## Jordan Types of Artinian Algebras with Height Two

Nasrin Altafi

KTH Royal Institute of Technology

Combinatorial Algebra Meets Algebraic Combinatorics

Dalhousie University, Halifax, January 2020

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

• Throughout this talk assume k has characteristic zero.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ</li>

• Throughout this talk assume k has characteristic zero.

#### Definition

Let A be a graded Artinian k-algebra and linear form  $\ell \in A_1$ . The Jordan type of A for  $\ell$  is a partition of dim<sub>k</sub>(A) determining the Jordan block decomposition of the multiplication map  $m_{\ell} : A \longrightarrow A$  and it is denoted by  $P_{A,\ell}$ .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Consider 
$$A = \frac{k[x,y]}{(x^4,y^3)}$$
,

HF(A) = (1, 2, 3, 3, 2, 1).

Consider 
$$A = \frac{k[x,y]}{(x^4,y^3)}$$
,  $HF(A) = (1,2,3,3,2,1)$ .

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う へ ()・

• For 
$$\ell = x + y$$
,  $P_{A,x+y} = HF(A)^{\vee} = (6,4,2)$ ,

Consider 
$$A = \frac{k[x,y]}{(x^4,y^3)}$$
,  $HF(A) = (1,2,3,3,2,1)$ .

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う へ ()・

• For 
$$\ell = x + y$$
,  $P_{A,x+y} = HF(A)^{\vee} = (6,4,2)$ ,

► For 
$$\ell = x$$
,  $P_{A,x} = (4, 4, 4)$ ,

Consider 
$$A = \frac{k[x,y]}{(x^4,y^3)}$$
,  $HF(A) = (1,2,3,3,2,1)$ .

• For 
$$\ell = x + y$$
,  $P_{A,x+y} = HF(A)^{\vee} = (6,4,2)$ ,

• For 
$$\ell = x$$
,  $P_{A,x} = (4, 4, 4)$ ,



・ロト ・ 通 ト ・ 注 ト ・ 注 ・ うへの

Consider 
$$A = \frac{k[x,y]}{(x^4,y^3)}$$
,  $HF(A) = (1,2,3,3,2,1)$ .

• For 
$$\ell = x + y$$
,  $P_{A,x+y} = HF(A)^{\vee} = (6,4,2)$ ,

• For 
$$\ell = x$$
,  $P_{A,x} = (4, 4, 4)$ ,



・ロト ・ 通 ト ・ 注 ト ・ 注 ・ うへの

• For 
$$\ell = y$$
,  $P_{A,y} = (3,3,3,3) = P_{A,x}^{\vee}$ .

From now on we assume R = k[x, y] and A = R/I is a graded Artinian quotient of R.

< ロ > < 回 > < 三 > < 三 > < 三 > の < で</p>

From now on we assume R = k[x, y] and A = R/I is a graded Artinian quotient of R.

*Diagonal lengths* of  $P_{A,\ell}$  is a vector obtained by the number of boxes in the Ferrers diagram of  $P_{A,\ell}$  on each diagonal.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

From now on we assume R = k[x, y] and A = R/I is a graded Artinian quotient of R.

*Diagonal lengths* of  $P_{A,\ell}$  is a vector obtained by the number of boxes in the Ferrers diagram of  $P_{A,\ell}$  on each diagonal.

• Diagonal lengths of  $P_{A,\ell}$  is given by the Hilbert function of A. [Iarrobino-Yaméogo]

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

## Question

### Fix

$$T = (1, 2, \dots d - 1, d^k, d - 1, \dots, 2, 1)$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

### Question

#### Fix

$$T = \left(1, 2, \dots d - 1, d^k, d - 1, \dots, 2, 1\right)$$

Find all partitions with diagonal lengths T which occur as Jordan types of complete intersection algebras for some linear form.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• A = R/I is a complete intersection algebra with socle degree j if and only if there is  $F \in \mathcal{E}_j$  such that I = Ann(F). [Macaulay]

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• A = R/I is a complete intersection algebra with socle degree j if and only if there is  $F \in \mathcal{E}_j$  such that I = Ann(F). [Macaulay]

Let B<sub>i</sub> = (α<sub>1</sub>,..., α<sub>r</sub>) be a k-linear basis of A<sub>i</sub>. The matrix

$$\operatorname{Hess}^{i}(F) := \left[ \alpha_{u}^{(i)} \alpha_{v}^{(i)} \circ F \right]$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is called the *i*-th Hessian matrix of F with respect to  $\mathcal{B}_i$ .

