Subalgebras of a polynomial ring with minimal Hilbert function

Lisa Nicklasson
Stockholm University

Combinatorial Algebra meets Algebraic Combinatorics 2020
$R=K\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field K
$R=K\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field K
$f_{1}, f_{2}, \ldots, f_{u} \in R$ homogeneous of degree d, linearly independent
$R=K\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field K
$f_{1}, f_{2}, \ldots, f_{u} \in R$ homogeneous of degree d, linearly independent
$S=K\left[f_{1}, \ldots, f_{u}\right] \subseteq R$ subring generated by f_{1}, \ldots, f_{u}.
$R=K\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field K
$f_{1}, f_{2}, \ldots, f_{u} \in R$ homogeneous of degree d, linearly independent
$S=K\left[f_{1}, \ldots, f_{u}\right] \subseteq R$ subring generated by f_{1}, \ldots, f_{u}.
$S=\bigoplus_{i \geq 0} S_{i}$
S_{i} is the set of homogeneous polynomials of degree i in f_{1}, \ldots, f_{u}
$R=K\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field K
$f_{1}, f_{2}, \ldots, f_{u} \in R$ homogeneous of degree d, linearly independent
$S=K\left[f_{1}, \ldots, f_{u}\right] \subseteq R$ subring generated by f_{1}, \ldots, f_{u}.
$S=\bigoplus_{i>0} S_{i}$
S_{i} is the set of homogeneous polynomials of degree i in f_{1}, \ldots, f_{u}, a vector space over K
$R=K\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field K
$f_{1}, f_{2}, \ldots, f_{u} \in R$ homogeneous of degree d, linearly independent
$S=K\left[f_{1}, \ldots, f_{u}\right] \subseteq R$ subring generated by f_{1}, \ldots, f_{u}.
$S=\bigoplus_{i \geq 0} S_{i}$
S_{i} is the set of homogeneous polynomials of degree i in f_{1}, \ldots, f_{u}, a vector space over K

Hilbert function: $\mathrm{HF}_{S}(i)=\operatorname{dim} S_{i}$
$R=K\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field K
$f_{1}, f_{2}, \ldots, f_{u} \in R$ homogeneous of degree d, linearly independent
$S=K\left[f_{1}, \ldots, f_{u}\right] \subseteq R$ subring generated by f_{1}, \ldots, f_{u}.
$S=\bigoplus_{i \geq 0} S_{i}$
S_{i} is the set of homogeneous polynomials of degree i in f_{1}, \ldots, f_{u}, a vector space over K

Hilbert function: $\mathrm{HF}_{S}(i)=\operatorname{dim} S_{i}$ a polynomial in i

For fixed n, u and d, which f_{1}, \ldots, f_{u} gives the minimal HF_{s} ?

For fixed n, u and d, which f_{1}, \ldots, f_{u} gives the minimal HF_{s} ?

For fixed n, u and d, which f_{1}, \ldots, f_{u} gives the minimal HF_{s} ?

Proposition

Fix n, u, d, and i. To minimize $\mathrm{HF}_{S}(i)$, choose f_{1}, \ldots, f_{u} as a strongly stable set of monomials.

For fixed n, u and d, which f_{1}, \ldots, f_{u} gives the minimal HF_{s} ?

Proposition

Fix n, u, d, and i. To minimize $\operatorname{HF}_{S}(i)$, choose f_{1}, \ldots, f_{u} as a strongly stable set of monomials.

Definition

A set W of monomials is strongly stable if

$$
m \in W, x_{i} \left\lvert\, m \Longrightarrow \frac{x_{j}}{x_{i}} m \in W\right. \text { for all } j<i
$$

For fixed n, u and d, which f_{1}, \ldots, f_{u} gives the minimal HF_{s} ?

Proposition

Fix n, u, d, and i. To minimize $\operatorname{HF}_{S}(i)$, choose f_{1}, \ldots, f_{u} as a strongly stable set of monomials.

Definition

A set W of monomials is strongly stable if

$$
m \in W, x_{i} \left\lvert\, m \Longrightarrow \frac{x_{j}}{x_{i}} m \in W\right. \text { for all } j<i
$$

Is there one strongly stable set $\left\{f_{1}, \ldots, f_{u}\right\}$ that minimizes $\mathrm{HF}_{S}(i)$ for all i ?

For fixed n, u and d, which f_{1}, \ldots, f_{u} gives the minimal HF_{s} ?

