On different classes of Monomial Ideals associated to lcm-lattices

Sarfraz Ahmad

COMSATS University Islamabad(Lahore Campus),
Lahore-Pakistan.
Combinatorial Algebra meets Algebraic Combinatorics 2020
January 24-26, 2020
Dalhousie University, Halifax, Canada

Outlines

- Description of the problems
- Basic definitions and notations
- Results
- Open problems

Description of the problems

- Let K be a field and $S=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a polynomial ring in n variables.
- An ideal in S generated by monomials is called monomial ideal.
- Let $I \subset S$ be a monomial ideal and $\operatorname{lcm}(I)$ be its Icm lattice.

Problem I

- We are interested to find classes of ideals I and J for which if $\operatorname{lcm}(I) \cong \operatorname{lcm}(J)$ it implies $\operatorname{lcm}\left(I^{n}\right)$ and $\operatorname{lcm}\left(J^{n}\right)$ are also isomorphic for all n.

Problem $I I$

- We are interested to determine the growth of the number of elements in $\operatorname{lcm}\left(I^{n}\right)$ as a function of n.

lcm-lattice of monomial ideals

- Let $u=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ and $v=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}$ be two monomials, then the least common multiple $\operatorname{lcm}(u, v)$ is given by
- $\operatorname{lcm}(u, v)=x_{1}^{\max \left(a_{1}, b_{1}\right)} x_{2}^{\max \left(a_{2}, b_{2}\right)} \cdots x_{n}^{\max \left(a_{n}, b_{n}\right)}$.
- Let $I=<m_{1}, \ldots, m_{d}>\subset S$ be a monomial ideal. Then lcm-lattice $\operatorname{lcm}(I)$ of ideal I is the set of all LCMs of subsets of $\left\{m_{1}, \ldots, m_{d}\right\}$ with partial ordering given by divisibility.

lcm-lattice of monomial ideals

- The unique maximal element is $\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{d}\right)$ and the unique minimal element is 1 regarded as the lcm of the empty set.
- $\operatorname{lcm}(I)$ with this order is a lattice.

Example

Let $I=<x^{2}, x y, y^{2}>\subset K[x, y]$ be a monomial ideal. Then the lcm-lattice of I is

Power sequence

Definition 1 - Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a

 monomial ideal with Icm lattice $\operatorname{lcm}(I)$.- Let $\operatorname{lcm}(I)$ has m levels. We denote level of $\operatorname{lcm}(I)$ by l_{i} with $l_{0}=\hat{0}$ and $l_{m}=\hat{1}$.
- Let level l_{j} of $1 \mathrm{~cm}(I)$ has t monomials. A power sequence of a variable x_{i} at level l_{j} is defined as follows:
- $l_{j}\left(x_{i}\right): \alpha_{1} \lesseqgtr \alpha_{2} \lesseqgtr \ldots \lesseqgtr \alpha_{t}$.

Power sequence

For example, suppose level j of $l c m(I)$ has the following monomials

$$
x y z \quad x z^{3} \quad x^{3} y^{2} \quad x^{2} y z
$$

then the power sequence of x is

$$
l_{j}(x): \quad 1=1<3>2 .
$$

Results(2 variables case)

Lemma 2 Let $I \subset K[x, y]$ be an ideal such that $\mu(I)=t$, then lcm-lattice of I has $\frac{t(t+1)}{2}$ elements.

Results(2 variables case)

$\widehat{0}$

Abbildung 1: $\operatorname{lcm}(I)$ in two variable case

Results(2 variables case)

Corollary 3 Let I and J be two monomial ideals in $K[x, y]$ such that $\mu(I)=\mu(J)$. Then

$$
\operatorname{lcm}(I) \cong \operatorname{lcm}(J) .
$$

Results(2 variables case)

Theorem 4 Let $k>l$ and $k+m>l+q$ be numbers and
$I=<x^{k} y^{l}, x^{l} y^{k}>, J=<x^{k+m} y^{l+q}, x^{l+q} y^{k+m}>$ be two monomial ideals in $K[x, y]$ such that

$$
\operatorname{lcm}(I) \cong \operatorname{lcm}(J)
$$

Then

$$
\operatorname{lcm}\left(I^{n}\right) \cong \operatorname{lcm}\left(J^{n}\right)
$$

for all $n>1$.

