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Straightening



The ubiquity of Young diagrams and straightening

Fundamental combinatorial objects
• irreducible representations of the symmetric group Sn
• polynomial irreducible representations of the general linear group GLN
• standard monomial basis for the space of sections of an ample line bundle on a
flag variety/Schubert variety

All of the above rely on a straightening process.
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Young diagrams

Fix n ≥ 2, [n] = {1, . . . , n}.

Defn. A partition is a sequence of positive integers λ = (λ1, . . . , λk) such that
λ1 ≥ · · · ≥ λk .
Visualize a partition by its Young diagram λ, an upper left justified collection of boxes
with λi boxes in row i .

Example.
Let λ = (4, 2, 2).
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Fillings of Young diagrams

Defn.
• A filling of shape λ is an assignment of a value in [n] to each box of λ
• A tableau is a filling such that values in columns increase strictly downwards
• A semistandard tableau is a tableau such that values in rows increase weakly left
to right

Example.
Let n = 4 and λ = (4, 2, 2).

Filling Tableau Semistandard Tableau

1 3 4 2
2 2
2 1

2 1 4 1
3 2
4 3

1 2 3 3
3 3
4 4

z = (2, 4, 1, 1) z = (2, 2, 2, 2) z = (1, 1, 4, 2)

Defn. The content of a filling is a sequence of non-negative integers z = (z1, . . . , zn)
where zi equals the number of boxes equal to i in the filling.



Fillings of Young diagrams

Defn.
• A filling of shape λ is an assignment of a value in [n] to each box of λ
• A tableau is a filling such that values in columns increase strictly downwards
• A semistandard tableau is a tableau such that values in rows increase weakly left
to right

Example.
Let n = 4 and λ = (4, 2, 2).

Filling Tableau Semistandard Tableau

1 3 4 2
2 2
2 1

2 1 4 1
3 2
4 3

1 2 3 3
3 3
4 4

z = (2, 4, 1, 1) z = (2, 2, 2, 2) z = (1, 1, 4, 2)

Defn. The content of a filling is a sequence of non-negative integers z = (z1, . . . , zn)
where zi equals the number of boxes equal to i in the filling.



Fillings of Young diagrams

Defn.
• A filling of shape λ is an assignment of a value in [n] to each box of λ
• A tableau is a filling such that values in columns increase strictly downwards
• A semistandard tableau is a tableau such that values in rows increase weakly left
to right

Example.
Let n = 4 and λ = (4, 2, 2).

Filling Tableau Semistandard Tableau

1 3 4 2
2 2
2 1

2 1 4 1
3 2
4 3

1 2 3 3
3 3
4 4

z = (2, 4, 1, 1) z = (2, 2, 2, 2) z = (1, 1, 4, 2)

Defn. The content of a filling is a sequence of non-negative integers z = (z1, . . . , zn)
where zi equals the number of boxes equal to i in the filling.



Fillings of Young diagrams

Defn.
• A filling of shape λ is an assignment of a value in [n] to each box of λ
• A tableau is a filling such that values in columns increase strictly downwards
• A semistandard tableau is a tableau such that values in rows increase weakly left
to right

Example.
Let n = 4 and λ = (4, 2, 2).

Filling Tableau Semistandard Tableau

1 3 4 2
2 2
2 1

2 1 4 1
3 2
4 3

1 2 3 3
3 3
4 4

z = (2, 4, 1, 1) z = (2, 2, 2, 2) z = (1, 1, 4, 2)

Defn. The content of a filling is a sequence of non-negative integers z = (z1, . . . , zn)
where zi equals the number of boxes equal to i in the filling.



Vector spaces composed of fillings

Fix a partition λ and content z.

The sets
F (λ, z) is the set of fillings of shape λ and content z.
∪

S(λ, z) is the subset of semistandard tableau of shape λ and content z.

The vector space
Let CF (λ,z) be the complex vector space with basis F (λ, z).
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A subspace and its generators

The subspace
Let A(λ, z) be subspace of CF (λ,z) generated by
• Grassmannian sums: E + F where E and F differ in a single column by a single
transposition

3 1
2 4
4

+ 2 1
3 4
4

• Plücker sums: E −
∑

F where for a fixed E ∈ F (λ, z), j, m the F arise from E
by swapping the top m elements in column j + 1 with any m elements in column j

m = 1, j = 1 2 1
3 4
4

-
(

1 2
3 4
4

+ 2 3
1 4
4

+ 2 4
3 4
1

)
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The fundamental theorem and straightening
Theorem. [Young] The semistandard tableau in S(λ, z) form a basis of the factor
space CF (λ,z)/A(λ, z).

Expressing a filling in this basis is called straightening the filling.

Representation theory
For λ with d boxes and z = (1, . . . , 1), can define an action of Sd on CF (λ,z)/A(λ, z).
This is the the irreducible Sd -representation associated to λ.
For λ with less than n + 1 rows, we can also construct the GLn-representation
associated to λ.

