Castelnuovo-Mumford regularity of ladder determinantal ideals via Grothendieck polynomials

Colleen Robichaux
University of Illinois at Urbana-Champaign

joint work with Jenna Rajchgot and Anna Weigandt
CAAC 2022
January 21, 2022

Kazhdan-Lusztig varieties of Woo-Yong '06

Let $\mathcal{F} I_{n}(\mathbb{C})$ be the set of complete flags

$$
0=V_{0} \subset V_{1} \subset \ldots \subset V_{n-1} \subset V_{n}=\mathbb{C}^{n}, \quad \text { where } \operatorname{dim} V_{i}=i
$$

We can identify $\mathcal{F} I_{n}(\mathbb{C})$ with $\mathrm{GL}_{n}(\mathbb{C}) / B$, where $B \subset G L_{n}(\mathbb{C})$ is the Borel subgroup.

B acts on $\mathcal{F} I_{n}(\mathbb{C})$ with finitely many orbits X_{w}° called Schubert cells. The Schubert varieties X_{w} are closures of these orbits. For the opposite Schubert cell Ω_{v}° :

Theorem [Kazhdan-Lusztig '79]

$$
X_{w} \cap v \Omega_{i d}^{\circ} \cong\left(X_{w} \cap \Omega_{v}^{\circ}\right) \times \mathbb{A}^{\ell(v)}
$$

Of particular interest is the Kazhdan-Lusztig variety

$$
\mathcal{N}_{v, w}=X_{w} \cap \Omega_{v}^{\circ}
$$

Kazhdan-Lusztig varieties

Kazhdan-Lusztig variety $\mathcal{N}_{v, w}$ has defining ideal

$$
I_{v, w}=\left\langle r_{w}(i, j)+1 \text { minors of } \mathbf{z}_{i \times j}(v)\right\rangle .
$$

Example: $w=4132, v=4231$

$$
I_{v, w}=\left\langle z_{11}, z_{12}, z_{13}, z_{11}-z_{12} z_{21},-z_{12} z_{31},-z_{31}\right\rangle
$$

Matrix Schubert varieties and determinantal varieties are all examples of KL varieties.

Minimal free resolution

Consider the coordinate ring S / I. The minimal free resolution

$$
0 \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{l, j}} \rightarrow \cdots \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{0, j}} \rightarrow S / I \rightarrow 0
$$

The K-polynomial of S / I

$$
\mathcal{K}(S / I ; \mathbf{t}):=\sum_{j \in \mathbb{Z}, i \geq 0}(-1)^{i} \beta_{i, j} t^{j}
$$

The Castelnuovo-Mumford regularity of S / I

$$
\operatorname{reg}(S / I):=\max \left\{j-i \mid \beta_{i, j} \neq 0\right\}
$$

Proposition
For Cohen-Macaulay S/I

$$
\operatorname{reg}(S / I)=\operatorname{deg} \mathcal{K}(S / I ; \mathbf{t})-\operatorname{codim}_{S} I
$$

Matrix Schubert varieties

Matrix Schubert varieties \bar{X}_{w} are special cases of $\mathcal{N}_{v, w^{\prime}}$.

Theorem

$$
\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{w}\right]\right)=\operatorname{deg}\left(\mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)\right)-\ell(w)
$$

where $\mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)$ is the Grothendieck polynomial and $\ell(w)$ is the Coxeter length of w.

Problem

Give an easily computable formula for $\operatorname{deg}\left(\mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)\right)$, where $w \in S_{n}$.

Finding the degree of \mathfrak{G}_{v} vexillary

Theorem [Rajchgot-R.-Weigandt '22+]

Suppose $v \in S_{n}$ vexillary. Then

$$
\operatorname{deg}\left(\mathfrak{G}_{v}\right)=\ell(v)+\sum_{i=1}^{n} \# \operatorname{ad}\left(\left.\lambda(v)\right|_{\geq i}\right)
$$

Example: $v=5713624$

gives $\operatorname{deg}\left(\mathfrak{G}_{v}\right)=\ell(v)+(3+1)=12+4=16$.

Finding the regularity of \bar{X}_{v} vexillary

Theorem [Rajchgot-R.-Weigandt '22+]

Suppose $v \in S_{n}$ vexillary. Then

$$
\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)=\operatorname{deg}\left(\mathfrak{G}_{v}\right)-\ell(v)=\sum_{i=1}^{n} \# \operatorname{ad}\left(\left.\lambda(v)\right|_{\geq i}\right)
$$

Example: $v=5713624$

gives $\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)=\operatorname{deg}\left(\mathfrak{G}_{v}\right)-\ell(v)=3+1=4$.

