Jordan Types of Artinian Algebras with Height Two

Nasrin Altafi
KTH Royal Institute of Technology
Combinatorial Algebra Meets Algebraic Combinatorics
Dalhousie University, Halifax, January 2020

- Throughout this talk assume k has characteristic zero.
- Throughout this talk assume k has characteristic zero.

Definition
Let A be a graded Artinian k-algebra and linear form $\ell \in A_{1}$. The Jordan type of A for ℓ is a partition of $\operatorname{dim}_{k}(A)$ determining the Jordan block decomposition of the multiplication map $m_{\ell}: A \longrightarrow A$ and it is denoted by $P_{A, \ell}$.

Example

Consider $A=\frac{k[x, y]}{\left(x^{4}, y^{3}\right)}$,

$$
H F(A)=(1,2,3,3,2,1)
$$

Example

Consider $A=\frac{k[x, y]}{\left(x^{4}, y^{3}\right)}$,

$$
H F(A)=(1,2,3,3,2,1)
$$

- For $\ell=x+y, \quad P_{A, x+y}=H F(A)^{\vee}=(6,4,2)$,

Example

Consider $A=\frac{k[x, y]}{\left(x^{4}, y^{3}\right),}$ $H F(A)=(1,2,3,3,2,1)$.

- For $\ell=x+y, \quad P_{A, x+y}=H F(A)^{\vee}=(6,4,2)$,
- For $\ell=x, \quad P_{A, x}=(4,4,4)$,

Example

Consider $A=\frac{k[x, y]}{\left(x^{4}, y^{3}\right),}$ $H F(A)=(1,2,3,3,2,1)$.

- For $\ell=x+y$,

$$
P_{A, x+y}=H F(A)^{\vee}=(6,4,2)
$$

- For $\ell=x$,

$$
P_{A, x}=(4,4,4)
$$

1	x	x^{2}	x^{3}
y	$x y$	$x^{2} y$	$x^{3} y$
y^{2}	$x y^{2}$	$x^{2} y^{2}$	$x^{3} y^{2}$

Example

Consider $A=\frac{k[x, y]}{\left(x^{4}, y^{3}\right)}$, $H F(A)=(1,2,3,3,2,1)$.

- For $\ell=x+y$,

$$
P_{A, x+y}=H F(A)^{\vee}=(6,4,2)
$$

- For $\ell=x$,

$$
P_{A, x}=(4,4,4),
$$

1	x	x^{2}	x^{3}
y	$x y$	$x^{2} y$	$x^{3} y$
y^{2}	$x y^{2}$	$x^{2} y^{2}$	$x^{3} y^{2}$

- For $\ell=y$,

$$
P_{A, y}=(3,3,3,3)=P_{A, x}^{\vee}
$$

From now on we assume $R=k[x, y]$ and $A=R / l$ is a graded Artinian quotient of R.

From now on we assume $R=k[x, y]$ and $A=R / l$ is a graded Artinian quotient of R.

Diagonal lengths of $P_{A, \ell}$ is a vector obtained by the number of boxes in the Ferrers diagram of $P_{A, \ell}$ on each diagonal.

From now on we assume $R=k[x, y]$ and $A=R / l$ is a graded Artinian quotient of R.

Diagonal lengths of $P_{A, \ell}$ is a vector obtained by the number of boxes in the Ferrers diagram of $P_{A, \ell}$ on each diagonal.

- Diagonal lengths of $P_{A, \ell}$ is given by the Hilbert function of A. [larrobino-Yaméogo]

Question

Fix

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

Question

Fix

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

Find all partitions with diagonal lengths T which occur as Jordan types of complete intersection algebras for some linear form.

Let $\mathcal{E}=k[X, Y]$ be the Macaulay dual ring to $R=k[x, y]$ where R acts on \mathcal{E} by differentiation.

Let $\mathcal{E}=k[X, Y]$ be the Macaulay dual ring to $R=k[x, y]$ where R acts on \mathcal{E} by differentiation.

