On different classes of Monomial Ideals associated to lcm-lattices

Sarfraz Ahmad

COMSATS University Islamabad(Lahore Campus),

Lahore-Pakistan.

Combinatorial Algebra meets Algebraic Combinatorics 2020

January 24 - 26, 2020

Dalhousie University, Halifax, Canada

Outlines

- Description of the problems
- Basic definitions and notations
- Results
- Open problems

Description of the problems

- Let K be a field and $S = K[x_1, x_2, \dots, x_n]$ be a polynomial ring in n variables.
- An ideal in S generated by monomials is called monomial ideal.
- Let $I \subset S$ be a monomial ideal and lcm(I) be its lcm lattice.

Problem *I*

We are interested to find classes of ideals *I* and *J* for which if lcm(*I*) ≅ lcm(*J*) it implies lcm(*Iⁿ*) and lcm(*Jⁿ*) are also isomorphic for all *n*.

Problem *II*

• We are interested to determine the growth of the number of elements in $lcm(I^n)$ as a function of n.

lcm-lattice of monomial ideals

- Let $u = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ and $v = x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n}$ be two monomials, then the least common multiple lcm(u, v) is given by
- $\operatorname{lcm}(u, v) = x_1^{\max(a_1, b_1)} x_2^{\max(a_2, b_2)} \cdots x_n^{\max(a_n, b_n)}.$
- Let I =< m₁,..., m_d >⊂ S be a monomial ideal. Then lcm-lattice lcm(I) of ideal I is the set of all LCMs of subsets of {m₁,..., m_d} with partial ordering given by divisibility.

lcm-lattice of monomial ideals

- The unique maximal element is $lcm(m_1, m_2, \ldots, m_d)$ and the unique minimal element is 1 regarded as the lcm of the empty set.
- lcm(I) with this order is a lattice.

Example

Let $I = \langle x^2, xy, y^2 \rangle \subset K[x, y]$ be a monomial ideal. Then the lcm-lattice of I is

Power sequence

- **Definition 1** Let $I \subset k[x_1, ..., x_n]$ be a monomial ideal with lcm lattice lcm(I).
 - Let lcm(I) has m levels. We denote level of lcm(I) by l_i with $l_0 = \hat{0}$ and $l_m = \hat{1}$.
 - Let level l_j of lcm(I) has t monomials. A power sequence of a variable x_i at level l_j is defined as follows:

•
$$l_j(x_i): \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_t.$$

Power sequence

For example, suppose level j of lcm(I) has the following monomials

$$xyz$$
 xz^3 x^3y^2 x^2yz

then the power sequence of x is

$$l_j(x): 1 = 1 < 3 > 2.$$

Lemma 2 Let $I \subset K[x, y]$ be an ideal such that $\mu(I) = t$, then lcm-lattice of I has $\frac{t(t+1)}{2}$ elements.

Ô

Abbildung 1: lcm(I) in two variable case

On different classes of Monomial Ideals associated to 1 cm-lattices – p. 12/25

Corollary 3 Let *I* and *J* be two monomial ideals in K[x, y] such that $\mu(I) = \mu(J)$. Then

 $\operatorname{lcm}(I) \cong \operatorname{lcm}(J).$

Theorem 4 Let k > l and k + m > l + q be numbers and $I = \langle x^k y^l, x^l y^k \rangle$, $J = \langle x^{k+m} y^{l+q}, x^{l+q} y^{k+m} \rangle$ be two monomial ideals in K[x, y] such that

$$lcm(I) \cong lcm(J).$$

Then

$$lcm(I^n) \cong lcm(J^n),$$

for all n > 1.

