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Tanisaki introduced generating sets for the defining ideals of the schematic intersections

of the closure of conjugacy classes of nilpotent matrices with the set of diagonal matrices.

These ideals are naturally labeled by integer partitions. Given such a partition λ, we

define several methods to produce a reduced generating set for the associated ideal Iλ.

For particular shapes we find nice generating sets. By comparing our sets with some

generating sets of Iλ arising from a work of Weyman, we find a counterexample to a

related conjecture of Weyman.

1 Introduction

Let X be the set of n × n matrices over a field k of characteristic 0. In his paper Kostant [9]

showed that the ideal of polynomial functions vanishing on the set of nilpotent matrices

in X, is given by the invariants of the action by conjugation of GL(n) on X. Let Cλ be the

conjugacy class of nilpotent matrices in X having Jordan block sizes λ′
1, . . . , λ′

h, with λ a

partition of n and λ′ its transpose. Let C λ be the nilpotent orbit variety defined as the

Zariski closure of Cλ. De Concini and Procesi [4] asked for a description of the ideal Jλ

of polynomial functions vanishing on Cλ, for a general partition λ. They were interested
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in a refinement of Kostant’s result, which corresponds to the case λ = (1n). De Concini

and Procesi described a set of elements of Jλ that they conjectured to be a generating

set. Later, Tanisaki [10] conjectured a simpler generating set, and Eisenbud and Saltman

[5] generalized Tanisaki’s conjecture to rank varieties. Finally, in 1989 Weyman [11] used

geometric methods to show that the three conjectures hold, and conjectured a minimal

generating set Wλ for these ideals.

In the present paper we focus on a related family of ideals that we denote by

Iλ and call De Concini–Procesi ideals. These are the ideals of the scheme-theoretic in-

tersection of nilpotent orbit varieties C λ with the set of diagonal matrices. De Concini

and Procesi [4] produced a set of generators for these ideals that was later simplified

by Tanisaki [10]. In both cases, the sets of generators are highly nonminimal. In the

case λ = (1n), Kostant’s theorem implies that the elementary symmetric functions of the

eigenvalues of the matrices give a minimal set of generators for I(1n).

Our work in this paper is motivated by the search for a minimal generating set

for De Concini–Procesi ideals. To this end, we simplify the generating set described by

Tanisaki using elementary facts of the theory of symmetric functions. We provide several

reduction methods. The obtained sets are minimal in special cases, and are generally

much smaller. The main tool we use is a special filling of the Young diagram of the

partition λ which we call the regular filling.

Clearly, by adding the defining ideal of the diagonal matrices to any generating

set for the ideal Jλ, we obtain a generating set for Iλ. The following question is natural: Is

it true that, after adding these generators to Weyman’s conjectured minimal generating

set for Jλ, a minimal generating set for Iλ is obtained ? We give a negative answer to

this question and provide some infinite families of counterexamples. With the help of

Macaulay2 [8], we verify that one of these counterexamples is also a counterexample to

the original conjecture of Weyman on a minimal generating set of Jλ. This has been a

well-studied problem that has been open for the past 19 years. We hope that our methods,

together with those of Weyman will eventually lead to a complete solution of the problem

of finding a minimal generating set for both ideals Iλ and Jλ.

Our paper is organized as follows. In Section 2, we introduce some basic tools

from the theory of symmetric functions. In Section 3, we introduce Tanisaki’s generating

set for the De Concini–Procesi ideal, and derive a simple combinatorial description for it.

This leads to a simple rule to read a set of generators of the ideal directly from a special

filling of the Young diagram of the partition that we call the regular filling. In Section 4,

we show that only generators read from the top entries of the regular filling are necessary

in order to construct a generating set for Iλ. The resulting generating set is in a one-to-one
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Fig. 1. The partition λ = (4, 4, 2, 1) and its conjugate λ′ = (4, 3, 2, 2)

correspondence with a generating set that arises from the work of Weyman [11]. In the

case where the partition λ is a hook, our result coincides with the minimal generating set

we introduced in [3]. For a general shape though, this generating set could be far from

minimal. In Section 5, we reduce the number of generators coming from each column of

the Young diagram. Finally in Section 6, we provide many examples and counterexamples

to the modified version of Weyman’s conjecture, and discuss classes where our reductions

work best. Inside those families we are able to find a counterexample to the original

conjecture of Weyman on a minimal generating set for the ideal Jλ. Throughout the

paper, we raise new questions whose answers could help illuminate the problem of

finding minimal generating sets for Iλ and Jλ.