- $A=R / I$ is a complete intersection algebra with socle degree j if and only if there is $F \in \mathcal{E}_{j}$ such that $I=\operatorname{Ann}(F)$. [Macaulay]

Let $\mathcal{E}=k[X, Y]$ be the Macaulay dual ring to $R=k[x, y]$ where R acts on \mathcal{E} by differentiation.

- $A=R / I$ is a complete intersection algebra with socle degree j if and only if there is $F \in \mathcal{E}_{j}$ such that $I=\operatorname{Ann}(F)$. [Macaulay]
- Let $\mathcal{B}_{i}=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ be a k-linear basis of A_{i}. The matrix

$$
\operatorname{Hess}^{i}(F):=\left[\alpha_{u}^{(i)} \alpha_{v}^{(i)} \circ F\right]
$$

is called the i-th Hessian matrix of F with respect to \mathcal{B}_{i}.

Let $\mathcal{E}=k[X, Y]$ be the Macaulay dual ring to $R=k[x, y]$ where R acts on \mathcal{E} by differentiation.

- $A=R / I$ is a complete intersection algebra with socle degree j if and only if there is $F \in \mathcal{E}_{j}$ such that $I=\operatorname{Ann}(F)$. [Macaulay]
- Let $\mathcal{B}_{i}=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ be a k-linear basis of A_{i}. The matrix

$$
\operatorname{Hess}^{i}(F):=\left[\alpha_{u}^{(i)} \alpha_{v}^{(i)} \circ F\right]
$$

is called the i-th Hessian matrix of F with respect to \mathcal{B}_{i}.

$$
h^{i}(F):=\operatorname{det}\left(\operatorname{Hess}^{i}(F)\right)
$$

is called i-th Hessian determinant of F with respect to \mathcal{B}_{i}.

For $\ell=a x+$ by denote by $h_{\ell}^{i}(F):=h_{(a, b)}^{i}(F)$ the Hessian evaluated at $p_{\ell}=(a, b)$.

For $\ell=a x+$ by denote by $h_{\ell}^{i}(F):=h_{(a, b)}^{i}(F)$ the Hessian evaluated at $p_{\ell}=(a, b)$.
[Maeno-Watanabe]

- $m_{\ell-2 i}: A_{i} \rightarrow A_{j-i}$ has maximal rank $\Longleftrightarrow h_{\ell}^{i}(F) \neq 0$.

For $\ell=a x+$ by denote by $h_{\ell}^{i}(F):=h_{(a, b)}^{i}(F)$ the Hessian evaluated at $p_{\ell}=(a, b)$.
[Maeno-Watanabe]

- $m_{\ell j-2 i}: A_{i} \rightarrow A_{j-i}$ has maximal rank $\Longleftrightarrow h_{\ell}^{i}(F) \neq 0$.
- A has the SLP with $\ell \in A_{1} \Longleftrightarrow$

$$
h_{\ell}^{i}(F) \neq 0, \quad \forall i=0, \ldots,\left\lfloor\frac{j}{2}\right\rfloor .
$$

$T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)$
$T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)$

For every A with $\operatorname{HF}(A)=T$ and general enough $\ell \in A_{1}$

$T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)$

For every A with $\operatorname{HF}(A)=T$ and general enough $\ell \in A_{1}$

$$
P_{A, \ell}=T^{\vee} .
$$

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

For every A with $\operatorname{HF}(A)=T$ and general enough $\ell \in A_{1}$

$$
P_{A, \ell}=T^{\vee} .
$$

- T^{\vee} occurs a the Jordan type of complete intersection algebra $A=R / \operatorname{Ann}(F)$ with $H F(A)=T$ and general $\ell \in A_{1}$, and

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

For every A with $\operatorname{HF}(A)=T$ and general enough $\ell \in A_{1}$

$$
P_{A, \ell}=T^{\vee} .
$$

- T^{\vee} occurs a the Jordan type of complete intersection algebra $A=R / \operatorname{Ann}(F)$ with $H F(A)=T$ and general $\ell \in A_{1}$, and

$$
h_{\ell}^{i}(F) \neq 0, \quad \forall i=0, \ldots, d-1
$$

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

For every A with $\operatorname{HF}(A)=T$ and general enough $\ell \in A_{1}$

$$
P_{A, \ell}=T^{\vee} .
$$

- T^{\vee} occurs a the Jordan type of complete intersection algebra $A=R / \operatorname{Ann}(F)$ with $H F(A)=T$ and general $\ell \in A_{1}$, and

$$
h_{\ell}^{i}(F) \neq 0, \quad \forall i=0, \ldots, d-1
$$

Question:
What Jordan type partitions with diagonal length T are possible for complete intersection algebras having at lease one Hessian vanishing?

