] not universal
- trivariate monomial ideals [M 2002] not canonical
- order complex of Betti poset [Tchernev-Varisco 2015] not minimal
- Buchberger resolutions [Olteanu-Welker 2016] not canonical or minimal

Subsequent development

- [Tchernev 2019] not closed-form (algorithmically combinatorial)

Sylvan matrices

Obstacle. Express maps $\tilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

Suffices. \tilde{H}_{i} given as cycles $\tilde{z}_{i} \subseteq \tilde{C}_{i}$

Def. For each $\mathbf{a} \prec \mathbf{b}$, the sylvan matrix for $F_{i} \leftarrow F_{i+1}$ has block $D^{\text {ab }}$ of the form

$$
\tilde{H}_{i-1} K^{\mathbf{a}} \otimes\left\langle\mathbf{x}^{\mathbf{a}}\right\rangle \stackrel{\stackrel{\sigma_{1}}{\vdots}\left[\begin{array}{ccc}
\sigma_{m} & \cdots & \tau_{n} \\
& & \\
& & \\
\sigma_{m}
\end{array}\right.}{\tilde{H}_{i} K^{\mathbf{b}} \otimes\left\langle\mathbf{x}^{\mathbf{b}}\right\rangle}
$$

Sylvan matrices

Obstacle. Express maps $\tilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

$$
\Leftrightarrow F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}
$$

Suffices. \widetilde{H}_{i} given as cycles

$$
\tilde{Z}_{i} \subseteq \widetilde{C}_{i}
$$

Def. For each $\mathbf{a} \prec \mathbf{b}$, the sylvan matrix for $F_{i} \leftarrow F_{i+1}$ has block $D^{\text {ab }}$ of the form

Sylvan matrices

Obstacle. Express maps $\tilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

$$
\Leftrightarrow F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}
$$

Suffices. \widetilde{H}_{i} given as cycles

$$
\tilde{Z}_{i} \subseteq \widetilde{C}_{i}
$$

Def. For each $\mathbf{a} \prec \mathbf{b}$, the sylvan matrix for $F_{i} \leftarrow F_{i+1}$ has block $D^{\text {ab }}$ of the form

Sylvan matrices

Obstacle. Express maps $\tilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

$$
\Leftrightarrow F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}
$$

Suffices. \widetilde{H}_{i} given as cycles so specify homomorphisms

$$
\begin{gathered}
\tilde{Z}_{i} \subseteq \widetilde{C}_{i} \\
\downarrow \\
\tilde{Z}_{i-1} \subseteq \widetilde{C}_{i-1}
\end{gathered}
$$

Def. For each $\mathbf{a} \prec \mathbf{b}$, the sylvan matrix for $F_{i} \leftarrow F_{i+1}$ has block $D^{\text {ab }}$ of the form

Sylvan matrices

Obstacle. Express maps $\tilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

$$
\Leftrightarrow F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}
$$

Suffices. \widetilde{H}_{i} given as cycles $\quad \widetilde{B}_{i} \subseteq \widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms
satisfying $\quad \widetilde{B}_{i-1} \subseteq \widetilde{Z}_{i-1} \subseteq \widetilde{C}_{i-1}$
Def. For each $\mathbf{a} \prec \mathbf{b}$, the sylvan matrix for $F_{i} \leftarrow F_{i+1}$ has block $D^{\text {ab }}$ of the form

Sylvan matrices

Obstacle. Express maps $\tilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \tilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

$$
\Leftrightarrow F_{i}^{a} \leftarrow F_{i+1}^{b}
$$

Suffices. \widetilde{H}_{i} given as cycles $\quad \widetilde{B}_{i} \subseteq \widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms satisfying $\quad \tilde{B}_{i-1} \subseteq \tilde{Z}_{i-1} \subseteq \tilde{C}_{i-1}$

Def. For each $\mathbf{a} \prec \mathbf{b}$, the sylvan matrix for $F_{i} \leftarrow F_{i+1}$ has block $D^{\text {ab }}$ of the form

$$
\widetilde{H}_{i-1} K^{\mathbf{a}} \otimes\left\langle\mathbf{x}^{\mathbf{a}}\right\rangle \stackrel{\sigma_{1}}{\sigma_{1}\left[\begin{array}{ccc}
\tau_{1} & \cdots & \tau_{n} \\
\sigma_{m} & & \\
& &
\end{array}\right]} \widetilde{H}_{i} K^{\mathbf{b}} \otimes\left\langle\mathbf{x}^{\mathbf{b}}\right\rangle
$$

Sylvan matrices

Obstacle. Express maps $\tilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \tilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

$$
\Leftrightarrow F_{i}^{a} \leftarrow F_{i+1}^{b}
$$

Suffices. \widetilde{H}_{i} given as cycles $\quad \widetilde{B}_{i} \subseteq \widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms satisfying $\quad \tilde{B}_{i-1} \subseteq \tilde{Z}_{i-1} \subseteq \tilde{C}_{i-1}$

Def. For each $\mathbf{a} \prec \mathbf{b}$, the sylvan matrix for $F_{i} \leftarrow F_{i+1}$ has block $D^{\text {ab }}$ of the form

