Minimal resolutions of monomial ideals

Ezra Miller

Duke University, Department of Mathematics and Department of Statistical Science

ezra@math.duke.edu

joint with John Eagon (Minnesota) Erika Ordog (Duke)

Combinatorial Algebra Meets Algebraic Combinatorics #17

Dalhousie University Halifax, NS Canada

25 January 2020

Kaplansky's problem	Sylvan matrices	Sylvan morphism	Chain-link fences	Hedges	Linkages	Proof	Future
Outline							

- 1. Kaplansky's problem
- 2. Sylvan matrices
- 3. Canonical sylvan morphism
- 4. Chain-link fences
- 5. Hedges, stakes, and shrubberies
- 6. Linkages and coefficients
- 7. Proof ingredients
- 8. Future directions

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$

[Kaplansky, early 1960s]. Find minimal free resolution of I

Def. Koszul simplicial complex $K^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$

[Hochster's Formula]. Tor_{*i*}(\Bbbk , *I*)_b $\cong \widetilde{H}_{i-1}(K^{\mathbf{b}}I; \Bbbk)$

Grading. $F_{\bullet}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}(K^{\mathbf{b}}I; \mathbb{k}) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$

Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i \mathcal{K}^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} \mathcal{K}^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$

Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_{i}^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ constitute a free resolution of *I*.

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of *I*

Def. Koszul simplicial complex $K^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula] Ter $(\mathbb{T}, I)_{\mathcal{C}} \simeq \widetilde{H}_{\mathcal{C}} (K^{\mathbf{b}}I, \mathbb{T})$

[Hochster's Formula]. Tor_{*i*}(\mathbb{k} , *I*)_b $\cong \widetilde{H}_{i-1}(K^{\mathbf{b}}I; \mathbb{k})$

Grading. $F_{\bullet} : 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \dots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}(K^{\mathbf{b}}I; \mathbb{k}) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$ Note. $F_{i} \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_{i}K^{\mathbf{b}}I$ Note. $(F_{i}^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1}K^{\mathbf{a}}I & \text{if } \mathbf{a} \preceq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$

Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_iK^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ constitute a free resolution of *I*.

vlvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of IDef. Koszul simplicial complex $K^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_{*i*}(\Bbbk , I)_{**b**} $\cong \widetilde{H}_{i-1}(K^{\mathbf{b}}I; \Bbbk)$

Grading. $F_{\bullet} : 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}(K^{\mathbf{b}}I; \mathbb{k}) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$ Note. $F_{i} \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_{i}K^{\mathbf{b}}I$ Note. $(F_{i}^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1}K^{\mathbf{a}}I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$

Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_iK^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ constitute a free resolution of *I*.

ylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{X} = X_1, \ldots, X_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $K^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\mathbb{k} , I)_b $\cong \widetilde{H}_{i-1}(K^{\mathbf{b}}I; \mathbb{k})$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^n -graded $\Rightarrow F_{i+1} \cong \bigoplus H_i(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b})$ $\mathbf{b} \in \mathbb{N}^n$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of IDef. Koszul simplicial complex $K^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_{\mathbf{b}} $\cong \widetilde{H}_{i-1}(K^{\mathbf{b}}I; \Bbbk)$

Grading.
$$F_{\bullet}: 0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \dots \leftarrow F_{n-1} \leftarrow 0$$

minimal free resolution of I
 \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i}(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b})$

Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$

Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_iK^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ constitute a free resolution of *I*.

Sylvan matrices

Sylvan morphism

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{X} = X_1, \ldots, X_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{n} : $0 \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^n -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_i(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b})$ $\mathbf{b} \in \mathbb{N}^n$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^n -graded $\Rightarrow F_{i+1} \cong \bigoplus H_i(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b})$ $\mathbf{b} \in \mathbb{N}^n$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_{i}(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b})$ b∈ℕn Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of IDef. Koszul simplicial complex $K^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk, I) $_{\mathbf{b}} \cong \underbrace{\widetilde{H}_{i-1}(K^{\mathbf{b}}I; \Bbbk)}_{\dim_{\Bbbk}}$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\Bbbk}$ Grading. $F_{\bullet}: 0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$
minimal free resolution of I \mathbb{N}^n -graded $\Rightarrow F_{i+1} \cong$ $\mathbb{K}[\mathbf{x}](-\mathbf{b})$

Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}}I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}}I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$

Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_iK^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ constitute a free resolution of *I*.

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong$ $k[\mathbf{x}](-\mathbf{b})$ $= \langle \mathbf{x}^{\mathbf{b}} \rangle$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose

induced maps $F_i^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ constitute a free resolution of *I*.

ylvan matrices

Sylvan morphism

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \ldots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\mathbb{k} , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \mathbb{k})$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I $k[\mathbf{x}](-\mathbf{b})^{\beta_{i,\mathbf{b}}(I)}$ \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong$

Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i \mathcal{K}^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} \mathcal{K}^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$

Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_iK^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ constitute a free resolution of *I*.

Sylvan matrices

Sylvan morphism

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \ldots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_{*i*}(\mathbb{k} , *I*)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \mathbb{k})$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \widetilde{H}_{i}(K^{\mathbf{b}}I; \mathbb{k}) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})$

Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}I}$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}I} & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$

Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_iK^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ constitute a free resolution of *I*.

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_{i}(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b})$ b∈ℕn Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_{i}(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b})$ b∈ℕn Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_{i}(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b}) = \bigoplus F_{i+1}^{\mathbf{b}}$ b∈ℕn $\mathbf{b} \in \mathbb{N}^n$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^a \leftarrow F_{i+1}^b$ constitute a free resolution of *I*.

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_{i}(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b}) = \bigoplus F_{i+1}^{\mathbf{b}}$ b∈ℕn $\mathbf{b} \in \mathbb{N}^n$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i \mathcal{K}^{\mathbf{b}} I$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^a \leftarrow F_{i+1}^b$ constitute a free resolution of *I*.

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^n -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_i(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b}) = \bigoplus F_{i+1}^{\mathbf{b}}$ b∈ℕn $\mathbf{b} \in \mathbb{N}^n$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I \otimes 1$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^a \leftarrow F_{i+1}^b$ constitute a free resolution of *I*.

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong \widetilde{H}_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^n -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_i(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b}) = \bigoplus F_{i+1}^{\mathbf{b}}$ b∈ℕn $\mathbf{b} \in \mathbb{N}^n$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I \otimes 1$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^a \leftarrow F_{i+1}^b$ constitute a free resolution of *I*.

