Subalgebras of a polynomial ring with minimal Hilbert function

Lisa Nicklasson

Stockholm University

Combinatorial Algebra meets Algebraic Combinatorics 2020

Lisa Nicklasson Subalgebras of a polynomial ring with minimal Hilbert function

 $R = K[x_1, \ldots, x_n]$ polynomial ring over a field K

 $R = K[x_1, \dots, x_n] \text{ polynomial ring over a field } K$ $f_1, f_2, \dots, f_u \in R \text{ homogeneous of degree } d, \text{ linearly independent}$

 S_i is the set of homogeneous polynomials of degree *i* in f_1, \ldots, f_u

 S_i is the set of homogeneous polynomials of degree i in f_1,\ldots,f_u , a vector space over K

 S_i is the set of homogeneous polynomials of degree i in f_1,\ldots,f_u , a vector space over K

Hilbert function: $HF_S(i) = \dim S_i$

 S_i is the set of homogeneous polynomials of degree i in f_1,\ldots,f_u , a vector space over K

Hilbert function: $HF_S(i) = \dim S_i$ a polynomial in *i*

For fixed n, u and d, which f_1, \ldots, f_u gives the minimal HF_S?

For fixed n, u and d, which f_1, \ldots, f_u gives the <u>minimal HF_S</u>?

For fixed n, u and d, which f_1, \ldots, f_u gives the <u>minimal HF_S</u>?

Proposition

Fix n, u, d, and i. To minimize $HF_S(i)$, choose f_1, \ldots, f_u as a strongly stable set of monomials.

For fixed n, u and d, which f_1, \ldots, f_u gives the <u>minimal HF_S</u>?

Proposition

Fix n, u, d, and i. To minimize $HF_S(i)$, choose f_1, \ldots, f_u as a strongly stable set of monomials.

Definition

A set W of monomials is *strongly stable* if

$$m \in W, \ x_i | m \implies \frac{x_j}{x_i} m \in W \text{ for all } j < i.$$

For fixed n, u and d, which f_1, \ldots, f_u gives the <u>minimal HF_S</u>?

Proposition

Fix n, u, d, and i. To minimize $HF_S(i)$, choose f_1, \ldots, f_u as a strongly stable set of monomials.

Definition

A set W of monomials is *strongly stable* if

$$m \in W, \ x_i | m \implies \frac{x_j}{x_i} m \in W \text{ for all } j < i.$$

Is there one strongly stable set $\{f_1, \ldots, f_u\}$ that minimizes $HF_S(i)$ for all *i*?

For fixed n, u and d, which f_1, \ldots, f_u gives the <u>minimal HF_S</u>?

Proposition

Fix n, u, d, and i. To minimize $HF_S(i)$, choose f_1, \ldots, f_u as a strongly stable set of monomials.

Definition

A set W of monomials is *strongly stable* if

$$m \in W, \ x_i | m \implies \frac{x_j}{x_i} m \in W \text{ for all } j < i.$$

Is there one strongly stable set $\{f_1, \ldots, f_u\}$ that minimizes $HF_S(i)$ for all i? No!

For fixed n, u and d, which f_1, \ldots, f_u gives the <u>minimal HF_S</u>?

Proposition

Fix n, u, d, and i. To minimize $HF_S(i)$, choose f_1, \ldots, f_u as a strongly stable set of monomials.

Definition

A set W of monomials is *strongly stable* if

$$m \in W, \ x_i | m \implies \frac{x_j}{x_i} m \in W \text{ for all } j < i.$$

Is there one strongly stable set $\{f_1, \ldots, f_u\}$ that minimizes $HF_S(i)$ for all i? No! $HF_S(i)$ is a polynomial.

For fixed n, u and d, which f_1, \ldots, f_u gives the <u>minimal HF_S</u>?

Proposition

Fix n, u, d, and i. To minimize $HF_S(i)$, choose f_1, \ldots, f_u as a strongly stable set of monomials.

Definition

A set W of monomials is strongly stable if

$$m \in W, \ x_i | m \implies \frac{x_j}{x_i} m \in W \text{ for all } j < i.$$

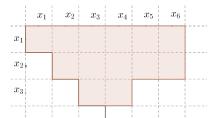
Is there one strongly stable set $\{f_1, \ldots, f_u\}$ that minimizes $HF_S(i)$ for all i? No! $HF_S(i)$ is a polynomial.

- Minimize the degree
- Minimize the leading coefficient

Fix d = 2.

The degree of HF_S is n - 1.

Minimize the number of columns (variables).



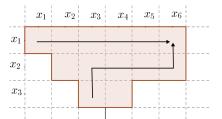
The degree of HF_S is n-1.

• Minimize the number of columns (variables). $\rightsquigarrow \binom{n}{2} < u \le \binom{n+1}{2}$

The degree of HF_S is n-1.

(Leading coefficient) $\cdot (n-1)!$ = multiplicity of S = # maximal NE-paths in the diagram.

• Minimize the number of columns (variables). $\rightsquigarrow \binom{n}{2} < u \le \binom{n+1}{2}$



The degree of HF_S is n-1.

(Leading coefficient) $\cdot (n-1)!$ = multiplicity of S = # maximal NE-paths in the diagram.