• A = R/I is a complete intersection algebra with socle degree j if and only if there is  $F \in \mathcal{E}_j$  such that I = Ann(F). [Macaulay]

Let B<sub>i</sub> = (α<sub>1</sub>,..., α<sub>r</sub>) be a k-linear basis of A<sub>i</sub>. The matrix

$$\operatorname{Hess}^{i}(F) := \left[ \alpha_{u}^{(i)} \alpha_{v}^{(i)} \circ F \right]$$

is called the *i*-th Hessian matrix of F with respect to  $\mathcal{B}_i$ .

$$h^i(F) := \det (\operatorname{Hess}^i(F))$$

is called *i*-th Hessian determinant of F with respect to  $B_i$ .

For  $\ell = ax + by$  denote by  $h_{\ell}^{i}(F) := h_{(a,b)}^{i}(F)$  the Hessian evaluated at  $p_{\ell} = (a, b)$ .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

For  $\ell = ax + by$  denote by  $h_{\ell}^{i}(F) := h_{(a,b)}^{i}(F)$  the Hessian evaluated at  $p_{\ell} = (a, b)$ .

[Maeno-Watanabe]

• 
$$m_{\ell^{j-2i}}: A_i \to A_{j-i}$$
 has maximal rank  $\iff h'_{\ell}(F) \neq 0$ .

For  $\ell = ax + by$  denote by  $h_{\ell}^{i}(F) := h_{(a,b)}^{i}(F)$  the Hessian evaluated at  $p_{\ell} = (a, b)$ .

[Maeno-Watanabe]

•  $m_{\ell^{j-2i}}: A_i \to A_{j-i}$  has maximal rank  $\iff h_\ell^i(F) \neq 0.$ 

• A has the SLP with  $\ell \in A_1 \iff$ 

 $h_{\ell}^{i}(F) \neq 0, \quad \forall i = 0, \ldots, \lfloor \frac{j}{2} \rfloor.$ 

For every A with HF(A) = T and general enough  $\ell \in A_1$ 

$$\mathcal{T}=ig(1,2,\ldots d-1,d^k,d-1,\ldots,2,1ig)$$

$$P_{A,\ell} = T^{\vee}.$$

$$\mathcal{T}=ig(1,2,\ldots d-1,d^k,d-1,\ldots,2,1ig)$$

$$P_{A,\ell} = T^{\vee}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

•  $T^{\vee}$  occurs a the Jordan type of complete intersection algebra  $A = R / \operatorname{Ann}(F)$  with HF(A) = T and general  $\ell \in A_1$ , and

$$\mathcal{T}=ig(1,2,\ldots d-1,d^k,d-1,\ldots,2,1ig)$$

$$P_{A,\ell}=T^{\vee}.$$

•  $T^{\vee}$  occurs a the Jordan type of complete intersection algebra  $A = R / \operatorname{Ann}(F)$  with HF(A) = T and general  $\ell \in A_1$ , and

$$h_{\ell}^{i}(F) \neq 0, \quad \forall i = 0, \ldots, d-1.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

$$\mathcal{T}=ig(1,2,\ldots d-1,d^k,d-1,\ldots,2,1ig)$$

$$P_{A,\ell} = T^{\vee}.$$

•  $T^{\vee}$  occurs a the Jordan type of complete intersection algebra  $A = R / \operatorname{Ann}(F)$  with HF(A) = T and general  $\ell \in A_1$ , and

$$h_{\ell}^{i}(F) \neq 0, \quad \forall i = 0, \ldots, d-1.$$

#### Question:

What Jordan type partitions with diagonal length T are possible for complete intersection algebras having at lease one Hessian vanishing?