Sylvan matrices

Obstacle. Express maps $\widetilde{H}_{i-1} K^{\mathbf{a}} I \leftarrow \widetilde{H}_{i} K^{\mathbf{b}} I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

$$
\Leftrightarrow F_{i}^{\mathrm{a}} \leftarrow F_{i+1}^{\mathrm{b}}
$$

Suffices. \widetilde{H}_{i} given as cycles $\quad \widetilde{B}_{i} \subseteq \widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms satisfying $\quad \widetilde{B}_{i-1} \subseteq \widetilde{Z}_{i-1} \subseteq \widetilde{C}_{i-1}$

Def. For each $\mathbf{a} \prec \mathbf{b}$, the sylvan matrix for $F_{i} \leftarrow F_{i+1}$ has block $D^{\text {ab }}$ of the form ($i-1$)-faces of K^{a}

$$
\begin{gathered}
\widetilde{H}_{i-1} K^{\mathbf{a}} \otimes\left\langle\mathbf{x}^{\mathbf{a}}\right\rangle \stackrel{\sigma_{1}}{\sigma_{1}}\left[\begin{array}{lll}
\tau_{1} & \cdots & \tau_{n} \\
\sigma_{m}
\end{array}\right. \\
\\
\\
\\
\\
\\
\\
\\
\\
\widetilde{H}_{i} K^{\mathbf{b}} \otimes\left\langle\mathbf{x}^{\mathbf{b}}\right\rangle
\end{gathered}
$$

Sylvan matrices

Example 1. $I=\langle x y, y z, x z\rangle$ has Betti number $\beta_{1,111}(I)=2$ from $K^{111} I$:

Sylvan matrices

Example 1. $I=\langle x y, y z, x z\rangle$ has Betti number $\beta_{1,111}(I)=2$ from $K^{111} I$:

$$
\begin{array}{cc}
& \varnothing\left[\begin{array}{lll}
x & y & z \\
\widetilde{H}_{-1} K^{110} \otimes\langle x y\rangle & \varnothing\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
\stackrel{\oplus}{0} 1 & 1 & 0
\end{array}\right] \\
\widetilde{H}_{-1} K^{101} \otimes\langle x z\rangle & \varnothing\left[\begin{array}{lll}
{[1} & 0 & 0
\end{array}\right] \\
\stackrel{ }{\oplus} & \\
\widetilde{H}_{-1} K^{011} \otimes\langle y z\rangle &
\end{array}
$$

Sylvan matrices

Example 1. $I=\langle x y, y z, x z\rangle$ has Betti number $\beta_{1,111}(I)=2$ from $K^{111} I$:

$$
\left.\begin{array}{cc}
& \left.\begin{array}{rrr}
x & y & z \\
& \\
\widetilde{H}_{-1} K^{110} \otimes\langle x y\rangle & \varnothing\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
\stackrel{\varnothing}{0} 1 & 1 & 0
\end{array}\right] \\
\widetilde{H}_{-1} K^{101} \otimes\langle x z\rangle & \varnothing\left[\begin{array}{ll}
{[1} & 0
\end{array} 0\right]
\end{array}\right] \stackrel{ }{ } \begin{aligned}
& \\
& (x-z) \otimes x y z \\
& \widetilde{H}_{-1} K^{011} \otimes\langle y z\rangle
\end{aligned}
$$

Sylvan matrices

Example 1. $I=\langle x y, y z, x z\rangle$ has Betti number $\beta_{1,111}(I)=2$ from $K{ }^{111} I$:

$$
\begin{array}{cc}
& \left.\begin{array}{ccc}
x & y & z \\
\tilde{H}_{-1} K^{110} \otimes\langle x y\rangle & \varnothing\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
\oplus & \varnothing & {[0} \\
0 & 1 & 0
\end{array}\right] \\
\widetilde{H}_{-1} K^{101} \otimes\langle x z\rangle & \varnothing\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{array} \begin{aligned}
& \\
& (x-z) \otimes x y z \\
& \widetilde{H}_{0} K^{111} \otimes\langle x y z\rangle
\end{aligned}
$$

$\phi \otimes x \cdot y z \quad \tilde{H}_{-1} K^{011} \otimes\langle y z\rangle$

Sylvan matrices

Example 1. $I=\langle x y, y z, x z\rangle$ has Betti number $\beta_{1,111}(I)=2$ from $K{ }^{111} I$:

$\varnothing \otimes x \cdot y z \quad \tilde{H}_{-1} K^{011} \otimes\langle y z\rangle$

Sylvan matrices

Example 1. $I=\langle x y, y z, x z\rangle$ has Betti number $\beta_{1,111}(I)=2$ from $K^{111} I$:

$$
\left.\begin{array}{ccc}
-\varnothing \otimes z \cdot x y & \widetilde{H}_{-1} K^{110} \otimes\langle x y\rangle & \varnothing\left[\begin{array}{ccc}
x & y & z \\
{[0} & 0 & 1
\end{array}\right] \\
& \oplus & \varnothing \\
{\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]}
\end{array}\right] \begin{aligned}
& \\
& (x-z) \otimes x y z \\
& \\
& \widetilde{H}_{-1} K^{101} \otimes\langle x z\rangle
\end{aligned} \begin{gathered}
\\
\widetilde{H}_{0} K^{111} \otimes\langle x y z\rangle
\end{gathered}
$$