- Minimize the number of columns (variables). $\rightsquigarrow \binom{n}{2} < u \le \binom{n+1}{2}$
- Minimize the number of maximal NE-paths.

$$u = 71, n = 12,$$
 $\binom{12}{2} = 66, \binom{12+1}{2} = 78$
There are five strongly stable sets:

$$u = 71, n = 12, ({}^{12}_{2}) = 66, ({}^{12+1}_{2}) = 78$$

There are five strongly stable sets:
 W_1 W_2 W_3 W_4 W_5

Multiplicities:

 $e(K[W_1]) = 1984, \ e(K[W_2]) = 2010, \ e(K[W_3]) = 2019, \ e(K[W_4]) = 2009, \ e(K[W_5]) = 1981,$

$$u = 71, n = 12, ({}^{12}_{2}) = 66, ({}^{12+1}_{2}) = 78$$

There are five strongly stable sets:
 W_1 W_2 W_3 W_4 W_5

Multiplicities:

 $e(K[W_1]) = 1984, \ e(K[W_2]) = 2010, \ e(K[W_3]) = 2019, \ e(K[W_4]) = 2009, \ e(K[W_5]) = 1981,$

$$u = 71, n = 12, ({12 \atop 2}) = 66, ({12+1 \atop 2}) = 78$$

There are five strongly stable sets:
 W_1 W_2 W_3 W_4 W_5

Multiplicities:

 $e(K[W_1]) = 1984, \ e(K[W_2]) = 2010, \ e(K[W_3]) = 2019, \ e(K[W_4]) = 2009, \ e(K[W_5]) = 1981,$

i	2	3	4	5	6	7
$HF(K[W_1], i)$	1246	11389	70051	328771	1266005	4188859
$HF(K[W_2], i)$	1256	11524	71012	333593	1285193	4253378
$HF(K[W_3], i)$	1259	11565	71306	335075	1291108	4173307
$HF(K[W_4], i)$	1255	11511	70922	333151	1283464	4247645
$HF(K[W_5], i)$	1248	11406	70124	328965	1266265	4188404

Subalgebras of a polynomial ring with minimal Hilbert function

Lisa Nicklasson

$$u = 71, n = 12, \quad \binom{12}{2} = 66, \binom{12+1}{2} = 78$$

There are five strongly stable sets:
$$W_1 \qquad W_2 \qquad W_3 \qquad W_4 \qquad W_5$$

RevLex
$$Lex$$

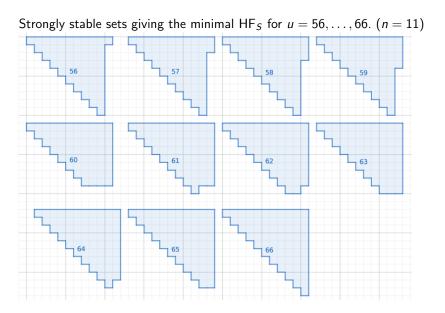
Multiplicities:

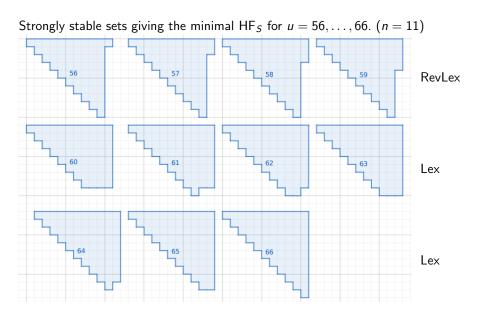
 $e(K[W_1]) = 1984, \ e(K[W_2]) = 2010, \ e(K[W_3]) = 2019, \ e(K[W_4]) = 2009, \ e(K[W_5]) = 1981,$

i	2	3	4	5	6	7
$HF(K[W_1], i)$	1246	11389	70051	328771	1266005	4188859
$HF(K[W_2], i)$	1256	11524	71012	333593	1285193	4253378
$HF(K[W_3], i)$	1259	11565	71306	335075	1291108	4173307
$HF(K[W_4], i)$	1255	11511	70922	333151	1283464	4247645
$HF(K[W_5], i)$	1248	11406	70124	328965	1266265	4188404

Subalgebras of a polynomial ring with minimal Hilbert function

Lisa Nicklasson





Conjecture

The subalgebra generated by u homogeneous polynomials of degree two with minimal Hilbert function is generated by a Lex or RevLex segment.

Conjecture

The subalgebra generated by u homogeneous polynomials of degree two with minimal Hilbert function is generated by a Lex or RevLex segment.

The conjecture is proved in the following cases.

• The polynomials are in at most 80 variables. ($u \leq 3240$)

Conjecture

The subalgebra generated by u homogeneous polynomials of degree two with minimal Hilbert function is generated by a Lex or RevLex segment.

The conjecture is proved in the following cases.

• The polynomials are in at most 80 variables. ($u \leq 3240$)

Recall that
$$\binom{n}{2} < u \le \binom{n+1}{2}$$
. Write $u = \binom{n}{2} + r$ where $1 \le r \le n$.
• $u = \binom{n}{2} + r$, for $n \ge 80$ and $1 \le r \le 50$ RevLex
• $u = \binom{n}{2} + r$, for $n \ge 80$ and $n - 25 \le r \le n$ Lex

		r	
		1–50	RevLex
		51	Lex
<i>n</i> = 80	$u = \binom{80}{2} + r, \ 1 \le r \le 80$	52	Lex
	(_ /	53	RevLex
		54	RevLex
		55–80	Lex

Lisa Nicklasson Subalgebras of a polynomial ring with minimal Hilbert function

Thank you!

References

M. Boij and A. Conca. On the Fröberg-Macaulay conjectures for algebras. *Rend. Isit. Mat. Univ. Trieste*, 50:139–147, 2018

L. Nicklasson. Subalgebras generated in degree two with minimal Hilbert function. Preprint arXiv:1911.11038