Proposition

Fix n, u, d, and i. To minimize $\operatorname{HF}_{S}(i)$, choose f_{1}, \ldots, f_{u} as a strongly stable set of monomials.

Definition

A set W of monomials is strongly stable if

$$
m \in W, x_{i} \left\lvert\, m \Longrightarrow \frac{x_{j}}{x_{i}} m \in W\right. \text { for all } j<i
$$

Is there one strongly stable set $\left\{f_{1}, \ldots, f_{u}\right\}$ that minimizes $\mathrm{HF}_{S}(i)$ for all i ? No!

For fixed n, u and d, which f_{1}, \ldots, f_{u} gives the minimal HF_{s} ?

Proposition

Fix n, u, d, and i. To minimize $\operatorname{HF}_{S}(i)$, choose f_{1}, \ldots, f_{u} as a strongly stable set of monomials.

Definition

A set W of monomials is strongly stable if

$$
m \in W, x_{i} \left\lvert\, m \Longrightarrow \frac{x_{j}}{x_{i}} m \in W\right. \text { for all } j<i
$$

Is there one strongly stable set $\left\{f_{1}, \ldots, f_{u}\right\}$ that minimizes $\mathrm{HF}_{s}(i)$ for all i ? No! $\mathrm{HF}_{s}(i)$ is a polynomial.

For fixed n, u and d, which f_{1}, \ldots, f_{u} gives the minimal HF_{s} ?

Proposition

Fix n, u, d, and i. To minimize $\operatorname{HF}_{S}(i)$, choose f_{1}, \ldots, f_{u} as a strongly stable set of monomials.

Definition

A set W of monomials is strongly stable if

$$
m \in W, x_{i} \left\lvert\, m \Longrightarrow \frac{x_{j}}{x_{i}} m \in W\right. \text { for all } j<i
$$

Is there one strongly stable set $\left\{f_{1}, \ldots, f_{u}\right\}$ that minimizes $\mathrm{HF}_{S}(i)$ for all i ? No! $\mathrm{HF}_{s}(i)$ is a polynomial.

- Minimize the degree
- Minimize the leading coefficient

Fix $d=2$.

Fix $d=2$. Strongly stable sets can be drawn as shifted Ferrers diagrams.

Fix $d=2$. Strongly stable sets can be drawn as shifted Ferrers diagrams.

The degree of HF_{s} is $n-1$.

- Minimize the number of columns (variables).

Fix $d=2$. Strongly stable sets can be drawn as shifted Ferrers diagrams.

The degree of HF_{s} is $n-1$.

- Minimize the number of columns (variables). $\rightsquigarrow\binom{n}{2}<u \leq\binom{ n+1}{2}$

Fix $d=2$. Strongly stable sets can be drawn as shifted Ferrers diagrams.

The degree of HF_{s} is $n-1$.
(Leading coefficient).($n-1$)!
$=$ multiplicity of S
$=\#$ maximal NE-paths in the diagram.

- Minimize the number of columns (variables). $\rightsquigarrow\binom{n}{2}<u \leq\binom{ n+1}{2}$

Fix $d=2$. Strongly stable sets can be drawn as shifted Ferrers diagrams.

The degree of HF_{s} is $n-1$.
(Leading coefficient)•($n-1$)!
$=$ multiplicity of S
$=\#$ maximal NE-paths in the diagram.

- Minimize the number of columns (variables). $\rightsquigarrow\binom{n}{2}<u \leq\binom{ n+1}{2}$
- Minimize the number of maximal NE-paths.

Example

$u=71, n=12, \quad\binom{12}{2}=66,\binom{12+1}{2}=78$
There are five strongly stable sets:

Example

$u=71, n=12, \quad\binom{12}{2}=66,\binom{12+1}{2}=78$
There are five strongly stable sets:

Multiplicities:

$$
\begin{aligned}
& e\left(K\left[W_{1}\right]\right)=1984, e\left(K\left[W_{2}\right]\right)=2010, e\left(K\left[W_{3}\right]\right)=2019, \\
& e\left(K\left[W_{4}\right]\right)=2009, e\left(K\left[W_{5}\right]\right)=1981,
\end{aligned}
$$

Example

$u=71, n=12, \quad\binom{12}{2}=66,\binom{12+1}{2}=78$
There are five strongly stable sets:

Multiplicities:

$$
\begin{aligned}
& e\left(K\left[W_{1}\right]\right)=1984, e\left(K\left[W_{2}\right]\right)=2010, e\left(K\left[W_{3}\right]\right)=2019, \\
& e\left(K\left[W_{4}\right]\right)=2009, e\left(K\left[W_{5}\right]\right)=1981,
\end{aligned}
$$

Example

$u=71, n=12, \quad\binom{12}{2}=66,\binom{12+1}{2}=78$
There are five strongly stable sets:

Multiplicities:

$$
\begin{aligned}
& e\left(K\left[W_{1}\right]\right)=1984, e\left(K\left[W_{2}\right]\right)=2010, e\left(K\left[W_{3}\right]\right)=2019, \\
& e\left(K\left[W_{4}\right]\right)=2009, \underline{e\left(K\left[W_{5}\right]\right)=1981,}
\end{aligned}
$$

i	2	3	4	5	6	7
$\operatorname{HF}\left(K\left[W_{1}\right], i\right)$	1246	11389	70051	328771	1266005	4188859
$\operatorname{HF}\left(K\left[W_{2}\right], i\right)$	1256	11524	71012	333593	1285193	4253378
$\operatorname{HF}\left(K\left[W_{3}\right], i\right)$	1259	11565	71306	335075	1291108	4173307
$\operatorname{HF}\left(K\left[W_{4}\right], i\right)$	1255	11511	70922	333151	1283464	4247645
$\operatorname{HF}\left(K\left[W_{5}\right], i\right)$	1248	11406	70124	328965	1266265	4188404

Example

$u=71, n=12, \quad\binom{12}{2}=66,\binom{12+1}{2}=78$
There are five strongly stable sets:

Multiplicities:

$$
\begin{aligned}
& e\left(K\left[W_{1}\right]\right)=1984, e\left(K\left[W_{2}\right]\right)=2010, e\left(K\left[W_{3}\right]\right)=2019, \\
& e\left(K\left[W_{4}\right]\right)=2009, \underline{e\left(K\left[W_{5}\right]\right)=1981,}
\end{aligned}
$$

i	2	3	4	5	6	7
$\operatorname{HF}\left(K\left[W_{1}\right], i\right)$	1246	11389	70051	328771	1266005	4188859
$\operatorname{HF}\left(K\left[W_{2}\right], i\right)$	1256	11524	71012	333593	1285193	4253378
$\operatorname{HF}\left(K\left[W_{3}\right], i\right)$	1259	11565	71306	335075	1291108	4173307
$\operatorname{HF}\left(K\left[W_{4}\right], i\right)$	1255	11511	70922	333151	1283464	4247645
$\operatorname{HF}\left(K\left[W_{5}\right], i\right)$	1248	11406	70124	328965	1266265	4188404

Strongly stable sets giving the minimal HF_{S} for $u=56, \ldots, 66$. $(n=11)$

Strongly stable sets giving the minimal HF_{s} for $u=56, \ldots, 66$. $(n=11)$

Conjecture

The subalgebra generated by u homogeneous polynomials of degree two with minimal Hilbert function is generated by a Lex or RevLex segment.

Conjecture

The subalgebra generated by u homogeneous polynomials of degree two with minimal Hilbert function is generated by a Lex or RevLex segment.

The conjecture is proved in the following cases.

- The polynomials are in at most 80 variables. $(u \leq 3240)$

Conjecture

The subalgebra generated by u homogeneous polynomials of degree two with minimal Hilbert function is generated by a Lex or RevLex segment.

The conjecture is proved in the following cases.

- The polynomials are in at most 80 variables. $(u \leq 3240)$

Recall that $\binom{n}{2}<u \leq\binom{ n+1}{2}$. Write $u=\binom{n}{2}+r$ where $1 \leq r \leq n$.

- $u=\binom{n}{2}+r$, for $n \geq 80$ and $1 \leq r \leq 50$

RevLex

- $u=\binom{n}{2}+r$, for $n \geq 80$ and $n-25 \leq r \leq n \quad$ Lex

Example

$$
n=80 \quad u=\binom{80}{2}+r, 1 \leq r \leq 80
$$

r	
$1-50$	RevLex
51	Lex
52	Lex
53	RevLex
54	RevLex
$55-80$	Lex

Thank you!

References

M. Boij and A. Conca. On the Fröberg-Macaulay conjectures for algebras. Rend. Isit. Mat. Univ. Trieste, 50:139-147, 2018
L. Nicklasson. Subalgebras generated in degree two with minimal Hilbert function. Preprint arXiv:1911.11038