$T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)$

The total number of partitions with diagonal lengths T is

$$
\sum_{i=1}^{d}\binom{d-1}{i-1} 2^{i}=2\left(3^{d-1}\right), \quad \text { if } k>1
$$

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

The total number of partitions with diagonal lengths T is

$$
\begin{gathered}
\sum_{i=1}^{d}\binom{d-1}{i-1} 2^{i}=2\left(3^{d-1}\right), \quad \text { if } k>1 \\
\sum_{i=1}^{d} 2 \cdot 3^{i-1}+1=3^{d-1}, \quad \text { if } k=1
\end{gathered}
$$

$T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)$

Theorem [A., larrobino, Khatami] Let P be a partition with diagonal lengths T. Then the following are equivalent

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

Theorem [A., larrobino, Khatami] Let P be a partition with diagonal lengths T. Then the following are equivalent

- $P=P_{A, \ell}$ for an Artinian complete intersection $A=R / \operatorname{Ann}(F)$ and linear form $\ell \in A_{1}$, and there is an ordered partition $n=n_{1}+\cdots+n_{c}$ of an integer n satisfying $0 \leq n \leq d$ ($0 \leq n \leq d-1$ for $k=1$) such that $h_{\ell}^{n_{1}+\cdots+n_{i}-1}(F) \neq 0$, for each $i \in[1, c]$, and zero otherwise;

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

Theorem [A., larrobino, Khatami] Let P be a partition with diagonal lengths T. Then the following are equivalent

- $P=P_{A, \ell}$ for an Artinian complete intersection $A=R / \operatorname{Ann}(F)$ and linear form $\ell \in A_{1}$, and there is an ordered partition $n=n_{1}+\cdots+n_{c}$ of an integer n satisfying $0 \leq n \leq d$ ($0 \leq n \leq d-1$ for $k=1$) such that $h_{\ell}^{n_{1}+\cdots+n_{i}-1}(F) \neq 0$, for each $i \in[1, c]$, and zero otherwise;
- P satisfies

$$
\begin{equation*}
P=\left(p_{1}^{n_{1}}, \ldots, p_{c}^{n_{c}},(d-n)^{d-n+k-1}\right) \tag{1}
\end{equation*}
$$

where $p_{i}=k-1+2 d-n_{i}-2\left(n_{1}+\cdots+n_{i-1}\right)$, for $1 \leq i \leq c$.

$$
T=\left(1,2, \ldots d-1, d^{k}, d-1, \ldots, 2,1\right)
$$

Theorem [A., larrobino, Khatami] Let P be a partition with diagonal lengths T. Then the following are equivalent

- $P=P_{A, \ell}$ for an Artinian complete intersection $A=R / \operatorname{Ann}(F)$ and linear form $\ell \in A_{1}$, and there is an ordered partition $n=n_{1}+\cdots+n_{c}$ of an integer n satisfying $0 \leq n \leq d$ ($0 \leq n \leq d-1$ for $k=1$) such that $h_{\ell}^{n_{1}+\cdots+n_{i}-1}(F) \neq 0$, for each $i \in[1, c]$, and zero otherwise;
- P satisfies

$$
\begin{equation*}
P=\left(p_{1}^{n_{1}}, \ldots, p_{c}^{n_{c}},(d-n)^{d-n+k-1}\right) \tag{1}
\end{equation*}
$$

where $p_{i}=k-1+2 d-n_{i}-2\left(n_{1}+\cdots+n_{i-1}\right)$, for $1 \leq i \leq c$.
\Rightarrow There are 2^{d} complete intersection Jordan types, if $k \geq 2$. There are 2^{d-1} complete intersection Jordan types, if $k=1$.
$T=(1,2,3,4,5,6,6,5,4,3,2,1), \quad$ socle degree $=11$