$$T = (1, 2, \dots, d - 1, d^k, d - 1, \dots, 2, 1)$$

The total number of partitions with diagonal lengths T is

$$\sum_{i=1}^{d} \binom{d-1}{i-1} 2^{i} = 2(3^{d-1}), \quad \text{if } k > 1.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$\mathcal{T}=ig(1,2,\ldots d-1,d^k,d-1,\ldots,2,1ig)$$

The total number of partitions with diagonal lengths T is

$$\sum_{i=1}^{d} \binom{d-1}{i-1} 2^{i} = 2(3^{d-1}), \quad \text{if } k > 1.$$

$$\sum_{i=1}^{d} 2 \cdot 3^{i-1} + 1 = 3^{d-1}, \quad \text{if } k = 1.$$

**Theorem** [A., larrobino, Khatami] Let P be a partition with diagonal lengths T. Then the following are equivalent

**Theorem** [A., larrobino, Khatami] Let P be a partition with diagonal lengths T. Then the following are equivalent

•  $P = P_{A,\ell}$  for an Artinian complete intersection A = R/Ann(F)and linear form  $\ell \in A_1$ , and there is an ordered partition  $n = n_1 + \dots + n_c$  of an integer n satisfying  $0 \le n \le d$  $(0 \le n \le d - 1 \text{ for } k = 1)$  such that  $h_{\ell}^{n_1 + \dots + n_i - 1}(F) \ne 0$ , for each  $i \in [1, c]$ , and zero otherwise;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**Theorem** [A., larrobino, Khatami] Let P be a partition with diagonal lengths T. Then the following are equivalent

P = P<sub>A,ℓ</sub> for an Artinian complete intersection A = R/Ann(F) and linear form ℓ ∈ A<sub>1</sub>, and there is an ordered partition n = n<sub>1</sub> + ··· + n<sub>c</sub> of an integer n satisfying 0 ≤ n ≤ d (0 ≤ n ≤ d − 1 for k = 1) such that h<sub>ℓ</sub><sup>n<sub>1</sub>+···+n<sub>i</sub>-1</sup>(F) ≠ 0, for each i ∈ [1, c], and zero otherwise;

P satisfies

$$P = (p_1^{n_1}, \dots, p_c^{n_c}, (d-n)^{d-n+k-1}),$$
(1)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where  $p_i = k - 1 + 2d - n_i - 2(n_1 + \dots + n_{i-1})$ , for  $1 \le i \le c$ .

**Theorem** [A., larrobino, Khatami] Let P be a partition with diagonal lengths T. Then the following are equivalent

•  $P = P_{A,\ell}$  for an Artinian complete intersection  $A = R / \operatorname{Ann}(F)$ and linear form  $\ell \in A_1$ , and there is an ordered partition  $n = n_1 + \dots + n_c$  of an integer n satisfying  $0 \le n \le d$  $(0 \le n \le d - 1 \text{ for } k = 1)$  such that  $h_\ell^{n_1 + \dots + n_i - 1}(F) \ne 0$ , for each  $i \in [1, c]$ , and zero otherwise;

P satisfies

$$P = (p_1^{n_1}, \dots, p_c^{n_c}, (d-n)^{d-n+k-1}),$$
(1)

where  $p_i = k - 1 + 2d - n_i - 2(n_1 + \cdots + n_{i-1})$ , for  $1 \le i \le c$ .

⇒ There are  $2^d$  complete intersection Jordan types, if  $k \ge 2$ . There are  $2^{d-1}$  complete intersection Jordan types, if k = 1.