- The proof of above theorem requires following lemma.
- **Lemma 5** Let $I = \langle x^{\alpha}y^{\beta}, x^{\beta}y^{\alpha} \rangle \subset K[x, y]$ be an ideal with $\alpha > \beta$. Then

$$I^{n} = < x^{(n-i)\alpha + i\beta} y^{(n-i)\beta + i\alpha} \mid i = 0, 1, \dots, n >$$

Corollary 6 Let $I = \langle x^{\alpha}y^{\beta}, x^{\beta}y^{\alpha} \rangle \subset K[x, y]$ be an ideal with $\alpha > \beta$. Then lcm lattice of I^n , denoted by $lcm(I^n)$, is pure and has n + 1 levels.

Corollary 7 Let $I = \langle x^{\alpha}y^{\beta}, x^{\beta}y^{\alpha} \rangle \subset K[x, y]$ be an ideal with $\alpha > \beta$. Then lcm lattice of I^n has $\frac{(n+1)(n+2)}{2}$ elements.

Lemma 8 Let $I = \langle x^{\alpha}y^{\beta}, x^{\beta}y^{\alpha} \rangle \subset K[x, y]$ be a monomial ideal with $\alpha > \beta$. Let $u_i \in lcm(I^{n-1})$ be monomial at level i of $lcm(I^{n-1})$ for some $i \in \{1, ..., n\}$. Then $u_i^{\alpha} \in lcm(I^n)$ at level i of $lcm(I^n)$.

Lemma 9 Let $I = \langle x, y, z \rangle$ be a monomial ideal in K[x, y, z], then

$$\mu(I^n) = \frac{(n+1)(n+2)}{2}$$

Results

Corollary 10 Let $I \subset k[x_1, \ldots, x_n]$ be a monomial ideal such that $\mu(I) = t$. Let

 $I = P_1 \cap P_2 \cap \cdots \cap P_r$

be irreducible primary decomposition of I such that $supp(P_i) \subseteq \{x_{i_1}, x_{i_2}\}$ for only one component P_i and $|supp(P_j)| < 2$ for all other components different from P_i . Then number of elements in the lcm(I) is

Results

Lemma 11 Let $I \subset K[x_1, ..., x_n]$ and $J \subset K[x_1, x_2]$ be two monomial ideals such that $\mu(I) = \mu(J)$ with

$$G(I) = \{x_1 x_2, x_2 x_3, \dots, x_{n-1} x_n\}.$$

Then

 $lcm(I) \cong lcm(J).$

Results

Lemma 12 Let

 $I = \langle x_1 x_2, x_2 x_3, \dots, x_{n-1} x_n \rangle \subset k[x_1, x_2, \dots, x_n].$ Then number of elements in the minimal set of generators for I^k is given by

$$\binom{k+n-3}{n-2}$$

Observations and further work

• Let $I = \langle x_1x_2, x_2x_3 \rangle \subset k[x_1, x_2, x_3]$. Then number of elements in $lcm(I^n)$ is given by

$$\frac{n(n+1)}{2}$$

• Let $I = \langle x_1x_2, x_2x_3, x_3x_4 \rangle \subset k[x_1, x_2, x_3, x_4]$. Then number of elements in $lcm(I^n)$ is given by

$$\frac{n^2(n^2-1)}{12}.$$

Observations and further work

Let *I* =< *x*₁*x*₂, *x*₂*x*₃, *x*₃*x*₄, *x*₄*x*₅ >⊂
k[*x*₁, *x*₂, *x*₃, *x*₄, *x*₅]. Then number of elements in lcm(*Iⁿ*) is given by

$$\frac{(n+1)(n+2)(n+3)(n^3+6n^2+11n+12)}{72}$$

• Let $I = \langle x_1 x_2, x_2 x_3, x_3 x_4, x_4 x_5, x_5 x_6 \rangle \subset k[x_1, x_2, x_3, x_4, x_5, x_6]$. Then number of elements in $lcm(I^n)$ is given by

$$\frac{((n+2)^6 - (n+1)^6) - ((n+2)^2 - (n+1)^2)}{(n+1)^6}$$

•

THANK YOU