Construct Jordan type of an Artinian complete intersection algebra $A=R / \operatorname{Ann}(F)$ and $\ell \in A_{1}$ such that

$$
h_{\ell}^{0}(F)=h_{\ell}^{2}(F)=h_{\ell}^{3}(F)=h_{\ell}^{4}(F)=0, h_{\ell}^{1}(F) \neq 0 \text { and } h_{\ell}^{5}(F) \neq 0
$$

$T=(1,2,3,4,5,6,6,5,4,3,2,1), \quad$ socle degree $=11$

Construct Jordan type of an Artinian complete intersection algebra $A=R / \operatorname{Ann}(F)$ and $\ell \in A_{1}$ such that

$$
h_{\ell}^{0}(F)=h_{\ell}^{2}(F)=h_{\ell}^{3}(F)=h_{\ell}^{4}(F)=0, h_{\ell}^{1}(F) \neq 0 \text { and } h_{\ell}^{5}(F) \neq 0
$$

0	1	2	3	4	5
1	2	3	4	5	
2	3	4	5		
3	4	5			
4	5				
5					

$T=(1,2,3,4,5,6,6,5,4,3,2,1), \quad$ socle degree $=11$

h^{0}	0	1	2	3	4	5
h^{1}	1	2	3	4	5	
h^{2}	2	3	4	5		
h^{3}	3	4	5			
h^{4}	4	5				
h^{5}	5					

$T=(1,2,3,4,5,6,6,5,4,3,2,1), \quad$ socle degree $=11$

h^{0}	0	1	2	3	4	5	6	7	8	9	10
h^{1}	1	2	3	4	5	6	7	8	9	10	
h^{2}	2	3	4	5							
h^{3}	3	4	5								
h^{4}	4	5									
h^{5}	5										

$T=(1,2,3,4,5,6,6,5,4,3,2,1), \quad$ socle degree $=11$

h^{0}	0	1	2	3	4	5	6	7	8	9	10
h^{1}	1	2	3	4	5	6	7	8	9	10	11
h^{2}	2	3	4	5							
h^{3}	3	4	5								
h^{4}	4	5									
h^{5}	5										

$T=(1,2,3,4,5,6,6,5,4,3,2,1)$

h^{0}	0	1	2	3	4	5	6	7	8	9	10
h^{1}	1	2	3	4	5	6	7	8	9	10	11
h^{2}	2	3	4	5	6						
h^{3}	3	4	5	6							
h^{4}	4	5	6								
h^{5}	5	6									

$T=(1,2,3,4,5,6,6,5,4,3,2,1)$

h^{0}	0	1	2	3	4	5	6	7	8	9	10
h^{1}	1	2	3	4	5	6	7	8	9	10	11
h^{2}	2	3	4	5	6						
h^{3}	3	4	5	6							
h^{4}	4	5	6								
h^{5}	5	6	7	8	9						

$T=(1,2,3,4,5,6,6,5,4,3,2,1)$

| h^{0} | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| h^{1} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| h^{2} | 2 | 3 | 4 | 5 | 6 | | | | | | |
| h^{3} | 3 | 4 | 5 | 6 | 7 | | | | | | |
| h^{4} | 4 | 5 | 6 | 7 | 8 | | | | | | |
| | | | | | | | | | | | |
| \boldsymbol{h}^{5} | 5 | 6 | 7 | 8 | 9 | | | | | | |

$T=(1,2,3,4,5,6,6,5,4,3,2,1)$

h^{0}	0	1	3				6	7	8	9	10
h^{1}	1	2	4					8	9	10	11
h^{2}	2	3									
h^{3}	3	4									
h^{4}	4	5	7								
h^{5}	5	6									

$$
P_{A, \ell}=\left(11^{2}, 5^{4}\right) .
$$

Thank you!

