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Recall Hopf Algebra Def

Product

Coproduct

with unit and counit

and an antipode map

this diagram commutes

Start with a Bialgebra
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A classic example of a Hopf Algebra is the 
group Hopf algebra

start with the usual group algebra
coproduct

counit unitantipode

this forms a bialgebra

But this is not a good example fo a 
combintorial Hopf algebra



Sym - symmetric functions in an arbitary/infinite 
number of variables

product inherited from polynomials in p’s

Coproduct

if f is homogeneous of degree > 0



Sym - symmetric functions in an arbitary/infinite 
number of variables

product inherited from the polynomial ring

coproduct comes from replacing one set of 
alphabets by two X->left  Y->right tensor



QSym - Quasisymmetric functions

‘the’ Hopf algebra of compositions which is
commutative and non-cocommutative

Fundamental basis:



Aguiar-(N)Bergeron-Sottile - definition of CHA = graded 
+ connected + has a multiplicative linear functional called 

a character

Result: every CHA has a morphism to QSym
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I know it when I see it definition
What makes it a combinatorial Hopf algebra?

Graded and connected (degree 0 had dimension 1)

Follows recognizable structure of combinatorial objects

Generalizes structures we observe in Sym, QSym such 
as product, coproduct, internal (co)product (Kronecker 
product)*, composition (plethysm)*, fundamental basis*

Freely generated

orRealized as a subalgebra* of 

Has a basis for which product and coproduct expand 
positively

1

2

3

4

5

6
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The symmetric functions are isomorphic to 
the representation ring of the symmetric groups

NSym is isomorphic to the representation ring of 
representation ring of the Hecke algebra at q=0

Krob-Thibon ‘97

coproduct restriction

product induction

Peak Hecke-Clifford algebra at q=0
Bergeron(N)-Hivert-Thibon ‘03

Bergeron(N)-Huilan Li ‘06: When does this happen?
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Why look at CHAs?

Generalize structures of Sym and usually there are 
morphisms from CHAs to/from Sym

Example of open problem in Sym:

explain internal (Kronecker) product coefficients with 
combinatorics

current state of affairs is that we can only explain cases 
of these coefficients because of connections with NSym
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Example of open problem in Sym II:

Show positivity results in symmetric functions

LLT symmetric functions are Schur positive

Element 1: QSym (Gessel ‘84)

Element II: LLT symmetric functions ‘94

Remarkable advance I: LLT symmetric functions have 
positive expansion in F-basis of QSym (HHL ‘05) 

Remarkable advance II: combinatorial conditions for 
showing that QSym expression is Schur positive (Assaf ‘08)



Classical algebraic object of study: 

Linear span of derivatives of the Vandermonde



Now that we have several spaces which seem to be
analogues of Sym consider some analgous quotients

considered by Aval-Bergeron-Bergeron

graded space of dimension Calatan number



Bergeron(F)-Reutenauer consider the quotient:

Conjecture : dimension is n!

Proven by Garsia-Wallach ‘03

Now that we have several spaces which seem to be
analogues of Sym consider some analgous quotients



Non commutative analogues

Considered by Bergeron(N)-Reutenauer-Rosas-Zabrocki

for the left and shuffle ideal

Still open: what happens with the two sided ideal?

More recently by Bergeron(F)-Lauve



q,t - enumeration of combinatorial objects

Novelli-Thibon ‘09

both of the following expressions are specializations 
of Hopf algebra of binary rooted trees