$\varnothing \otimes x \cdot y z \quad \tilde{H}_{-1} K^{011} \otimes\langle y z\rangle$

Sylvan matrices

Example 1. $I=\langle x y, y z, x z\rangle$ has Betti number $\beta_{1,111}(I)=2$ from $K^{111} I$:

$$
\left.\begin{array}{ccc}
& & \left.\begin{array}{ccc}
x & y & z \\
-\varnothing \otimes z \cdot x y & \widetilde{H}_{-1} K^{110} \otimes\langle x y\rangle & \varnothing\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
& \oplus & \varnothing \\
{[0} & 1 & 0
\end{array}\right] \\
& \widetilde{H}_{-1} K^{101} \otimes\langle x z\rangle & \varnothing\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{array}\right] \begin{aligned}
& \\
& (x-z) \otimes x y z \\
& \widetilde{H}_{0} K^{111} \otimes\langle x y z\rangle
\end{aligned}
$$

$$
\varnothing \otimes x \cdot y z \quad \tilde{H}_{-1} K^{011} \otimes\langle y z\rangle
$$

Sylvan matrices

Example 1. $I=\langle x y, y z, x z\rangle$ has Betti number $\beta_{1,111}(I)=2$ from $K^{111} I$:

$$
\begin{array}{ccc}
& & \left.\begin{array}{ccc}
x & y & z \\
-\varnothing \otimes z \cdot x y & \tilde{H}_{-1} K^{110} \otimes\langle x y\rangle & \varnothing\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
\oplus & \varnothing & \varnothing \\
0 & \widetilde{H}_{-1} K^{101} \otimes\langle x z\rangle & \varnothing\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{array}\right] \\
(x-z) \otimes x y z \\
\left(\begin{array}{lll}
1 & 0
\end{array}\right] \\
\widetilde{H}_{0} K^{111} \otimes\langle x y z\rangle
\end{array}
$$

$$
\varnothing \otimes x \cdot y z \quad \tilde{H}_{-1} K^{011} \otimes\langle y z\rangle
$$

Sylvan matrices

Example 2. $I=\left\langle y z, x z, x y^{2}, x^{2} y\right\rangle$

Sylvan matrices

Example 2. $I=\left\langle y z, x z, x y^{2}, x^{2} y\right\rangle$

$\widetilde{H}_{1} K^{221} \otimes\left\langle x^{2} y^{2} z\right\rangle$
$\widetilde{H}_{-1} K^{120} \otimes\left\langle x y^{2}\right\rangle$
$\widetilde{H}_{-1} K^{210} \otimes\left\langle x^{2} y\right\rangle$

$$
\begin{gathered}
\widetilde{H}_{0} K^{211} \otimes\left\langle x^{2} y z\right\rangle \\
\oplus \\
\widetilde{H}_{0} K^{111} \otimes\langle x y z\rangle
\end{gathered}
$$

Sylvan matrices

Example 2. $I=\left\langle y z, x z, x y^{2}, x^{2} y\right\rangle$

Sylvan matrices

Example 2. $I=\left\langle y z, x z, x y^{2}, x^{2} y\right\rangle$

$\widetilde{H}_{1} K^{221} \otimes\left\langle x^{2} y^{2} z\right\rangle$
$\widetilde{H}_{-1} K^{120} \otimes\left\langle x y^{2}\right\rangle$
$\widetilde{H}_{-1} K^{210} \otimes\left\langle x^{2} y\right\rangle$

$$
\tilde{H}_{0} K^{211} \otimes\left\langle x^{2} y z\right\rangle
$$

$$
\tilde{H}_{0} K^{111} \otimes\langle x y z\rangle
$$

Kaplansky's problem

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\tilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\leftrightarrows} \tilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\cdot D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and $\cdot D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\mathrm{ab}}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where - $\wedge(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,

- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\quad \Delta_{i, \lambda} I \approx \prod_{\mathbf{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of $\partial_{i}^{\mathbf{c}}$).
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Kaplansky's problem

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\tilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\leftrightarrows} \tilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\quad-D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and $\cdot D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\mathrm{ab}}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathrm{a}, \mathrm{~b})} \frac{1}{\Delta_{i, \lambda I}} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where - $\wedge(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,

- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\quad \Delta_{i, \lambda} I \approx \prod_{\mathbf{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of $\partial_{i}^{\mathbf{c}}$).
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Kaplansky's problem

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\tilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\leftrightarrows} \widetilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\quad-D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and $-D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\text {ab }}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where - $\wedge(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,

- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\quad \Delta_{i, \lambda} I \approx \prod_{\mathbf{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of $\partial_{i}^{\mathbf{c}}$).
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Kaplansky's problem

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\tilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\leftrightarrows} \widetilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\quad-D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and - $D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\mathrm{ab}}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where $\quad \wedge(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,

- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\quad \Delta_{i, \lambda} I \approx \prod_{\mathbf{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of $\left.\partial_{i}^{c}\right)$.
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\widetilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\longleftarrow} \widetilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\quad-D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and $-D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\mathrm{ab}}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where $-\Lambda(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,

- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\quad \Delta_{i, \lambda} I \approx \prod_{\mathbf{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of ∂_{i}^{c}).
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\widetilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\longleftarrow} \widetilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\quad-D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and $-D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\mathrm{ab}}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where $-\Lambda(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,

- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\quad \Delta_{i, \lambda} I \approx \prod_{\mathbf{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of ∂_{i}^{c}).
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\widetilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\longleftarrow} \widetilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\quad-D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and $-D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\mathrm{ab}}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where

- $\Lambda(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,
- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\quad \Delta_{i, \lambda} I \approx \prod_{\mathrm{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of $\left.\partial_{i}^{c}\right)$.
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\widetilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\rightleftarrows} \widetilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\quad-D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and $-D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\mathrm{ab}}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where $-\Lambda(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,

- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\quad \Delta_{i, \lambda} I \approx \prod_{\mathbf{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of $\partial_{i}^{\mathbf{c}}$).
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Canonical sylvan morphism

Theorem [Eagon-M-Ordog 2019]. If char \mathbb{k} avoids finitely many primes, then there is a canonical sylvan homology morphism

$$
\widetilde{C}_{i} K^{\mathrm{b}} I \stackrel{D^{\mathrm{ab}}}{\longleftarrow} \widetilde{C}_{i-1} K^{\mathrm{a}} I,
$$

satisfying $\quad-D\left(\tilde{Z}_{i} K^{\mathrm{b}} I\right) \subseteq \tilde{Z}_{i-1} K^{\mathrm{a}} I$
and $-D\left(\widetilde{B}_{i} K^{\mathrm{b}} I\right)=0$,
explicitly given by the sylvan matrix of $D=D^{\mathrm{ab}}$ with combinatorial entries

$$
D_{\sigma \tau}=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma \tau}(\lambda)} w_{\varphi}
$$

where $-\Lambda(\mathbf{a}, \mathbf{b})=\{$ saturated decreasing lattice paths from \mathbf{b} to $\mathbf{a}\}$,

- $\Phi_{\sigma \tau}(\lambda)=\{$ chain-link fences from τ to σ along $\lambda\}$,
- $w_{\varphi}=$ weight of φ,
and $\cdot \Delta_{i, \lambda} I \approx \prod_{\mathbf{c} \in \lambda} \sum \operatorname{det}^{2}$ (maximal invertible submatrices of $\left.\partial_{i}^{\mathbf{c}}\right)$.
That is, $\left\{D^{\mathbf{a b}} \mid \mathbf{a} \prec \mathbf{b}\right\}$ solves Kaplansky's problem with the entire Wish List.

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
$\sigma-\sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod(\text { vertex weights }) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

$$
\sigma-\sigma_{\ell} /_{\sigma_{\ell-1}}^{\tau_{\ell-1}} \backslash_{\sigma_{2}}^{\cdots} /_{\sigma_{1}}^{\tau_{1}} /^{\tau_{0}-\tau}
$$

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex $\tau_{j-1} ;$
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod \text { (vertex weights) }
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

$$
\begin{aligned}
& \sigma-\left.\sigma_{\ell}\right|_{\sigma_{\ell-1}} ^{\tau_{\ell-1}}{ }^{\prime}{ }_{\sigma_{2}}^{/}{ }_{\sigma_{1}}^{\tau_{1}}{ }_{/}^{\tau_{0}-\tau} \\
& \mathbf{a}=\mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_{2} \quad \mathbf{b}_{1} \quad \mathbf{b}_{0}=\mathbf{b}
\end{aligned}
$$

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex $\tau_{j-1} ;$
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod \text { (edge weights) } \prod \text { (vertex weights) } .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

$$
\begin{aligned}
& \sigma-\left.\sigma_{\ell}\right|_{\sigma_{\ell-1}} ^{\tau_{\ell-1}}{ }^{\prime}{ }_{\sigma_{2}}^{/}{ }_{\sigma_{1}}^{\tau_{1}}{ }_{/}^{\tau_{0}-\tau} \\
& \mathbf{a}=\mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_{2} \quad \mathbf{b}_{1} \quad \mathbf{b}_{0}=\mathbf{b}
\end{aligned}
$$

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex $\tau_{j-1} ;$
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod \text { (edge weights) } \prod \text { (vertex weights) } .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

$$
\begin{aligned}
& \sigma-\left.\sigma_{\ell}\right|_{\sigma_{\ell-1}} ^{\tau_{\ell-1}}{ }^{\prime}{ }_{\sigma_{2}}^{/}{ }_{\sigma_{1}}^{\tau_{1}}{ }_{/}^{\tau_{0}-\tau} \\
& \mathbf{a}=\mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_{2} \quad \mathbf{b}_{1} \quad \mathbf{b}_{0}=\mathbf{b}
\end{aligned}
$$

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod(\text { vertex weights }) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

$$
\begin{aligned}
& \sigma-\left.\sigma_{\ell}\right|_{\sigma_{\ell-1}} ^{\tau_{\ell-1}}{ }^{\cdots}{ }_{\sigma_{2}}^{/}{ }_{\sigma_{1}}^{\tau_{1}}{ }_{/}^{\tau_{0}-\tau} \\
& \mathbf{a}=\mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_{2} \quad \mathbf{b}_{1} \quad \mathbf{b}_{0}=\mathbf{b}
\end{aligned}
$$