Sylvan matrices

Sylvan morphism

Chain-link fences

Kaplansky's problem

Fix $I \subseteq \Bbbk[\mathbf{x}]$ monomial ideal $\mathbf{x} = x_1, \dots, x_n$ [Kaplansky, early 1960s]. Find minimal free resolution of I **Def.** Koszul simplicial complex $\mathcal{K}^{\mathbf{b}}I = \{\sigma \in \{0, 1\}^n \mid \mathbf{x}^{\mathbf{b}-\sigma} \in I\}$ at $\mathbf{b} \in \mathbb{N}^n$ [Hochster's Formula]. Tor_i(\Bbbk , I)_b $\cong H_{i-1}(K^{b}I; \Bbbk)$ Cor. $\beta_{i,\mathbf{b}}(I) = \dim_{\mathbb{R}}$ Grading. F_{\bullet} : $0 \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n-1} \leftarrow 0$ minimal free resolution of I \mathbb{N}^{n} -graded $\Rightarrow F_{i+1} \cong \bigoplus \widetilde{H}_{i}(K^{\mathbf{b}}I; \Bbbk) \otimes_{\Bbbk} \Bbbk[\mathbf{x}](-\mathbf{b}) = \bigoplus F_{i+1}^{\mathbf{b}}$ b∈ℕn $\mathbf{b} \in \mathbb{N}^n$ Note. $F_i \leftarrow F_{i+1}$ on $F_{i+1}^{\mathbf{b}}$ determined by action on $\widetilde{H}_i K^{\mathbf{b}} I \otimes 1$ Note. $(F_i^{\mathbf{a}})_{\mathbf{b}} = \begin{cases} \widetilde{H}_{i-1} K^{\mathbf{a}} I & \text{if } \mathbf{a} \leq \mathbf{b} \\ 0 & \text{otherwise} \end{cases}$ Kaplansky's problem \Leftrightarrow find maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ whose induced maps $F_i^a \leftarrow F_{i+1}^b$ constitute a free resolution of *I*.

Kaplansky's problem	Sylvan matrices	Sylvan morphism	Chain-link fences	Hedges	Linkages	Proof	Future
Kaplans	ky's prob	olem					
Wish List.	 universa canonica 	l al	closed form	al	• minin	nal	

Past progress

- [Taylor 1966] not minimal
- [Lyubeznik 1988] not minimal or canonical
- Wall resolutions [Eagon 1990] not proved combinatorial or universal
- stable ideals [Eliahou–Kervaire 1990] not universal
- hull resolutions [Bayer–Sturmfels 1998] not minimal
- [Bayer-Peeva-Sturmfels 1998, M-Sturmfels-Yanagawa 2000]
 - generic monomial ideals: not universal
 - degenerate Scarf resolutions: not minimal or canonical
- [Yuzvinsky 1999] not combinatorial (and claimed not canonical)
- shellable monomial ideals [Batzies-Welker 2002] not universal
- trivariate monomial ideals [M 2002] not canonical
- order complex of Betti poset [Tchernev–Varisco 2015] not minimal
- Buchberger resolutions [Olteanu–Welker 2016] not canonical or minimal

Subsequent development

• [Tchernev 2019] not closed-form (algorithmically combinatorial)

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Wish List. • universal • closed form • minimal

combinatorial

- canonical
 Past progress
 - [Taylor 1966] not minimal
 - [Lyubeznik 1988] not minimal or canonical
 - Wall resolutions [Eagon 1990] not proved combinatorial or universal
 - stable ideals [Eliahou–Kervaire 1990] not universal
 - hull resolutions [Bayer–Sturmfels 1998] not minimal
 - [Bayer-Peeva-Sturmfels 1998, M-Sturmfels-Yanagawa 2000]
 - generic monomial ideals: not universal
 - degenerate Scarf resolutions: not minimal or canonical
 - [Yuzvinsky 1999] not combinatorial (and claimed not canonical)
 - shellable monomial ideals [Batzies–Welker 2002] not universal
 - trivariate monomial ideals [M 2002] not canonical
 - order complex of Betti poset [Tchernev-Varisco 2015] not minimal
 - Buchberger resolutions [Olteanu–Welker 2016] not canonical or minimal

Subsequent development

• [Tchernev 2019] not closed-form (algorithmically combinatorial)

Obstacle. Express maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_iK^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ canonically

Suffices. \widetilde{H}_i given as cycles $\widetilde{Z}_i \subseteq \widetilde{C}_i$

Obstacle. Express maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ canonically $\Leftrightarrow F_{i}^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ Suffices. \widetilde{H}_{i} given as cycles $\widetilde{Z}_{i} \subset \widetilde{C}_{i}$

Obstacle. Express maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ canonically $\Leftrightarrow F_{i}^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ Suffices. \widetilde{H}_{i} given as cycles $\widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$

Obstacle. Express maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ canonically \Leftrightarrow $F_{i}^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ Suffices. \widetilde{H}_{i} given as cycles $\widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms \downarrow $\widetilde{Z}_{i-1} \subseteq \widetilde{C}_{i-1}$

Obstacle. Express maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ canonically $\Leftrightarrow F_{i}^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ Suffices. \widetilde{H}_{i} given as cycles $\widetilde{B}_{i} \subseteq \widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms $\downarrow \qquad \downarrow$ satisfying $\widetilde{B}_{i-1} \subseteq \widetilde{Z}_{i-1} \subseteq \widetilde{C}_{i-1}$

Obstacle. Express maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ canonically $\Leftrightarrow F_{i}^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ Suffices. \widetilde{H}_{i} given as cycles $\widetilde{B}_{i} \subseteq \widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms $\downarrow \qquad \downarrow \qquad \downarrow$ satisfying $\widetilde{B}_{i-1} \subseteq \widetilde{Z}_{i-1} \subseteq \widetilde{C}_{i-1}$

Obstacle. Express maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ canonically $\Leftrightarrow F_{i}^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ Suffices. \widetilde{H}_{i} given as cycles $\widetilde{B}_{i} \subseteq \widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms $\downarrow \qquad \downarrow \qquad \downarrow$ satisfying $\widetilde{B}_{i-1} \subseteq \widetilde{Z}_{i-1} \subseteq \widetilde{C}_{i-1}$