Classical Straightening Algorithms
• Prescribe a relation in A(λ, z) that rewrites a given (non-semistandard) filling as
a sum of other fillings that are smaller in some total order
• Proceed inductively
• Finite number of fillings - process terminates

Two problems.
(1) Theoretical: Iterative methods give almost no control over the coefficients that
arise. Even showing that a particular coefficient is nonzero is difficult.
(2) Computational: Straightening a filling with ~50 boxes can take hours on a
computer. Difficult to optimize (or parallelize).
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An example of a classical straightening algorithm

Let n = 5, λ = (2, 2, 1), and z = (1, 1, 1, 1, 1). We will straighten

1 2
4 3
5

=
2 1
3 4
5

+
2 1
4 5
3

+
1 4
2 5
3

j=1, m=2

=
2 1
3 4
5

−
2 1
3 5
4

+
1 4
2 5
3

(3, 4)

=
1 2
3 4
5

+
2 3
1 4
5

+
2 5
3 4
1

−
( 1 2

3 5
4

+
2 3
1 5
4

+
2 4
3 5
1

)
+

1 4
2 5
3

j=1, m=1
j=1, m=1

=
1 2
3 4
5

−
1 3
2 4
5

−
1 4
2 5
3

−
( 1 2

3 5
4

−
1 3
2 5
4

+
1 4
2 5
3

)
+

1 4
2 5
3

(1,2)
(1,3);(1,2);(4,5)

(1,2)
(1,3)(1,2)

=
1 2
3 4
5

−
1 2
3 5
4

−
1 3
2 4
5

+
1 3
2 5
4

−
1 4
2 5
3

simplify / reorder
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Non-iterative Straightening



Rearrangement coefficients

Fix a partition λ, content z, and F , S ∈ F (λ, z)

Defn. Let C(λ) be the group of permutations that permute entries of a filling of
shape λ within each column.

Example.
Let λ = (4, 2, 2).

C(λ) = S3 × S3 × S1 × S1

Let π ∈ C(λ).
• Fπ is the result of permuting the entries of F according to π.
• sgn(π) equals the product of the signs of each permutation

Defn. The rearrangement coefficient of F w.r.t. S, RF ,S , is the sum of signs of all
π ∈ C(λ) s.t. Fπ has the same content in each row as S.
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Rearrangement coefficients - example

Example.
Let λ = (4, 2, 2) and z = (2, 2, 2, 2) with

F =
2 1 4 1
3 2
4 3

S =
1 1 4 4
2 2
3 3

We want to rearrange F into S. Forced to swap 2 and 4. Then swap 2 and 3. Then F
and S have the same content in each row. The sign of this permutation is then 1.

RF ,S = 1.
RS,F = 0. Why?
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Straightening in a new basis

Order and label the semistandard tableau in S(λ, z) as

S1 � S2 � · · · � SKλ,z

where � is the row word order.

The D-basis.
We define a new basis of the factor space CF (λ,z)/A(λ, z) by

DSi = Si −
∑
j<i

RSi ,Sj · DSj

for 1 ≤ i ≤ Kλ,z .

Theorem. [H. 2019] Suppose F ∈ F (λ, z) and F =
∑

ai Si in CF (λ,z)/A(λ, z). Then

F =
∑

ai Si =
∑

1≤j≤Kλ,z

RF ,Sj · DSj

• Straightening: Compute D-basis. Compute (at most) Kλ,z rearrangement
coefficients.
• The D-basis only depends on λ and z; straightening multiple fillings is efficient
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An example of straightening via new method

Let n = 5, λ = (2, 2, 1), and z = (1, 1, 1, 1, 1). The five semistandard tableau are

S1 =
1 4
2 5
3

S2 =
1 3
2 5
4

S3 =
1 3
2 4
5

S4 =
1 2
3 5
4

S5 =
1 2
3 4
5

with S1 � S2 � S3 � S4 � S5.

Then

DS1 := S1

DS2 := S2 −RS2,S1 · DS1 = S2

DS3 := S3 −RS3,S1 · DS1 −RS3,S2 · DS2 = S3

DS4 := S4 −RS4,S1 · DS1 −RS4,S2 · DS2 −RS4,S3 · DS3 = S4

DS5 := S5 −RS5,S1 · DS1 −RS5,S2 · DS2 −RS5,S3 · DS3 −RS5,S4 · DS4 = S5 − S1

We will now straighten

1 2
4 3
5

= RF ,S1 · DS1 +RF ,S2 · DS2 +RF ,S3 · DS3 +RF ,S4 · DS4 +RF ,S5 · DS5

= 0 · DS1 + 1 · DS2 − 1 · DS3 − 1 · DS4 + 1 · DS5
= S5 − S4 − S3 + S2 − S1
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Closing thoughts

Applications:Theory
Using this non-iterative formula we are able to extend a result of Lakshmibai-Gonciulea
that proves that the leading term when straightening is nonzero.

Applications:Computational
Have implemented this algorithm in C . It seems to be several orders of magnitude
faster than traditional straightening.
Currently being used to compute multiplicites of GLn-irreps in the kernel of the
Hadamard-Howe map (related to Foulkes conjecture) extending results of
Cheung-Ikenmeyer-Mkrtchyan.
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Thank you!
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