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Description of the problems

• Let K be a field and S = K[x1, x2, . . . , xn] be a
polynomial ring in n variables.

• An ideal in S generated by monomials is
called monomial ideal.

• Let I ⊂ S be a monomial ideal and lcm(I) be
its lcm lattice.
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Problem I

• We are interested to find classes of ideals I
and J for which if lcm(I) ∼= lcm(J) it implies
lcm(In) and lcm(Jn) are also isomorphic for
all n.
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Problem II

• We are interested to determine the growth of
the number of elements in lcm(In) as a
function of n.
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lcm-lattice of monomial ideals

• Let u = xa11 xa22 · · · xann and v = xb11 x
b2
2 · · · xbnn be

two monomials, then the least common
multiple lcm(u, v) is given by

• lcm(u, v) = x
max(a1,b1)
1 x

max(a2,b2)
2 · · · x

max(an,bn)
n .

• Let I =< m1, . . . ,md >⊂ S be a monomial
ideal. Then lcm-lattice lcm(I) of ideal I is the
set of all LCMs of subsets of {m1, . . . ,md}
with partial ordering given by divisibility.
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lcm-lattice of monomial ideals

• The unique maximal element is
lcm(m1,m2, . . . ,md) and the unique minimal
element is 1 regarded as the lcm of the empty
set.

• lcm(I) with this order is a lattice.
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Example

Let I =< x2, xy, y2 >⊂ K[x, y] be a monomial
ideal. Then the lcm-lattice of I is

x
2

y
2

x
2

y x y
2

x
2

xy y
2

0̂
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Power sequence

Definition 1 • Let I ⊂ k[x1, . . . , xn] be a
monomial ideal with lcm lattice lcm(I).

• Let lcm(I) has m levels. We denote level of
lcm(I) by li with l0 = 0̂ and lm = 1̂.

• Let level lj of lcm(I) has t monomials. A
power sequence of a variable xi at level lj is
defined as follows:

• lj(xi) : α1 ⋚ α2 ⋚ · · · ⋚ αt.
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Power sequence

For example, suppose level j of lcm(I) has the
following monomials

xyz xz3 x3y2 x2yz

then the power sequence of x is

lj(x) : 1 = 1 < 3 > 2.
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Results(2 variables case)

Lemma 2 Let I ⊂ K[x, y] be an ideal such that
µ(I) = t, then lcm-lattice of I has t(t+1)

2 elements.

On different classes of Monomial Ideals associated to lcm-lattices – p. 11/25



Results(2 variables case)

Abbildung 1: lcm(I) in two variable case
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Results(2 variables case)

Corollary 3 Let I and J be two monomial ideals
in K[x, y] such that µ(I) = µ(J). Then

lcm(I) ∼= lcm(J).
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Results(2 variables case)

Theorem 4 Let k > l and k +m > l + q be
numbers and
I =< xkyl, xlyk >, J =< xk+myl+q, xl+qyk+m >
be two monomial ideals in K[x, y] such that

lcm(I) ∼= lcm(J).

Then
lcm(In) ∼= lcm(Jn),

for all n > 1.
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Results(2 variables case)

The proof of above theorem requires following
lemma.
Lemma 5 Let I =< xαyβ, xβyα >⊂ K[x, y] be an
ideal with α > β. Then

In =< x(n−i)α+iβy(n−i)β+iα | i = 0, 1, . . . , n > .
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Results(2 variables case)

Corollary 6 Let I =< xαyβ, xβyα >⊂ K[x, y] be
an ideal with α > β. Then lcm lattice of In,
denoted by lcm(In), is pure and has n+ 1 levels.
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Results(2 variables case)

Corollary 7 Let I =< xαyβ, xβyα >⊂ K[x, y] be
an ideal with α > β. Then lcm lattice of In has
(n+1)(n+2)

2 elements.
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Results(2 variables case)

Lemma 8 Let I =< xαyβ, xβyα >⊂ K[x, y] be a
monomial ideal with α > β. Let ui ∈ lcm(In−1) be
monomial at level i of lcm(In−1) for some
i ∈ {1, . . . , n}. Then uαi ∈ lcm(In) at level i of
lcm(In).
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Results(3 variables case)

Lemma 9 Let I =< x, y, z > be a monomial ideal
in K[x, y, z], then

µ(In) =
(n+ 1)(n+ 2)

2
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Results

Corollary 10 Let I ⊂ k[x1, . . . , xn] be a monomial
ideal such that µ(I) = t. Let

I = P1 ∩ P2 ∩ · · · ∩ Pr

be irreducible primary decomposition of I such
that supp(Pi) ⊆ {xi1, xi2} for only one component
Pi and |supp(Pj)| < 2 for all other components
different from Pi. Then number of elements in the
lcm(I) is

t(t+ 1)

2
.
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Results

Lemma 11 Let I ⊂ K[x1, . . . , xn] and
J ⊂ K[x1, x2] be two monomial ideals such that
µ(I) = µ(J) with

G(I) = {x1x2, x2x3, . . . , xn−1xn}.

Then
lcm(I) ∼= lcm(J).
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Results

Lemma 12 Let
I =< x1x2, x2x3, . . . , xn−1xn >⊂ k[x1, x2, . . . , xn].
Then number of elements in the minimal set of
generators for Ik is given by

(

k + n− 3

n− 2

)

.
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Observations and further work

• Let I =< x1x2, x2x3 >⊂ k[x1, x2, x3]. Then
number of elements in lcm(In) is given by

n(n+ 1)

2
.

• Let I =< x1x2, x2x3, x3x4 >⊂ k[x1, x2, x3, x4].
Then number of elements in lcm(In) is given
by

n2(n2 − 1)

12
.
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Observations and further work

• Let I =< x1x2, x2x3, x3x4, x4x5 >⊂
k[x1, x2, x3, x4, x5]. Then number of elements
in lcm(In) is given by

(n+ 1)(n + 2)(n+ 3)(n3 + 6n2 + 11n+ 12)

72
.

• Let I =< x1x2, x2x3, x3x4, x4x5, x5x6 >⊂
k[x1, x2, x3, x4, x5, x6]. Then number of
elements in lcm(In) is given by

((n+ 2)6 − (n+ 1)6)− ((n+ 2)2 − (n+ 1)2)

60
.
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THANK YOU
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