Obstacle. Express maps $\widetilde{H}_{i-1}K^{\mathbf{a}}I \leftarrow \widetilde{H}_{i}K^{\mathbf{b}}I$ for $\mathbf{a} \prec \mathbf{b}$ canonically $\Leftrightarrow F_{i}^{\mathbf{a}} \leftarrow F_{i+1}^{\mathbf{b}}$ Suffices. \widetilde{H}_{i} given as cycles $\widetilde{B}_{i} \subseteq \widetilde{Z}_{i} \subseteq \widetilde{C}_{i}$ so specify homomorphisms $\downarrow \qquad \downarrow \qquad \downarrow$ satisfying $\widetilde{B}_{i-1} \subseteq \widetilde{Z}_{i-1} \subseteq \widetilde{C}_{i-1}$

Def. For each **a** \prec **b**, the sylvan matrix for $F_i \leftarrow F_{i+1}$ has block D^{ab} of the form

 $(i-1)\text{-faces of } \mathcal{K}^{\mathbf{a}} \xrightarrow{\tau_{1} \cdots \tau_{n}} \leftarrow i\text{-faces of } \mathcal{K}^{\mathbf{b}}$ $\stackrel{\sigma_{1}}{\vdots} \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & & & \\ & & &$

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof
Sylvan matrices

Example 1. $I = \langle xy, yz, xz \rangle$ has Betti number $\beta_{1,111}(I) = 2$ from $K^{111}I$:

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Fu

Example 1. $I = \langle xy, yz, xz \rangle$ has Betti number $\beta_{1,111}(I) = 2$ from $K^{111}I$:

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Fu

Example 1. $I = \langle xy, yz, xz \rangle$ has Betti number $\beta_{1,111}(I) = 2$ from $K^{111}I$:

Sylvan morphism

Hedges Linl

Proof

Sylvan matrices

kages F

Future

Sylvan matrices

Linkages

Future

Sylvan matrices

nkages I

Future

Sylvan matrices

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_{i}K^{\mathsf{b}}I \xleftarrow{D^{\mathsf{ab}}} \widetilde{C}_{i-1}K^{\mathsf{a}}I,$$

satisfying

ying •
$$D(\widetilde{Z}_i K^{\mathbf{b}} I) \subseteq \widetilde{Z}_{i-1} K^{\mathbf{a}} I$$

and • $D(\widetilde{B}_i K^{\mathbf{b}} I) = 0$,

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$D_{\sigma\tau} = \sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma\tau}(\lambda)} w_{\varphi}$$

where

Λ(a, b) = {saturated decreasing lattice paths from b to a},

- $\Phi_{\sigma\tau}(\lambda) = \{ \text{chain-link fences from } \tau \text{ to } \sigma \text{ along } \lambda \},$
- w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{c \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^c)$.

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_i K^{\mathsf{b}} I \xleftarrow{\mathcal{D}^{\mathsf{ab}}} \widetilde{C}_{i-1} K^{\mathsf{a}} I,$$

satisfying

and

$$D(\widetilde{Z}_{i}K^{\mathbf{b}}I) \subseteq \widetilde{Z}_{i-1}K^{\mathbf{a}}I$$
$$D(\widetilde{B}_{i}K^{\mathbf{b}}I) = 0.$$

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$D_{\sigma\tau} = \sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})} \frac{1}{\Delta_{i, \lambda} I} \sum_{\varphi \in \Phi_{\sigma\tau}(\lambda)} w_{\varphi}$$

where

• A(a, b) = {saturated decreasing lattice paths from b to a},

- $\Phi_{\sigma\tau}(\lambda) = \{ \text{chain-link fences from } \tau \text{ to } \sigma \text{ along } \lambda \},$
- w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{c \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^c)$.

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_i K^{\mathsf{b}} I \xleftarrow{D^{\mathsf{ab}}} \widetilde{C}_{i-1} K^{\mathsf{a}} I,$$

satisfying • $D(\widetilde{Z}_{i}K^{\mathbf{b}}I) \subseteq \widetilde{Z}_{i-1}K^{\mathbf{a}}I$ and • $D(\widetilde{B}_{i}K^{\mathbf{b}}I) = 0$,

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$D_{\sigma au} = \sum_{\lambda \in \Lambda(\mathbf{a},\mathbf{b})} rac{1}{\Delta_{i,\lambda}I} \sum_{arphi \in \Phi_{\sigma au}(\lambda)} w_{arphi}$$

where

- \Lambda(a, b) = {saturated decreasing lattice paths from b to a},
 - $\Phi_{\sigma\tau}(\lambda) = \{$ chain-link fences from τ to σ along $\lambda \},$
 - w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{c \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^c)$.

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_{i}K^{\mathbf{b}}I \xleftarrow{D^{\mathbf{ab}}} \widetilde{C}_{i-1}K^{\mathbf{a}}I,$$

satisfying

and

•
$$D(\widetilde{Z}_{i}K^{\mathbf{b}}I) \subseteq \widetilde{Z}_{i-1}K^{\mathbf{a}}I$$

• $D(\widetilde{B}_{i}K^{\mathbf{b}}I) = 0,$

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$\mathcal{D}_{\sigma au} = \sum_{\lambda \in \Lambda(\mathbf{a},\mathbf{b})} rac{1}{\Delta_{i,\lambda} I} \sum_{arphi \in \Phi_{\sigma au}(\lambda)} w_{arphi}$$

where

Λ(a, b) = {saturated decreasing lattice paths from b to a},

- $\Phi_{\sigma\tau}(\lambda) = \{ \text{chain-link fences from } \tau \text{ to } \sigma \text{ along } \lambda \},$
- w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{c \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^c)$.

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_{i}K^{\mathbf{b}}I \xleftarrow{D^{\mathbf{ab}}} \widetilde{C}_{i-1}K^{\mathbf{a}}I,$$

satisfying

and

•
$$D(\widetilde{Z}_i K^{\mathbf{b}} I) \subseteq \widetilde{Z}_{i-1} K^{\mathbf{a}} I$$

• $D(\widetilde{B}_i K^{\mathbf{b}} I) = 0,$

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$\mathcal{D}_{\sigma au} = \sum_{\lambda \in \Lambda(\mathbf{a},\mathbf{b})} rac{1}{\Delta_{i,\lambda} I} \sum_{arphi \in \Phi_{\sigma au}(\lambda)} w_{arphi}$$

where • $\Lambda(\mathbf{a}, \mathbf{b}) = \{\text{saturated decreasing lattice paths from } \mathbf{b} \text{ to } \mathbf{a}\},\$

- $\Phi_{\sigma\tau}(\lambda) = \{$ chain-link fences from τ to σ along $\lambda \},$
- w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{c \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^c)$.