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod(\text { vertex weights }) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

$$
\begin{aligned}
& \sigma-\left.\sigma_{\ell}\right|_{\sigma_{\ell-1}} ^{\tau_{\ell-1}}{ }^{\cdots}{ }_{\sigma_{2}}^{/}{ }_{\sigma_{1}}^{\tau_{1}}{ }_{/}^{\tau_{0}-\tau} \\
& \mathbf{a}=\mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_{2} \quad \mathbf{b}_{1} \quad \mathbf{b}_{0}=\mathbf{b}
\end{aligned}
$$

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod(\text { vertex weights }) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

$$
\begin{aligned}
& \mathbf{a}=\mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \quad \mathbf{b}_{2} \quad \mathbf{b}_{1} \quad \mathbf{b}_{0}=\mathbf{b}
\end{aligned}
$$

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod(\text { vertex weights }) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
\left.w_{\varphi}=\prod(\text { edge weights }) \prod \text { (vertex weights }\right)
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
σ_{ℓ} is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
\left.w_{\varphi}=\prod(\text { edge weights }) \prod \text { (vertex weights }\right)
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
$\sigma-\sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod(\text { vertex weights }) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
$\sigma-\sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod(\text { vertex weights }) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
$\sigma-\sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ as specified by the hedgerow. The weight of φ is

$$
\left.w_{\varphi}=\prod(\text { edge weights }) \prod \text { (vertex weights }\right) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
$\sigma-\sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ as specified by the hedgerow. The weight of φ is

$$
\left.w_{\varphi}=\prod(\text { edge weights }) \prod \text { (vertex weights }\right) .
$$

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right)$ with $\lambda_{j}=\mathbf{b}_{j-1}-\mathbf{b}_{j}$. A chainlink fence φ from an i-simplex τ to an ($i-1$)-simplex σ along λ is a sequence

of faces $\tau_{j} \in K_{i}^{\mathbf{b}_{j}} I$ and $\sigma_{j} \in K_{i-1}^{\mathbf{b}_{j}} I$, plus a choice of hedgerow, such that $\tau_{0}-\tau \tau$ is boundary-linked to τ_{0};
σ_{j} for $j=1, \ldots, \ell-1$ is a stake chain-linked to τ_{j};
σ_{j} for $j=1, \ldots, \ell$ equals the facet $\tau_{j-1}-\lambda_{j}$ of the simplex τ_{j-1};
$\sigma-\sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ
as specified by the hedgerow. The weight of φ is

$$
w_{\varphi}=\prod(\text { edge weights }) \prod(\text { vertex weights })
$$

Hedges, stakes, and shrubberies

Def. Fix a field \mathbb{k} and a CW complex K with i-faces K_{i}.

1. $T_{i} \subseteq K_{i}$ is a shrubbery if $\partial T_{i}=\left\{\partial \tau \mid \tau \in T_{i}\right\}$ is a \mathbb{k}-basis for \widetilde{B}_{i-1}. e.g., $i=1$: shrubbery \Leftrightarrow spanning tree in every connected component
2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \bar{S}_{i-1} maps to a \mathbb{k}-basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$, where $\bar{S}_{i-1}=K_{i-1} \backslash S_{i-1} \quad\left(\Leftrightarrow \partial^{*} S_{i-1}\right.$ is a \mathbb{k}-basis for $\left.\widetilde{B}^{i}\right)$
3. A hedge of dim i is a shrubbery $T_{i} \subseteq K_{i}$ and a \cdot stake set $S_{i-1} \subseteq K_{i-1}$ together denoted $S T_{i}$.

Note.

1. shrubbery $T_{i} \Leftrightarrow$ columns of boundary matrix ∂_{i} span column space of ∂_{i}, so T_{i} is a basis for the matroid of columns
2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^{i} span row space of ∂^{i}, so S_{i-1} is a basis for the matroid of rows
3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_{i}

Hedges, stakes, and shrubberies

Def. Fix a field \mathbb{k} and a CW complex K with i-faces K_{i}.

1. $T_{i} \subseteq K_{i}$ is a shrubbery if $\partial T_{i}=\left\{\partial \tau \mid \tau \in T_{i}\right\}$ is a \mathbb{k}-basis for \widetilde{B}_{i-1}. e.g., $i=1$: shrubbery \Leftrightarrow spanning tree in every connected component
2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \bar{S}_{i-1} maps to a \mathbb{k}-basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$, where $\bar{S}_{i-1}=K_{i-1} \backslash S_{i-1} \quad\left(\Leftrightarrow \partial^{*} S_{i-1}\right.$ is a \mathbb{k}-basis for $\left.\widetilde{B}^{i}\right)$
3. A hedge of dim i is a \quad shrubbery $T_{i} \subseteq K_{i}$ and a \quad stake set $S_{i-1} \subseteq K_{i-1}$ together denoted $S T_{i}$.

Note.

1. shrubbery $T_{i} \Leftrightarrow$ columns of boundary matrix ∂_{i} span column space of ∂_{i}, so T_{i} is a basis for the matroid of columns
2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^{i} span row space of ∂^{i}, so S_{i-1} is a basis for the matroid of rows
3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_{i}

Hedges, stakes, and shrubberies

Def. Fix a field \mathbb{k} and a CW complex K with i-faces K_{i}.