Results(2 variables case)

The proof of above theorem requires following

 lemma.Lemma 5 Let $I=<x^{\alpha} y^{\beta}, x^{\beta} y^{\alpha}>\subset K[x, y]$ be an ideal with $\alpha>\beta$. Then

$$
I^{n}=<x^{(n-i) \alpha+i \beta} y^{(n-i) \beta+i \alpha} \mid i=0,1, \ldots, n>
$$

Results(2 variables case)

Corollary 6 Let $I=<x^{\alpha} y^{\beta}, x^{\beta} y^{\alpha}>\subset K[x, y]$ be an ideal with $\alpha>\beta$. Then lcm lattice of I^{n}, denoted by $\operatorname{lcm}\left(I^{n}\right)$, is pure and has $n+1$ levels.

Results(2 variables case)

Corollary 7 Let $I=<x^{\alpha} y^{\beta}, x^{\beta} y^{\alpha}>\subset K[x, y]$ be an ideal with $\alpha>\beta$. Then lcm lattice of I^{n} has $\frac{(n+1)(n+2)}{2}$ elements.

Results(2 variables case)

Lemma 8 Let $I=<x^{\alpha} y^{\beta}, x^{\beta} y^{\alpha}>\subset K[x, y]$ be a monomial ideal with $\alpha>\beta$. Let $u_{i} \in \operatorname{lcm}\left(I^{n-1}\right)$ be monomial at level i of $l c m\left(I^{n-1}\right)$ for some $i \in\{1, \ldots, n\}$. Then $u_{i}^{\alpha} \in \operatorname{lcm}\left(I^{n}\right)$ at level i of $\operatorname{lcm}\left(I^{n}\right)$.

Results(3 variables case)

Lemma 9 Let $I=<x, y, z>$ be a monomial ideal

 in $K[x, y, z]$, then$$
\mu\left(I^{n}\right)=\frac{(n+1)(n+2)}{2}
$$

Results

Corollary 10 Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal such that $\mu(I)=t$. Let

$$
I=P_{1} \cap P_{2} \cap \cdots \cap P_{r}
$$

be irreducible primary decomposition of I such that $\operatorname{supp}\left(P_{i}\right) \subseteq\left\{x_{i_{1}}, x_{i_{2}}\right\}$ for only one component P_{i} and $\left|\operatorname{supp}\left(P_{j}\right)\right|<2$ for all other components different from P_{i}. Then number of elements in the $\operatorname{lcm}(I)$ is

$$
\frac{t(t+1)}{2}
$$

Results

Lemma 11 Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ and $J \subset K\left[x_{1}, x_{2}\right]$ be two monomial ideals such that $\mu(I)=\mu(J)$ with

$$
G(I)=\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}\right\} .
$$

Then

$$
\operatorname{lcm}(I) \cong \operatorname{lcm}(J)
$$

Results

Lemma 12 Let

$I=<x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}>\subset k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Then number of elements in the minimal set of generators for I^{k} is given by

$$
\binom{k+n-3}{n-2}
$$

Observations and further work

- Let $I=<x_{1} x_{2}, x_{2} x_{3}>\subset k\left[x_{1}, x_{2}, x_{3}\right]$. Then number of elements in $\operatorname{lcm}\left(I^{n}\right)$ is given by

$$
\frac{n(n+1)}{2}
$$

- Let $I=<x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}>\subset k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Then number of elements in $\operatorname{lcm}\left(I^{n}\right)$ is given by

$$
\frac{n^{2}\left(n^{2}-1\right)}{12}
$$

Observations and further work

- Let $I=<x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}>\subset$ $k\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$. Then number of elements in $\operatorname{lcm}\left(I^{n}\right)$ is given by

$$
\frac{(n+1)(n+2)(n+3)\left(n^{3}+6 n^{2}+11 n+12\right)}{72}
$$

- Let $I=<x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{5} x_{6}>\subset$ $k\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]$. Then number of elements in $\operatorname{lcm}\left(I^{n}\right)$ is given by

$$
\frac{\left((n+2)^{6}-(n+1)^{6}\right)-\left((n+2)^{2}-(n+1)^{2}\right)}{60}
$$

THANK YOU