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_{i}K^{\mathbf{b}}I \xleftarrow{D^{\mathbf{ab}}} \widetilde{C}_{i-1}K^{\mathbf{a}}I,$$

satisfying

and

•
$$D(\widetilde{Z}_i K^{\mathbf{b}} I) \subseteq \widetilde{Z}_{i-1} K^{\mathbf{a}} I$$

• $D(\widetilde{B}_i K^{\mathbf{b}} I) = 0,$

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$\mathcal{D}_{\sigma au} = \sum_{\lambda \in \Lambda(\mathbf{a},\mathbf{b})} rac{1}{\Delta_{i,\lambda} I} \sum_{arphi \in \Phi_{\sigma au}(\lambda)} w_{arphi}$$

where • $\Lambda(\mathbf{a}, \mathbf{b}) = \{\text{saturated decreasing lattice paths from } \mathbf{b} \text{ to } \mathbf{a}\},\$

- $\Phi_{\sigma\tau}(\lambda) = \{ \text{chain-link fences from } \tau \text{ to } \sigma \text{ along } \lambda \},$
- w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{c \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^c)$.

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_{i}K^{\mathbf{b}}I \xleftarrow{D^{\mathbf{ab}}} \widetilde{C}_{i-1}K^{\mathbf{a}}I,$$

satisfying

and

•
$$D(\widetilde{Z}_i K^{\mathbf{b}}I) \subseteq \widetilde{Z}_{i-1} K^{\mathbf{a}}I$$

• $D(\widetilde{B}_i K^{\mathbf{b}}I) = 0,$

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$\mathcal{D}_{\sigma au} = \sum_{\lambda \in \Lambda(\mathbf{a},\mathbf{b})} rac{1}{\Delta_{i,\lambda} I} \sum_{arphi \in \Phi_{\sigma au}(\lambda)} w_{arphi}$$

where • $\Lambda(\mathbf{a}, \mathbf{b}) = \{\text{saturated decreasing lattice paths from } \mathbf{b} \text{ to } \mathbf{a}\},\$

- $\Phi_{\sigma\tau}(\lambda) = \{ \text{chain-link fences from } \tau \text{ to } \sigma \text{ along } \lambda \},$
- w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{c \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^c)$.

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_{i}K^{\mathbf{b}}I \xleftarrow{D^{\mathbf{ab}}} \widetilde{C}_{i-1}K^{\mathbf{a}}I,$$

satisfying

and

•
$$D(\widetilde{Z}_i K^{\mathbf{b}} I) \subseteq \widetilde{Z}_{i-1} K^{\mathbf{a}} I$$

• $D(\widetilde{B}_i K^{\mathbf{b}} I) = 0,$

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$\mathcal{D}_{\sigma au} = \sum_{\lambda \in \Lambda(\mathbf{a},\mathbf{b})} rac{1}{\Delta_{i,\lambda} I} \sum_{arphi \in \Phi_{\sigma au}(\lambda)} w_{arphi}$$

where

- A(a, b) = {saturated decreasing lattice paths from b to a},
 - $\Phi_{\sigma\tau}(\lambda) = \{ \text{chain-link fences from } \tau \text{ to } \sigma \text{ along } \lambda \},$
 - w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{\mathbf{c} \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^{\mathbf{c}}).$

Theorem [Eagon–M–Ordog 2019]. If char \Bbbk avoids finitely many primes, then there is a canonical sylvan homology morphism

$$\widetilde{C}_{i}K^{\mathbf{b}}I \xleftarrow{D^{\mathbf{ab}}} \widetilde{C}_{i-1}K^{\mathbf{a}}I,$$

satisfying

and

•
$$D(\widetilde{Z}_i K^{\mathbf{b}}I) \subseteq \widetilde{Z}_{i-1} K^{\mathbf{a}}I$$

• $D(\widetilde{B}_i K^{\mathbf{b}}I) = 0,$

explicitly given by the sylvan matrix of $D = D^{ab}$ with combinatorial entries

$$\mathcal{D}_{\sigma au} = \sum_{\lambda \in \Lambda(\mathbf{a},\mathbf{b})} rac{1}{\Delta_{i,\lambda} I} \sum_{arphi \in \Phi_{\sigma au}(\lambda)} w_{arphi}$$

where

- Λ(a, b) = {saturated decreasing lattice paths from b to a},
 - $\Phi_{\sigma\tau}(\lambda) = \{ \text{chain-link fences from } \tau \text{ to } \sigma \text{ along } \lambda \},$
 - w_{φ} = weight of φ ,

and • $\Delta_{i,\lambda}I \approx \prod_{c \in \lambda} \sum \det^2(\text{maximal invertible submatrices of } \partial_i^c)$.

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

 σ_j for $j = 1, \ldots, \ell - 1$ is a stake chain-linked to τ_j ;

 σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} - \lambda_j$ of the simplex τ_{j-1} ;

 $\sigma - \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$W_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

of faces $\tau_j \in K_i^{\mathbf{b}_j} I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j} I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

 σ_j for $j = 1, \ldots, \ell - 1$ is a stake chain-linked to τ_j ;

 σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} - \lambda_j$ of the simplex τ_{j-1} ;

 $\sigma - \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$W_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

 $\label{eq:a_b_l} \boldsymbol{a} = \boldsymbol{b}_{\ell} \quad \boldsymbol{b}_{\ell-1} \, \cdots \, \boldsymbol{b}_2 \qquad \boldsymbol{b}_1 \qquad \boldsymbol{b}_0 = \boldsymbol{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j} I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j} I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

 σ_j for $j = 1, \ldots, \ell - 1$ is a stake chain-linked to τ_j ;

 σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} - \lambda_j$ of the simplex τ_{j-1} ;

 $\sigma - \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$W_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

 $\label{eq:a_b_l} \boldsymbol{a} = \boldsymbol{b}_{\ell} \quad \boldsymbol{b}_{\ell-1} \, \cdots \, \, \boldsymbol{b}_2 \qquad \boldsymbol{b}_1 \qquad \boldsymbol{b}_0 = \boldsymbol{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \ \tau$ is boundary-linked to τ_0 ;

 σ_j for $j = 1, \ldots, \ell - 1$ is a stake chain-linked to τ_j ;

 σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} - \lambda_j$ of the simplex τ_{j-1} ;