Computing CM-regularity of certain KL varieties

Theorem [Rajchgot-R.-Weigandt '22+]

For $u_{\rho}, w_{v} \in S_{n}$ Grassmannian with descent $k,\left(u_{\rho}, w_{v}\right) \mapsto v$ vexillary such that

$$
\operatorname{reg}\left(\mathbb{C}\left[\mathcal{N}_{u_{\rho}, w_{v}}\right]\right)=\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)=\sum_{i=1}^{n} \# \operatorname{ad}\left(\left.\lambda(v)\right|_{\geq i}\right)
$$

Example: $u_{(6,6,4,4,4)}, w_{(5,4,2,1,0)} \mapsto v=5713624$

$\operatorname{gives} \operatorname{reg}\left(\mathbb{C}\left[\mathcal{N}_{u_{\rho}, w_{v}}\right]\right)=\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)=4$.

Application I: KLSS Conjecture

Fix $k \in[n]$. Let Y denote the space of $n \times n$ matrices of the form

$$
\left[\begin{array}{cc}
A & I_{k} \\
I_{n-k} & 0
\end{array}\right], \text { where } A \in M_{k \times(n-k)}(\mathbb{C})
$$

The map

$$
\pi: G L_{n}(\mathbb{C}) \rightarrow \operatorname{Gr}(k, n)
$$

induces an isomorphism from Y onto an affine open subvariety U of $\operatorname{Gr}(k, n)$. Let $Y_{w}:=\left.\pi\right|_{Y} ^{-1}\left(X_{w} \cap U\right)$.
Kummini-Lakshmibai-Sastry-Seshadri were interested in the free resolutions of Y_{w}, and conjectured their CM-regularities when $w_{1}=1$ and w_{n-k-i} not 'too big'.

Application I: KLSS Conjecture

Conjecture [Kummini-Lakshmibai-Sastry-Seshadri '15]

For certain $w_{v} \in S_{n}$ Grassmannian with descent k,

$$
\operatorname{reg}\left(\mathbb{C}\left[Y_{w_{v}}\right]\right)=\sum_{i=1}^{k-1} i\left(v_{i}-v_{i+1}\right)
$$

But these $Y_{w_{v}}$ are just KL varieties!
Corollary [Rajchgot-R.-Weigandt '22+]
For $w_{v} \in S_{n}$ as in KLSS and $u_{\rho}=\left(\operatorname{Id}_{k}+n-k\right) \times\left(\mathrm{Id}_{n-k}\right)$

$$
\operatorname{reg}\left(\mathbb{C}\left[Y_{w_{v}}\right]\right)=\operatorname{reg}\left(\mathbb{C}\left[\mathcal{N}_{u_{\rho}, w_{v}}\right]\right)=\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{w_{v}}\right]\right)
$$

Application II: one-sided mixed ladder determinantal ideals

Consider a matrix $X=\left(x_{i j}\right)$ of indeterminates. Let L denote the submatrix of X defined by choosing SE corners. $I(L)$ is the ideal generated by the NW r_{i} minors of L. This defines the one-sided mixed ladder determinantal variety $X(L)$.

Further, these are KL-varieties

$$
X(L) \cong \mathcal{N}_{u_{\rho}, w_{v}} \cong \bar{X}_{v} .
$$

Corollary [Rajchgot-R.-Weigandt '22+]

$$
\operatorname{reg}(\mathbb{C}[X(L)])=\sum_{i=1}^{n} \# \operatorname{ad}\left(\left.\lambda(v)\right|_{\geq i}\right)
$$

Future work: two-sided mixed ladder determinantal ideals

Consider a matrix $X=\left(x_{i j}\right)$ of indeterminates. Let L denote the submatrix of X defined by choosing SE and NW corners. $I(L)$ is the ideal generated by the NW r_{i} minors of L. This defines the two-sided mixed ladder determinantal variety $\tilde{X}(L)$.

Further, for any such variety, we can construct $v, w \in S_{n}$ 321 -avoiding such that

$$
\tilde{X}(L) \cong \mathcal{N}_{v, w}
$$

Conclusions

- We can express reg $\left(\mathbb{C}\left[\bar{X}_{w}\right]\right)$ in terms of the degree of the K-polynomial and the codimension of I_{w}.
- Use that $\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{w}\right]\right)=\operatorname{deg} \mathfrak{G}_{w}-\ell(w)$.
- For v vexillary, we obtain an easily computable formula for $\operatorname{deg} \mathfrak{G}_{v}$, and thus for $\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)$.
- By relating $\mathcal{N}_{u_{\rho}, w_{v}}$ to \bar{X}_{v}, we correct a conjecture of KLSS and obtain formulas for regularities of one-sided ladders.