2 Basic Tools

We will be working in the polynomial ring R = k[x1, . . . , xn], where k may be an arbitrary

field of characteristic 0.

We define a partition of n ∈ N to be a finite sequence λ = (λ1, . . . , λk) ∈ N
k, such

that
∑k

i=1 λi = n and λ1 ≥ · · · ≥ λk. If λ is a partition of n, we write λ � n. The nonzero

terms λi are called parts of λ. The number of parts of λ is called the length of λ, denoted

by �(λ), so λi = 0 if i > �(λ).

Let λ = (λ1, . . . , λk) be a partition of n. The Young diagram of a partition λ is the

left-justified array with λi squares in the ith row, from bottom to top. We use the symbol

λ for both a partition and its associated Young diagram. For example, the diagram of

λ = (4, 4, 2, 1) is illustrated in Figure 1 on the left.

For a partition λ = (λ1, . . . , λk) we define its conjugate partition as λ′ = (λ′
1, . . . , λ′

h),

where for each i ≥ 1, λ′
i is the number of parts of λ that are bigger than or

equal to i. The diagram of λ′ is obtained by flipping the diagram of λ across the

diagonal.

We shall need some basic definitions from the theory of symmetric functions.

First, we introduce the generating series for the elementary and the complete symmetric
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polynomials (denoted, respectively, by E (S, z) and H (S, z)). These series are defined as

E (S, z) =
∑
i≥0

ziei(S) =
∏
a∈S

(1 + za) and H (S, z) =
∑
i≥0

zihi(S) =
∏
a∈S

1

1 − za
, (1)

where S is a set of variables, and z is a formal variable. Therefore, the elementary

symmetric polynomial er(S) is the sum of all square-free monomials of degree r in the

variables of S, and the complete symmetric polynomial hr(S) is the sum of all monomials

of degree r in the variables of S.

In order to introduce the monomial symmetric polynomials mλ(S), we say that a

monomial xs = xs1
1 xs2

2 · · · xsn
n has type λ, if the partition λ is obtained by rearranging the

sequence (s1, s2, . . . , sn) in weakly descending order. Given a partition λ, the monomial

symmetric polynomial mλ = mλ(S) is defined as

mλ(S) =
∑

xs,

where the sum is taken over all different monomials xs of type λ and with all variables

in S.

If f ∈ k[x1, . . . , xn] is a symmetric polynomial, and S ⊆ {x1, . . . , xn}, we define f (S)

as the evaluation of f at the set S, by setting all variables x ∈ {x1, . . . , xn} \ S to be equal to

0 in f . For instance, e2(x1, x3) = x1x3. The polynomial f (S) is called a partially symmetric

polynomial. In general, it is no longer invariant under the action of the symmetric group

on n letters.

For simplicity, given a symmetric polynomial f ∈ k[x1, . . . , xn], for all 1 ≤ k ≤ n,

we will denote by f (k) the following set of partially symmetric polynomials:

f (k) = { f (S) | S ⊆ {x1, . . . , xn}, |S| = k}.

For example, let n = 4, then e2(3) = {x1x2 + x1x3 + x2x3, x1x2 + x1x4 + x2x4, x1x3 + x1x4 +
x3x4, x2x3 + x2x4 + x3x4}. Note that if r > k, we have er(k) = ∅.

Notation. Let S ⊆ {x1, . . . , xn}. For x ∈ S, and I = {xi1 , . . . , xik } ⊆ S, we let

Sx = S \ {x} and Si1,...,ik = S \ I. �

We shall be using the following elementary lemma later in the paper.
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Lemma 2.1 (Basic lemma). Let S ⊆ {x1, . . . , xn}, |S| = s, and let j ≤ s. Then we have the

following:

(1) ej(S) = ej(Sx) + xej−1(Sx) for all x ∈ S;

(2)
∑
x∈S

ej(Sx) = (s − j)ej(S);

(3)
∑
x∈S

xej−1(Sx) = jej(S). �

Proof. (1) Clear.

(2) Fix a square-free monomial M of degree j appearing in ej(S). Without loss

of generality, assume that M = x1 · · · xj and S = {x1, . . . , xs}. Then each ej(Sxt )

contains exactly one copy of M, for t = j + 1, . . . , s. There are exactly s − j

such indices t , so M appears s − j times in the left-hand sum.