 $\sigma - \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$W_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

 $\label{eq:a_b_l} \boldsymbol{a} = \boldsymbol{b}_{\ell} \quad \boldsymbol{b}_{\ell-1} \, \cdots \, \boldsymbol{b}_2 \qquad \boldsymbol{b}_1 \qquad \boldsymbol{b}_0 = \boldsymbol{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

 σ_j for $j = 1, \ldots, \ell - 1$ is a stake chain-linked to τ_j ;

 σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} - \lambda_j$ of the simplex τ_{j-1} ;

 $\sigma - \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$W_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

 $\mathbf{a} = \mathbf{b}_\ell \quad \mathbf{b}_{\ell-1} \, \cdots \, \, \mathbf{b}_2 \qquad \mathbf{b}_1 \qquad \mathbf{b}_0 = \mathbf{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

 σ_j for $j = 1, \ldots, \ell - 1$ is a stake chain-linked to τ_j ;

 σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} - \lambda_j$ of the simplex τ_{j-1} ;

 $\sigma - \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$W_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

 $\label{eq:abla} \textbf{a} = \textbf{b}_\ell \quad \textbf{b}_{\ell-1} \, \cdots \, \textbf{b}_2 \qquad \textbf{b}_1 \quad \textbf{b}_0 = \textbf{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

 σ_j for $j = 1, \ldots, \ell - 1$ is a stake chain-linked to τ_j ;

/ σ_j for $j = 1, ..., \ell$ equals the facet $\tau_{j-1} - \lambda_j$ of the simplex τ_{j-1} ; $\sigma - \sigma_\ell \sigma_\ell$ is cycle-linked to σ

$$W_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

$$\begin{array}{cccccccccc} & & & & \tau_1 & \tau_0 - \tau \\ & & / & \backslash & / & \backslash & / \\ \sigma - \sigma_\ell & \sigma_{\ell-1} & \sigma_2 & \sigma_1 \end{array}$$

 $\label{eq:a_b_l} \boldsymbol{a} = \boldsymbol{b}_{\ell} \quad \boldsymbol{b}_{\ell-1} \, \cdots \, \boldsymbol{b}_2 \qquad \boldsymbol{b}_1 \quad \boldsymbol{b}_0 = \boldsymbol{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \ \tau$ is boundary-linked to τ_0 ;

 σ_j for $j = 1, \ldots, \ell - 1$ is a stake chain-linked to τ_j ;

/ σ_j for $j = 1, ..., \ell$ equals the facet $\tau_{j-1} - \lambda_j$ of the simplex τ_{j-1} ; $\sigma - \sigma_\ell \sigma_\ell$ is cycle-linked to σ

$$W_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

 $\label{eq:a_b_l} \boldsymbol{a} = \boldsymbol{b}_{\ell} \quad \boldsymbol{b}_{\ell-1} \, \cdots \, \boldsymbol{b}_2 \qquad \boldsymbol{b}_1 \quad \boldsymbol{b}_0 = \boldsymbol{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \ \tau$ is boundary-linked to τ_0 ;

- σ_j for $j = 1, \ldots, \ell 1$ is a stake chain-linked to τ_j ;
- σ_j for $j = 1, \dots, \ell$ equals the facet $\tau_{j-1} \lambda_j$ of the simplex τ_{j-1} ;
- $\sigma \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$w_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

$$\sigma - \sigma_{\ell} \sigma_{\ell-1} \sigma_{2} \sigma_{1} \sigma_{\ell-1} \sigma_{2} \sigma_{1}$$

 $\label{eq:a_b_l} \boldsymbol{a} = \boldsymbol{b}_{\ell} \quad \boldsymbol{b}_{\ell-1} \, \cdots \, \boldsymbol{b}_2 \qquad \boldsymbol{b}_1 \qquad \boldsymbol{b}_0 = \boldsymbol{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \ \tau$ is boundary-linked to τ_0 ;

- σ_j for $j = 1, \ldots, \ell 1$ is a stake chain-linked to τ_j ;
- σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} \lambda_j$ of the simplex τ_{j-1} ;
- $\sigma \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$w_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Chain-link fences

Chain-link fences

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

$$\sigma - \sigma_{\ell} \sigma_{\ell-1} \sigma_{2} \sigma_{1} \sigma_{\ell-1} \sigma_{2} \sigma_{1}$$

 $\label{eq:a_b_l} \boldsymbol{a} = \boldsymbol{b}_{\ell} \quad \boldsymbol{b}_{\ell-1} \, \cdots \, \boldsymbol{b}_2 \qquad \boldsymbol{b}_1 \qquad \boldsymbol{b}_0 = \boldsymbol{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

- σ_j for $j = 1, \ldots, \ell 1$ is a stake chain-linked to τ_j ;
- σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} \lambda_j$ of the simplex τ_{j-1} ;
- $\sigma \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$w_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

$$\begin{array}{ccccc} & \tau_{\ell-1} & \cdots & \tau_1 & \tau_0 - \tau \\ & / & \backslash & / & \backslash & / \\ \sigma - \sigma_{\ell} & \sigma_{\ell-1} & \sigma_2 & \sigma_1 \end{array}$$

 $\mathbf{a} = \mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_2 \qquad \mathbf{b}_1 \quad \mathbf{b}_0 = \mathbf{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \ \tau$ is boundary-linked to τ_0 ;

- σ_j for $j = 1, \ldots, \ell 1$ is a stake chain-linked to τ_j ;
- σ_j for $j = 1, ..., \ell$ equals the facet $\tau_{j-1} \lambda_j$ of the simplex τ_{j-1} ;
- $\sigma \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$w_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

$$\sigma - \sigma_{\ell} \sigma_{\ell-1} \sigma_{2} \sigma_{1} \sigma_{\ell-1} \sigma_{2} \sigma_{1}$$

 $\mathbf{a} = \mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_2 \qquad \mathbf{b}_1 \quad \mathbf{b}_0 = \mathbf{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

- σ_j for $j = 1, \ldots, \ell 1$ is a stake chain-linked to τ_j ;
- σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} \lambda_j$ of the simplex τ_{j-1} ;
- $\sigma \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$w_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

$$\sigma - \sigma_{\ell} \sigma_{\ell-1} \sigma_{2} \sigma_{1} \sigma_{\ell-1} \sigma_{2} \sigma_{1}$$

 $\mathbf{a} = \mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_2 \qquad \mathbf{b}_1 \quad \mathbf{b}_0 = \mathbf{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