1. $T_{i} \subseteq K_{i}$ is a shrubbery if $\partial T_{i}=\left\{\partial \tau \mid \tau \in T_{i}\right\}$ is a \mathbb{k}-basis for \widetilde{B}_{i-1}. e.g., $i=1$: shrubbery \Leftrightarrow spanning tree in every connected component
2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \bar{S}_{i-1} maps to a \mathbb{k}-basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$, where $\bar{S}_{i-1}=K_{i-1} \backslash S_{i-1} \quad\left(\Leftrightarrow \partial^{*} S_{i-1}\right.$ is a \mathbb{k}-basis for $\left.\widetilde{B}^{i}\right)$
3. A hedge of dim i is a shrubbery $T_{i} \subseteq K_{i}$ and a \quad stake set $S_{i-1} \subseteq K_{i-1}$ together denoted $S T_{i}$.

Note.

1. shrubbery $T_{i} \Leftrightarrow$ columns of boundary matrix ∂_{i} span column space of ∂_{i}, so T_{i} is a basis for the matroid of columns
2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^{i} span row space of ∂^{i}, so S_{i-1} is a basis for the matroid of rows
3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_{i}

Hedges, stakes, and shrubberies

Def. Fix a field \mathbb{k} and a CW complex K with i-faces K_{i}.

1. $T_{i} \subseteq K_{i}$ is a shrubbery if $\partial T_{i}=\left\{\partial \tau \mid \tau \in T_{i}\right\}$ is a \mathbb{k}-basis for \widetilde{B}_{i-1}. e.g., $i=1$: shrubbery \Leftrightarrow spanning tree in every connected component
2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \bar{S}_{i-1} maps to a \mathbb{k}-basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$, where $\bar{S}_{i-1}=K_{i-1} \backslash S_{i-1} \quad\left(\Leftrightarrow \partial^{*} S_{i-1}\right.$ is a \mathbb{k}-basis for $\left.\widetilde{B}^{i}\right)$
3. A hedge of $\operatorname{dim} i$ is a \quad shrubbery $T_{i} \subseteq K_{i}$ and a \quad stake set $S_{i-1} \subseteq K_{i-1}$
together denoted $S T_{i}$.

Note.

1. shrubbery $T_{i} \Leftrightarrow$ columns of boundary matrix ∂_{i} span column space of ∂_{i}, so T_{i} is a basis for the matroid of columns
2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^{i} span row space of ∂^{i}, so S_{i-1} is a basis for the matroid of rows
3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_{i}

Hedges, stakes, and shrubberies

Def. Fix a field \mathbb{k} and a CW complex K with i-faces K_{i}.

1. $T_{i} \subseteq K_{i}$ is a shrubbery if $\partial T_{i}=\left\{\partial \tau \mid \tau \in T_{i}\right\}$ is a \mathbb{k}-basis for \widetilde{B}_{i-1}. e.g., $i=1$: shrubbery \Leftrightarrow spanning tree in every connected component
2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \bar{S}_{i-1} maps to a \mathbb{k}-basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$, where $\bar{S}_{i-1}=K_{i-1} \backslash S_{i-1} \quad\left(\Leftrightarrow \partial^{*} S_{i-1}\right.$ is a \mathbb{k}-basis for $\left.\widetilde{B}^{i}\right)$
3. A hedge of dim i is a \quad shrubbery $T_{i} \subseteq K_{i}$ and a \cdot stake set $S_{i-1} \subseteq K_{i-1}$ together denoted $S T_{i}$.

Note.

1. shrubbery $T_{i} \Leftrightarrow$ columns of boundary matrix ∂_{i} span column space of ∂_{i}, so T_{i} is a basis for the matroid of columns
2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^{i} span row space of ∂^{i}, so S_{i-1} is a basis for the matroid of rows
3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_{i}

Hedges, stakes, and shrubberies

Def. Fix a field \mathbb{k} and a CW complex K with i-faces K_{i}.

1. $T_{i} \subseteq K_{i}$ is a shrubbery if $\partial T_{i}=\left\{\partial \tau \mid \tau \in T_{i}\right\}$ is a \mathbb{k}-basis for \widetilde{B}_{i-1}. e.g., $i=1$: shrubbery \Leftrightarrow spanning tree in every connected component
2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \bar{S}_{i-1} maps to a \mathbb{k}-basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$, where $\bar{S}_{i-1}=K_{i-1} \backslash S_{i-1} \quad\left(\Leftrightarrow \partial^{*} S_{i-1}\right.$ is a \mathbb{k}-basis for $\left.\widetilde{B}^{i}\right)$
3. A hedge of dim i is a \quad shrubbery $T_{i} \subseteq K_{i}$ and a \cdot stake set $S_{i-1} \subseteq K_{i-1}$ together denoted $S T_{i}$.

Note.

1. shrubbery $T_{i} \Leftrightarrow$ columns of boundary matrix ∂_{i} span column space of ∂_{i}, so T_{i} is a basis for the matroid of columns
2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^{i} span row space of ∂^{i}, so S_{i-1} is a basis for the matroid of rows
3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_{i}

Hedges, stakes, and shrubberies

Def. Fix a field \mathbb{k} and a CW complex K with i-faces K_{i}.