Construct Jordan type of an Artinian complete intersection algebra A = R / Ann(F) and  $\ell \in A_1$  such that

$$h^0_\ell(F) = h^2_\ell(F) = h^3_\ell(F) = h^4_\ell(F) = 0, h^1_\ell(F) 
eq 0$$
 and  $h^5_\ell(F) 
eq 0.$ 

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Construct Jordan type of an Artinian complete intersection algebra A = R / Ann(F) and  $\ell \in A_1$  such that

$$h^0_\ell(F) = h^2_\ell(F) = h^3_\ell(F) = h^4_\ell(F) = 0, h^1_\ell(F) 
eq 0$$
 and  $h^5_\ell(F) 
eq 0.$ 

| 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 |   |
| 2 | 3 | 4 | 5 |   |   |
| 3 | 4 | 5 |   |   |   |
| 4 | 5 |   |   |   |   |
| 5 |   |   |   |   |   |

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

| $h^0$          | 0 | 1 | 2 | 3 | 4 | 5 |
|----------------|---|---|---|---|---|---|
| $h^1$          | 1 | 2 | 3 | 4 | 5 |   |
| $h^2$          | 2 | 3 | 4 | 5 |   |   |
| $h^3$          | 3 | 4 | 5 |   |   |   |
| $h^4$          | 4 | 5 |   |   |   |   |
| h <sup>5</sup> | 5 |   |   |   |   |   |

| h <sup>0</sup> | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |
|----------------|---|---|---|---|---|---|---|---|---|----|----|
| $h^1$          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |    |
| $h^2$          | 2 | 3 | 4 | 5 |   |   |   |   |   |    |    |
| $h^3$          | 3 | 4 | 5 |   |   |   |   |   |   |    |    |
| $h^4$          | 4 | 5 |   |   |   |   |   |   |   |    |    |
| h <sup>5</sup> | 5 |   |   |   |   |   |   |   |   |    |    |

| $h^0$          | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |  |  |
|----------------|---|---|---|---|---|---|---|---|---|----|----|--|--|
| $h^1$          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |  |
| $h^2$          | 2 | 3 | 4 | 5 |   |   |   |   |   |    |    |  |  |
| $h^3$          | 3 | 4 | 5 |   |   |   |   |   |   |    |    |  |  |
| $h^4$          | 4 | 5 |   |   |   |   |   |   |   |    |    |  |  |
| h <sup>5</sup> | 5 |   |   |   |   |   |   |   |   |    |    |  |  |

| $h^0$          | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |  |  |  |
|----------------|---|---|---|---|---|---|---|---|---|----|----|--|--|--|
| $h^1$          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |  |  |
| $h^2$          | 2 | 3 | 4 | 5 | 6 |   |   |   |   |    |    |  |  |  |
| $h^3$          | 3 | 4 | 5 | 6 |   |   |   |   |   |    |    |  |  |  |
| $h^4$          | 4 | 5 | 6 |   |   |   |   |   |   |    |    |  |  |  |
| h <sup>5</sup> | 5 | 6 |   |   |   |   |   |   |   |    |    |  |  |  |

| $h^0$          | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |  |  |  |
|----------------|---|---|---|---|---|---|---|---|---|----|----|--|--|--|
| $h^1$          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |  |  |
| $h^2$          | 2 | 3 | 4 | 5 | 6 |   |   |   |   |    |    |  |  |  |
| $h^3$          | 3 | 4 | 5 | 6 |   |   |   |   |   |    |    |  |  |  |
| h <sup>4</sup> | 4 | 5 | 6 |   |   |   |   |   |   |    |    |  |  |  |
| $h^5$          | 5 | 6 | 7 | 8 | 9 |   |   |   |   |    |    |  |  |  |

| $h^0$          | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |
|----------------|---|---|---|---|---|---|---|---|---|----|----|
| $h^1$          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| $h^2$          | 2 | 3 | 4 | 5 | 6 |   |   |   |   |    |    |
| $h^3$          | 3 | 4 | 5 | 6 | 7 |   |   |   |   |    |    |
| $h^4$          | 4 | 5 | 6 | 7 | 8 |   |   |   |   |    |    |
| h <sup>5</sup> | 5 | 6 | 7 | 8 | 9 |   |   |   |   |    |    |

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



 $P_{A,\ell} = \left(11^2, 5^4
ight).$ 

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Thank you!