- σ_j for $j = 1, \ldots, \ell 1$ is a stake chain-linked to τ_j ;
- σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} \lambda_j$ of the simplex τ_{j-1} ;
- $\sigma \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$w_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Def. Fix path $\lambda \in \Lambda(\mathbf{a}, \mathbf{b})$, so $\lambda = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_\ell)$ with $\lambda_j = \mathbf{b}_{j-1} - \mathbf{b}_j$. A chainlink fence φ from an *i*-simplex τ to an (i - 1)-simplex σ along λ is a sequence

$$\sigma - \sigma_{\ell} \sigma_{\ell-1} \sigma_{2} \sigma_{1} \sigma_{\ell-1} \sigma_{2} \sigma_{1}$$

 $\mathbf{a} = \mathbf{b}_{\ell} \quad \mathbf{b}_{\ell-1} \cdots \mathbf{b}_2 \qquad \mathbf{b}_1 \quad \mathbf{b}_0 = \mathbf{b}$

of faces $\tau_j \in K_i^{\mathbf{b}_j}I$ and $\sigma_j \in K_{i-1}^{\mathbf{b}_j}I$, plus a choice of hedgerow, such that $\tau_0 - \tau \tau$ is boundary-linked to τ_0 ;

- σ_j for $j = 1, \ldots, \ell 1$ is a stake chain-linked to τ_j ;
- σ_j for $j = 1, \ldots, \ell$ equals the facet $\tau_{j-1} \lambda_j$ of the simplex τ_{j-1} ;
- $\sigma \sigma_{\ell} \sigma_{\ell}$ is cycle-linked to σ

$$w_{\varphi} = \prod$$
 (edge weights) \prod (vertex weights).

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Hedges, stakes, and shrubberies

Def. Fix a field \Bbbk and a CW complex K with *i*-faces K_i .

- 1. $T_i \subseteq K_i$ is a shrubbery if $\partial T_i = \{\partial \tau \mid \tau \in T_i\}$ is a k-basis for \widetilde{B}_{i-1} . e.g., i = 1: shrubbery \Leftrightarrow spanning tree in every connected component
- 2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \overline{S}_{i-1} maps to a k-basis for $\widetilde{C}_{i-1}/\widetilde{B}_{i-1}$, where $\overline{S}_{i-1} = K_{i-1} \smallsetminus S_{i-1}$ ($\Leftrightarrow \partial^* S_{i-1}$ is a k-basis for \widetilde{B}^i)
- 3. A hedge of dim *i* is a shrubbery $T_i \subseteq K_i$ and a • stake set $S_{i-1} \subset K_{i-1}$
 - together denoted ST_i .

- shrubbery *T_i* ⇔ columns of boundary matrix ∂_i span column space of ∂_i, so *T_i* is a basis for the matroid of columns
- 2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^i span row space of ∂^i , so S_{i-1} is a basis for the matroid of rows
- 3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_i

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Hedges, stakes, and shrubberies Final state Fi

Def. Fix a field \Bbbk and a CW complex K with *i*-faces K_i .

- 1. $T_i \subseteq K_i$ is a shrubbery if $\partial T_i = \{\partial \tau \mid \tau \in T_i\}$ is a k-basis for \widetilde{B}_{i-1} . e.g., i = 1: shrubbery \Leftrightarrow spanning tree in every connected component
- 2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \overline{S}_{i-1} maps to a k-basis for $\widetilde{C}_{i-1}/\widetilde{B}_{i-1}$, where $\overline{S}_{i-1} = K_{i-1} \smallsetminus S_{i-1}$ ($\Leftrightarrow \partial^* S_{i-1}$ is a k-basis for \widetilde{B}^i)
- 3. A hedge of dim *i* is a shrubbery $T_i \subseteq K_i$ and a • stake set $S_{i-1} \subset K_{i-1}$

together denoted ST_i .

- 1. shrubbery $T_i \Leftrightarrow$ columns of boundary matrix ∂_i span column space of ∂_i , so T_i is a basis for the matroid of columns
- 2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^i span row space of ∂^i , so S_{i-1} is a basis for the matroid of rows
- 3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_i

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Hedges, stakes, and shrubberies Final State Fi

Def. Fix a field \Bbbk and a CW complex K with *i*-faces K_i .

- 1. $T_i \subseteq K_i$ is a shrubbery if $\partial T_i = \{\partial \tau \mid \tau \in T_i\}$ is a k-basis for \widetilde{B}_{i-1} . e.g., i = 1: shrubbery \Leftrightarrow spanning tree in every connected component
- 2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \overline{S}_{i-1} maps to a k-basis for $\widetilde{C}_{i-1}/\widetilde{B}_{i-1}$, where $\overline{S}_{i-1} = K_{i-1} \setminus S_{i-1}$ ($\Leftrightarrow \partial^* S_{i-1}$ is a k-basis for \widetilde{B}^i)
- 3. A hedge of dim *i* is a shrubbery $T_i \subseteq K_i$ and a • stake set $S_{i-1} \subseteq K_{i-1}$

together denoted ST_i .

- 1. shrubbery $T_i \Leftrightarrow$ columns of boundary matrix ∂_i span column space of ∂_i , so T_i is a basis for the matroid of columns
- 2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^i span row space of ∂^i , so S_{i-1} is a basis for the matroid of rows
- 3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_i

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Hedges, stakes, and shrubberies Stakes Stakes

Def. Fix a field \Bbbk and a CW complex K with *i*-faces K_i .

- 1. $T_i \subseteq K_i$ is a shrubbery if $\partial T_i = \{\partial \tau \mid \tau \in T_i\}$ is a k-basis for \widetilde{B}_{i-1} . e.g., i = 1: shrubbery \Leftrightarrow spanning tree in every connected component
- 2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \overline{S}_{i-1} maps to a k-basis for $\widetilde{C}_{i-1}/\widetilde{B}_{i-1}$, where $\overline{S}_{i-1} = K_{i-1} \smallsetminus S_{i-1}$ ($\Leftrightarrow \partial^* S_{i-1}$ is a k-basis for \widetilde{B}^i)
- 3. A hedge of dim *i* is a shrubbery $T_i \subseteq K_i$ and a • stake set $S_{i-1} \subseteq K_{i-1}$

together denoted ST_i .