1. $T_{i} \subseteq K_{i}$ is a shrubbery if $\partial T_{i}=\left\{\partial \tau \mid \tau \in T_{i}\right\}$ is a \mathbb{k}-basis for \widetilde{B}_{i-1}. e.g., $i=1$: shrubbery \Leftrightarrow spanning tree in every connected component
2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \bar{S}_{i-1} maps to a \mathbb{k}-basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$, where $\bar{S}_{i-1}=K_{i-1} \backslash S_{i-1} \quad\left(\Leftrightarrow \partial^{*} S_{i-1}\right.$ is a \mathbb{k}-basis for $\left.\widetilde{B}^{i}\right)$
3. A hedge of dim i is a \quad shrubbery $T_{i} \subseteq K_{i}$ and a • stake set $S_{i-1} \subseteq K_{i-1}$ together denoted $S T_{i}$.

Note.

1. shrubbery $T_{i} \Leftrightarrow$ columns of boundary matrix ∂_{i} span column space of ∂_{i}, so T_{i} is a basis for the matroid of columns
2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^{i} span row space of ∂^{i}, so S_{i-1} is a basis for the matroid of rows
3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_{i}

Kaplansky's problem
 Hedges, stakes, and shrubberies

Def. Fix a field \mathbb{k} and a CW complex K with i-faces K_{i}.

1. $T_{i} \subseteq K_{i}$ is a shrubbery if $\partial T_{i}=\left\{\partial \tau \mid \tau \in T_{i}\right\}$ is a \mathbb{k}-basis for \widetilde{B}_{i-1}. e.g., $i=1$: shrubbery \Leftrightarrow spanning tree in every connected component
2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \bar{S}_{i-1} maps to a \mathbb{k}-basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$, where $\bar{S}_{i-1}=K_{i-1} \backslash S_{i-1} \quad\left(\Leftrightarrow \partial^{*} S_{i-1}\right.$ is a \mathbb{k}-basis for $\left.\widetilde{B}^{i}\right)$
3. A hedge of dim i is a \quad shrubbery $T_{i} \subseteq K_{i}$ and a • stake set $S_{i-1} \subseteq K_{i-1}$ together denoted $S T_{i}$.

Note.

1. shrubbery $T_{i} \Leftrightarrow$ columns of boundary matrix ∂_{i} span column space of ∂_{i}, so T_{i} is a basis for the matroid of columns
2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^{i} span row space of ∂^{i}, so S_{i-1} is a basis for the matroid of rows
3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_{i}

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.

Def. σ is chain-linked to every τ appearing in s.
e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow S(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.

Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.

Def. σ is chain-linked to every τ appearing in s.
e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{K}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.

Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.
e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{$ root $\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge rim $t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.
e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{$ root $\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge rim $t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$. Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$. e.g. $i=1$: usual circuit from spanning tree in a graph Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.
e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathrm{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.

Def. σ is chain-linked to every τ appearing in s.
e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow S(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge rim $t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.

Def. σ is chain-linked to every τ appearing in s.
e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.

e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow \boldsymbol{s}(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \tilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.

e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \tilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.

e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \tilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$.
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.

e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{K}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$. coeff. $c_{\tau}\left(\tau^{\prime}, T_{i}\right)$
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.

e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{$ root $\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge rim $t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathrm{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \tilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$. coeff. $c_{\tau}\left(\tau^{\prime}, T_{i}\right)$
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.
 e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{$ root $\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge rim $t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
Exercise. $\rho-r=\partial \boldsymbol{s}(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \widetilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$. coeff. $c_{\tau}\left(\tau^{\prime}, T_{i}\right)$
e.g. $i=1$: usual circuit from spanning tree in a graph Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.
 e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{$ root $\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge rim $t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$. Def. ρ is boundary-linked to every ρ^{\prime} appearing in r. coeff. $c_{\rho}\left(\rho^{\prime}, S_{i}\right)$ Exercise. $\rho-r=\partial \boldsymbol{s}(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Kaplansky's problem
 Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \tilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$. coeff. $C_{\tau}\left(\tau^{\prime}, T_{i}\right)$
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.

e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{$ root $\} \Rightarrow s(\sigma)=$ path from root to σ

Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$.
Def. ρ is boundary-linked to every ρ^{\prime} appearing in r.
coeff. $C_{\rho}\left(\rho^{\prime}, S_{i}\right)$
Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1}
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Kaplansky's problem
 Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \tilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$. coeff. $c_{\tau}\left(\tau^{\prime}, T_{i}\right)$
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.
 e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{$ root $\} \Rightarrow \boldsymbol{s}(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$. Def. ρ is boundary-linked to every ρ^{\prime} appearing in r. coeff. $C_{\rho}\left(\rho^{\prime}, S_{i}\right)$ Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1} coeff = edge weight
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Kaplansky's problem
 Linkages and coefficients