(3) We use the equation in part 1, and sum over all elements of S :∑
x∈S ej(S) = ∑

x∈S ej(Sx) + ∑
x∈S xej−1(Sx), so by part 2 we have sej(S) = (s −

j)ej(S) + ∑
x∈S xej−1(Sx) and hence jej(S) = ∑

x∈S xej−1(Sx). �

Proposition 2.2 (Another presentation of the partially symmetric polynomials). Let

S = {x1, . . . , xn}, i ≤ n, and define the ideal Ei(S) = (e1(S), . . . , ei(S)) in the polynomial ring

k[x1, . . . , xn]. Let U ⊆ S be a subset of cardinality u. Then for i ≤ n − u, we have

ei(S \ U ) = (−1)ihi(U ) mod Ei(S). (2)

�

Proof. This result follows from a formal manipulation of the generating functions in

equation (1). We have

E (S \ U , z) =
∏
a∈S
a 	∈U

(1 + za) =
∏

a∈S(1 + za)∏
a∈U (1 + za)

= E (S, z)H (U , −z).

Therefore, extracting the coefficient of zi from both sides of the resulting equation E (S \
U , z) = E (S, z)H (U , −z), we obtain

ei(S \ U ) =
i∑

j=0

ej(S)(−1)i− jhi− j(U ).

By hypothesis, ej(S) is in the ideal for j = 1, . . . , i. Since e0(S) = 1, the result follows. �
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3 A New Combinatorial Description of Tanisaki’s Generating Set for Iλ

In this section, we define a family of ideals Iλ in the polynomial ring R = k[x1, . . . , xn]

indexed by partitions λ of n. The ideal Iλ was first introduced by De Concini and Procesi [4]

in order to describe the coordinate ring of the schematic intersection of the Zariski

closure of the conjugacy class of nilpotent matrices of shape λ, with the set of diagonal

matrices.

In order to manipulate De Concini–Procesi ideals, we use a generating set de-

fined by Tanisaki [10]. A nice feature of Tanisaki’s generating set is that its elements are

elementary partially symmetric polynomials. Furthermore, Tanisaki’s proof of the cor-

rectness of his generating set is both elegant and elementary, and it is based on standard

linear algebra facts. Finally, Tanisaki’s generating set has proven to be very fruitful in

algebraic combinatorics; see for example [1, 2, 7].

Let λ = (λ1, . . . , λk) be a partition of n. For the purpose of the next formula, we add

enough zeroes to the end of λ so that it has n terms: λ = (λ1, . . . , λn). For any 1 ≤ k ≤ n,

we define

δk(λ) = λ′
n + λ′

n−1 + · · · + λ′
n−k+1. (3)

It is clear that δn(λ) ≥ δn−1(λ) ≥ · · · ≥ δ1(λ), and that δn(λ) = n.

Theorem 3.1 (Tanisaki’s generating set [10]). The ideal Iλ is generated by the following

collection of elementary partially symmetric polynomials:

Iλ = (er(k) | k = 1, . . . , n, and k ≥ r > k − δk(λ)). (4)

�

Definition 3.2 (De Concini–Procesi ideal). We call the ideal Iλ, defined in Theorem 3.1

the De Concini–Procesi ideal of the partition λ. �

Since for any partition λ of n, δn(λ) = n, when we set k = n in equation (4) we

conclude that Iλ contains all the elementary symmetric polynomials in all the variables

x1, . . . , xn.

Example 3.3. Let λ = (4, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0) � 11 be the partition appearing in Fig-

ure 1. Then (δ1(λ), . . . , δ11(λ)) = (0, 0, 0, 0, 0, 0, 0, 2, 4, 7, 11). Hence

(1 − δ1(λ), . . . , 11 − δ11(λ)) = (1, 2, 3, 4, 5, 6, 7, 6, 5, 3, 0).
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Here n = 11. For k = 1, . . . , 7 there is no admissible er(k) in the generating set described

in equation (4). So the generating set of I(4421) consists of the following elements.

Generators

k = 8 e7(8), e8(8)

k = 9 e6(9), e7(9), e8(9), e9(9)

k = 10 e4(10), e5(10), . . . , e10(10)

k = 11 e1(11), e2(11), . . . , e11(11) �

We now give a simple combinatorial description of the set of generators for Iλ

described in Theorem 3.1, and then demonstrate how to shorten it so that one can read

a reduced generating set for Iλ directly from the diagram of the partition λ. In order to

do so, we introduce the notion of regular filling.