- 1. shrubbery $T_i \Leftrightarrow$ columns of boundary matrix ∂_i span column space of ∂_i , so T_i is a basis for the matroid of columns
- 2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^i span row space of ∂^i , so S_{i-1} is a basis for the matroid of rows
- 3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_i

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Hedges, stakes, and shrubberies Stakes Stakes

Def. Fix a field \Bbbk and a CW complex K with *i*-faces K_i .

- 1. $T_i \subseteq K_i$ is a shrubbery if $\partial T_i = \{\partial \tau \mid \tau \in T_i\}$ is a k-basis for \widetilde{B}_{i-1} . e.g., i = 1: shrubbery \Leftrightarrow spanning tree in every connected component
- 2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \overline{S}_{i-1} maps to a k-basis for $\widetilde{C}_{i-1}/\widetilde{B}_{i-1}$, where $\overline{S}_{i-1} = K_{i-1} \smallsetminus S_{i-1}$ ($\Leftrightarrow \partial^* S_{i-1}$ is a k-basis for \widetilde{B}^i)
- 3. A hedge of dim *i* is a shrubbery $T_i \subseteq K_i$ and a stake set $S_{i-1} \subseteq K_{i-1}$

together denoted ST_i .

- shrubbery *T_i* ⇔ columns of boundary matrix ∂_i span column space of ∂_i, so *T_i* is a basis for the matroid of columns
- 2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^i span row space of ∂^i , so S_{i-1} is a basis for the matroid of rows
- 3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_i
Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Hedges, stakes, and shrubberies Final State Fi

Def. Fix a field \Bbbk and a CW complex K with *i*-faces K_i .

- 1. $T_i \subseteq K_i$ is a shrubbery if $\partial T_i = \{\partial \tau \mid \tau \in T_i\}$ is a k-basis for \widetilde{B}_{i-1} . e.g., i = 1: shrubbery \Leftrightarrow spanning tree in every connected component
- 2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \overline{S}_{i-1} maps to a k-basis for $\widetilde{C}_{i-1}/\widetilde{B}_{i-1}$, where $\overline{S}_{i-1} = K_{i-1} \smallsetminus S_{i-1}$ ($\Leftrightarrow \partial^* S_{i-1}$ is a k-basis for \widetilde{B}^i)
- 3. A hedge of dim *i* is a shrubbery $T_i \subseteq K_i$ and a • stake set $S_{i-1} \subseteq K_{i-1}$

together denoted ST_i .

Note.

- 1. shrubbery $T_i \Leftrightarrow$ columns of boundary matrix ∂_i span column space of ∂_i , so T_i is a basis for the matroid of columns
- 2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^i span row space of ∂^i , so S_{i-1} is a basis for the matroid of rows
- 3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_i

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Hedges, stakes, and shrubberies Stakes Stakes

Def. Fix a field \Bbbk and a CW complex K with *i*-faces K_i .

- 1. $T_i \subseteq K_i$ is a shrubbery if $\partial T_i = \{\partial \tau \mid \tau \in T_i\}$ is a k-basis for \widetilde{B}_{i-1} . e.g., i = 1: shrubbery \Leftrightarrow spanning tree in every connected component
- 2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \overline{S}_{i-1} maps to a k-basis for $\widetilde{C}_{i-1}/\widetilde{B}_{i-1}$, where $\overline{S}_{i-1} = K_{i-1} \smallsetminus S_{i-1}$ ($\Leftrightarrow \partial^* S_{i-1}$ is a k-basis for \widetilde{B}^i)
- 3. A hedge of dim *i* is a shrubbery $T_i \subseteq K_i$ and a • stake set $S_{i-1} \subseteq K_{i-1}$

together denoted ST_i .

Note.

- 1. shrubbery $T_i \Leftrightarrow$ columns of boundary matrix ∂_i span column space of ∂_i , so T_i is a basis for the matroid of columns
- 2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^i span row space of ∂^i , so S_{i-1} is a basis for the matroid of rows
- 3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_i

Kaplansky's problem Sylvan matrices Sylvan morphism Chain-link fences Hedges Linkages Proof Future Hedges, stakes, and shrubberies Stakes Stakes

Def. Fix a field \Bbbk and a CW complex K with *i*-faces K_i .

- 1. $T_i \subseteq K_i$ is a shrubbery if $\partial T_i = \{\partial \tau \mid \tau \in T_i\}$ is a k-basis for \widetilde{B}_{i-1} . e.g., i = 1: shrubbery \Leftrightarrow spanning tree in every connected component
- 2. $S_{i-1} \subseteq K_{i-1}$ is a stake set if \overline{S}_{i-1} maps to a k-basis for $\widetilde{C}_{i-1}/\widetilde{B}_{i-1}$, where $\overline{S}_{i-1} = K_{i-1} \smallsetminus S_{i-1}$ ($\Leftrightarrow \partial^* S_{i-1}$ is a k-basis for \widetilde{B}^i)
- 3. A hedge of dim *i* is a shrubbery $T_i \subseteq K_i$ and a • stake set $S_{i-1} \subseteq K_{i-1}$

together denoted ST_i .

Note.

- 1. shrubbery $T_i \Leftrightarrow$ columns of boundary matrix ∂_i span column space of ∂_i , so T_i is a basis for the matroid of columns
- 2. stake set $S_{i-1} \Leftrightarrow$ rows of coboundary matrix ∂^i span row space of ∂^i , so S_{i-1} is a basis for the matroid of rows
- 3. hedge \Leftrightarrow maximal invertible submatrix of differential ∂_i

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk \{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk \{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \mathbb{k}\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \mathbb{k}\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \mathbb{k}\{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \mathbb{k}\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk\{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \mathbb{k}\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk\{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \mathbb{k}\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk\{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus \{\text{root}\} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \mathbb{k}\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \mathbb{k}\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus \{\text{root}\} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \mathbb{k}\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus \{\text{root}\} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$. coeff. $c_{\tau}(\tau', T_i)$

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*.

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Lemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk\{T_i\}$.

Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$. coeff. $c_{\tau}(\tau', T_i)$

e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*. $\neg \downarrow \downarrow \downarrow$ coeff. $c_{\sigma}(\tau, ST_i)$

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow \tilde{s(\sigma)} = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*.