Lemma. Each $\tau \in K_{i}$ forms a unique T_{i}-circuit $\tau-t \in \tilde{Z}_{i}$ with $t \in \mathbb{k}\left\{T_{i}\right\}$.
Def. τ is cycle-linked to every $\tau^{\prime} \in K_{i}$ appearing in $\tau-t$. coeff. $c_{\tau}\left(\tau^{\prime}, T_{i}\right)$
e.g. $i=1$: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\left\{T_{i}\right\}$ with ∂s having coefficient 1 on σ and 0 on $S \backslash \sigma$.
Def. σ is chain-linked to every τ appearing in s.
 e.g. $i=1$ and K connected $\Rightarrow S_{0}=K_{0} \backslash\{\operatorname{root}\} \Rightarrow s(\sigma)=$ path from root to σ Lemma. Each $\rho \in K_{i}$ has a unique hedge $\operatorname{rim} t \in \mathbb{k}\left\{\bar{S}_{i}\right\}$ with $\rho-r \in \widetilde{B}_{i}$. Def. ρ is boundary-linked to every ρ^{\prime} appearing in r. coeff. $C_{\rho}\left(\rho^{\prime}, S_{i}\right)$ Exercise. $\rho-r=\partial s(\rho)$ for any choice of T_{i+1} coeff = edge weight
Def. A hedgerow along $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$ is (roughly) a sequence of hedges in $K^{\mathbf{b}_{j}}$ vertex weight $\approx \operatorname{det}^{2}$ (maximal invertible submatrix indexed by hedge)

Proof ingredients

Main idea. Natural spectral sequence with $\widetilde{H}_{i-1} K^{\mathrm{a}} I$ at $p=|\mathbf{a}|$ and $q=i-p$ in $E_{p q}^{1}$ yields natural maps on subquotients:

$$
\bigoplus_{|\mathbf{a}|=|\mathbf{b}|-4} \tilde{H}_{i-1} K^{\mathbf{a}} \overbrace{|\mathbf{a}|=|\mathbf{b}|-3}
$$

To fix: split!
Ingredients.

1. [Eagon 1990]: make a complex from vertically split spectral sequence
2. Which splitting? Moore-Penrose pseudoinverse!

Combinatorial formula from [Berg 1986].

Proof ingredients

Main idea. Natural spectral sequence with $\tilde{H}_{i-1} K^{\mathrm{a}} I$ at $p=|\mathbf{a}|$ and $q=i-p$ in $E_{p q}^{1}$ yields natural maps on subquotients:

$$
\bigoplus_{|\mathbf{a}|=|\mathbf{b}|-4} \tilde{H}_{i-1} K^{\mathbf{a}} I_{\text {c }}
$$

To fix: split!
Ingredients.

1. [Eagon 1990]: make a complex from vertically split spectral sequence
2. Which splitting? Moore-Penrose pseudoinverse!

Combinatorial formula from [Berg 1986].

Proof ingredients

Main idea. Natural spectral sequence with $\tilde{H}_{i-1} K^{\mathrm{a}} I$ at $p=|\mathbf{a}|$ and $q=i-p$ in $E_{p q}^{1}$ yields natural maps on subquotients:

$$
\bigoplus_{|\mathbf{a}|=|\mathbf{b}|-4} \tilde{H}_{i-1} K^{\mathbf{a}} I_{\text {c }}
$$

To fix: split!
Ingredients.

1. [Eagon 1990]: make a complex from vertically split spectral sequence
2. Which splitting? Moore-Penrose pseudoinverse!

Combinatorial formula from [Berg 1986].

Proof ingredients

Main idea. Natural spectral sequence with $\tilde{H}_{i-1} K^{\mathrm{a}} I$ at $p=|\mathbf{a}|$ and $q=i-p$ in $E_{p q}^{1}$ yields natural maps on subquotients:

$$
\bigoplus_{|\mathbf{a}|=|\mathbf{b}|-4} \tilde{H}_{i-1} K^{\mathbf{a}} \overbrace{|\mathbf{a}|=|\mathbf{b}|-3}
$$

To fix: split!
Ingredients.

1. [Eagon 1990]: make a complex from vertically split spectral sequence
2. Which splitting? Moore-Penrose pseudoinverse!

Combinatorial formula from [Berg 1986].

Proof ingredients

Main idea. Natural spectral sequence with $\tilde{H}_{i-1} K^{\mathrm{a}} I$ at $p=|\mathbf{a}|$ and $q=i-p$ in $E_{p q}^{1}$ yields natural maps on subquotients:

$$
\bigoplus_{|\mathbf{a}|=|\mathbf{b}|-4} \tilde{H}_{i-1} K^{\mathbf{a}} I_{|=|\mathbf{b}|-3}
$$

To fix: split!

Ingredients.

1. [Eagon 1990]: make a complex from vertically split spectral sequence
2. Which splitting? Moore-Penrose pseudoinverse! Combinatorial formula from [Berg 1986].

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially-and in all characteristics!-using combinatorial choices of splittings.

Next stpes.

1. Recover known resolutions (planar maps for trivariate; Eliahou-Kervaire, etc....) from (noncanonical) sylvan resolutions.
2. Minimal free resolutions of toric and lattice ideals

- Koszul double complex methods on "Spanish simplicial complex"
- (sylvan minimal free resolutions of lattice modules)/(lattice action)

3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\mathbb{k}=\mathbb{C}$: average splittings by integration.
4. Apply Koszul double complexes to bound global dimension of \mathbb{R}^{n}-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Thank You