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Kaplansky's problemSylvan matricesSylvan morphismChain-link fencesHedgesLinkagesProofFutureLinkages and coefficientsLemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk\{T_i\}$.Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.coeff. $c_{\tau}(\tau', T_i)$ e.g. i = 1: usual circuit from spanning tree in a graphLemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk\{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*. e.g. *i* = 1 and *K* connected \Rightarrow $S_0 = K_0 \setminus \{\text{root}\} \Rightarrow s(\sigma) = \text{path from root to } \sigma$ Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \Bbbk\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$. Def. ρ is boundary-linked to every ρ' appearing in *r*. coeff. $c_{\rho}(\rho', S_i)$ Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Kaplansky's problemSylvan matricesSylvan morphismChain-link fencesHedgesLinkagesProofFutureLinkages and coefficientsLemma. Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk\{T_i\}$.Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$.coeff. $c_{\tau}(\tau', T_i)$ e.g. i = 1: usual circuit from spanning tree in a graph

Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$.

Def. σ is chain-linked to every τ appearing in *s*. τ coeff. $c_{\sigma}(\tau, ST_i)$

e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus {\text{root}} \Rightarrow s(\sigma) = \text{path from root to } \sigma$

Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in \widetilde{B}_i$.

Def. ρ is boundary-linked to every ρ' appearing in *r*. coeff. $c_{\rho}(\rho', S_i)$

Exercise. $\rho - r = \partial s(\rho)$ for any choice of T_{i+1}

Linkages Linkages and coefficients **Lemma.** Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk \{T_i\}$. Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$. coeff. $c_{\tau}(\tau', T_i)$ e.g. i = 1: usual circuit from spanning tree in a graph Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$. Def. σ is chain-linked to every τ appearing in *s*. $\neg \downarrow \downarrow \downarrow$ coeff. $c_{\sigma}(\tau, ST_i)$ e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus \{\text{root}\} \Rightarrow s(\sigma) = \text{path from root to } \sigma$ Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in B_i$. Def. ρ is boundary-linked to every ρ' appearing in r. coeff. $c_{\rho}(\rho', S_i)$ **Exercise.** $\rho - r = \partial s(\rho)$ for any choice of T_{i+1} coeff = edge weight

Linkages Linkages and coefficients **Lemma.** Each $\tau \in K_i$ forms a unique T_i -circuit $\tau - t \in \widetilde{Z}_i$ with $t \in \Bbbk \{T_i\}$. Def. τ is cycle-linked to every $\tau' \in K_i$ appearing in $\tau - t$. coeff. $c_{\tau}(\tau', T_i)$ e.g. i = 1: usual circuit from spanning tree in a graph Lemma. Each stake $\sigma \in S_{i-1}$ has a unique shrub $s \in \Bbbk \{T_i\}$ with ∂s having coefficient 1 on σ and 0 on $S \setminus \sigma$. Def. σ is chain-linked to every τ appearing in *s*. $\neg \downarrow \downarrow \downarrow$ coeff. $c_{\sigma}(\tau, ST_i)$ e.g. i = 1 and K connected $\Rightarrow S_0 = K_0 \setminus \{\text{root}\} \Rightarrow s(\sigma) = \text{path from root to } \sigma$ Lemma. Each $\rho \in K_i$ has a unique hedge rim $t \in \mathbb{k}\{\overline{S}_i\}$ with $\rho - r \in B_i$. Def. ρ is boundary-linked to every ρ' appearing in r. coeff. $c_{\rho}(\rho', S_i)$ **Exercise.** $\rho - r = \partial s(\rho)$ for any choice of T_{i+1} coeff = edge weight

Main idea. Natural spectral sequence with $\tilde{H}_{i-1}K^{a}I$ at $p = |\mathbf{a}|$ and q = i - p in E_{pq}^{1} yields natural maps on subquotients:

To fix: split!

- 1. [Eagon 1990]: make a complex from vertically split spectral sequence
- 2. Which splitting? Moore–Penrose pseudoinverse! Combinatorial formula from [Berg 1986].

Main idea. Natural spectral sequence with $\tilde{H}_{i-1}K^{a}I$ at $p = |\mathbf{a}|$ and q = i - p in E_{pq}^{1} yields natural maps on subquotients:

To fix: split!

- 1. [Eagon 1990]: make a complex from vertically split spectral sequence
- 2. Which splitting? Moore–Penrose pseudoinverse! Combinatorial formula from [Berg 1986].

Main idea. Natural spectral sequence with $\tilde{H}_{i-1}K^{a}I$ at $p = |\mathbf{a}|$ and q = i - p in E_{pq}^{1} yields natural maps on subquotients:

To fix: split!

- 1. [Eagon 1990]: make a complex from vertically split spectral sequence
- 2. Which splitting? Moore–Penrose pseudoinverse! Combinatorial formula from [Berg 1986].

Main idea. Natural spectral sequence with $\tilde{H}_{i-1}K^{a}I$ at $p = |\mathbf{a}|$ and q = i - p in E_{pq}^{1} yields natural maps on subquotients:

To fix: split!

- 1. [Eagon 1990]: make a complex from vertically split spectral sequence
- 2. Which splitting? Moore–Penrose pseudoinverse! Combinatorial formula from [Berg 1986].

Main idea. Natural spectral sequence with $\tilde{H}_{i-1}K^{a}I$ at $p = |\mathbf{a}|$ and q = i - p in E_{pq}^{1} yields natural maps on subquotients:

To fix: split!

- 1. [Eagon 1990]: make a complex from vertically split spectral sequence
- 2. Which splitting? Moore–Penrose pseudoinverse! Combinatorial formula from [Berg 1986].

Chain-link fences

Hedges

Proof

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Chain-link fences

Hedges

e Proof

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Chain-link fences

Hedges

e Proof

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Chain-link fences

Hedges

e Proof

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - · Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Chain-link fences

Hedges

e Proof

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Chain-link fences

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Chain-link fences

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Chain-link fences

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Chain-link fences

Future

Future directions

Note. Sylvan resolution works noncanonically but still combinatorially—and in all characteristics!—using combinatorial choices of splittings.

Next stpes.

- 1. Recover known resolutions (planar maps for trivariate; Eliahou–Kervaire, etc....) from (noncanonical) sylvan resolutions.
- 2. Minimal free resolutions of toric and lattice ideals
 - Koszul double complex methods on "Spanish simplicial complex"
 - (sylvan minimal free resolutions of lattice modules)/(lattice action)
- 3. Use splitting methods to construct canonical minimal resolutions of arbitrary graded ideals with $\Bbbk = \mathbb{C}$: average splittings by integration.
- Apply Koszul double complexes to bound global dimension of ℝⁿ-graded modules over real-exponent polynomial rings. (Importance: these are real multiparameter persistent homology modules; finite global dimension needed for Topological Data Analysis.)

Thank You