Definition 3.4 (The regular filling of a partition). Let λ be a partition of n. Draw its

Young diagram and then fill its cells with the numbers 1, 2, . . . , n from top to bottom and

from left to right, skipping the cells in the bottom row, which should be filled at the end

from right to left. This is called the regular filling of λ, denoted by rf. �

Definition 3.5 (The reading process). We associate to any filling f of the Young diagram

of λ a set of partial symmetric polynomials, denoted by G f (λ). We read the elements of

this set from the filling as follows. For a given column of λ we add to G f (λ) all the elements

of the sets er(k), where k is the entry in the bottom cell of the column, and the degrees

r’s are given by all the entries in that column. �

Notation. From now on, we enumerate columns and rows of a Young diagram from left

to right by starting from zero. So the “first” column will be the 0th column; similarly for

rows. �

Example 3.6. For the partition λ = (4, 4, 2, 1), the regular filling rf is illustrated in Fig-

ure 2. The reading process of this filling gives the set Grf (λ) consisting of: the elementary

symmetric polynomials e1(x1, . . . , x11), e2(x1, . . . , x11), e3(x1, . . . , x11), e11(x1, . . . , x11), coming

from the 0th column; the partially symmetric polynomials of the sets e4(10), e5(10), e10(10)

read from the first column, e6(9), e9(9) from the second column, and e7(8), e8(8) from the

last column. �
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1
2 4
3 5 6 7
11 10 9 8

Fig. 2. The regular filling of (4, 4, 2, 1)

1
2
3
4
5 4
6 5
7 6
8 7 6
9 8 7
10 9 8 7
11 10 9 8

Fig. 3. The antidiagonal filling of δ′(λ)

By using this reading process, we are going to read Tanisaki’s generators from a

special filling.

Definition 3.7 (The antidiagonal filling). Let λ be a partition of n. Compute the partition

δ(λ)

δ(λ) = δn(λ) ≥ δn−1(λ) ≥ · · · ≥ δ1(λ),

where δk(λ) is defined as in equation (3), and draw the Young diagram of its conjugate

δ′(λ). Now fill the 0th column of δ′(λ) by 1, 2, . . . , n from top to bottom, and then fill the

remainder of the diagram so that the filling is constant following each antidiagonal. We

call this the antidiagonal filling of δ′(λ) and denote it by af. �

For our running example λ = (4, 4, 2, 1, 07), we have δ(λ) = (11, 7, 4, 2, 07); the an-

tidiagonal filling of δ′(λ) is given in Figure 3. Note that the bottom entry of the kth column

of δ′(λ) is n − k.

Let λ be a partition of n. Compute the set Gaf (δ′(λ)) by applying the reading process

to the antidiagonal filling af of δ′(λ). We have the following lemma.

Lemma 3.8. Let λ be a partition of n. Then Tanisaki’s set of generators is Gaf (δ′(λ)). In

particular,

Iλ = (Gaf (δ′(λ))). �
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Proof. Let λ = (λ1, . . . , λn). Compute δ′(λ) and fill its diagram with the antidiagonal filling.

According to Theorem 3.1, to compute Tanisaki’s generating set, we need to find for which

k the interval [k − δk(λ) + 1, . . . , k − 1, k] is nonempty; clearly this happens when δk(λ) > 0.

From the definition of δk(λ), the only time δk(λ) > 0 is when k = n − λ1 + 1, . . . , n.

So we are considering values er(S) for sets S such that n − λ1 + 1 ≤ |S| ≤ n. This is an

interval of length λ1, and the numbers k = |S| we are considering are exactly the entries

in the first row of δ′(λ).

Now, fix a column t that has the entry n − t in its bottom cell. The generating set

described in Theorem 3.1 has er(S), where |S| = n − t and r = n − t − δn−t (λ) + 1, . . . , n − t .

Note that there are exactly δn−t (λ) values that r takes, and that is exactly the size of the

tth column of δ′(λ). The mentioned values of r are exactly the entries of the tth column

of the antidiagonal filling of δ′(λ). �

One can easily check that this procedure applied to the antidiagonal filling in

Figure 3 produces the generators given in the table of Example 3.3.

We are now able to show the main result of this section, namely, that Iλ is the

sum of three simpler ideals. In order to do so, we will use the regular filling.

Theorem 3.9. Let λ be a partition of n. Fill the diagram of λ with the regular filling, and

compute the set Grf (λ) by using the reading process described in Definition 3.5. Then

Iλ = (Grf (λ)). �

Proof. Compute the partition δ′(λ), fill its diagram with the antidiagonal filling and

read off all of Tanisaki’s generators. By part 2 of Lemma 2.1, if er(x1, . . . , xj) 	= 0 belongs

to the ideal, so does er(x1, . . . , xJ ) for any J > j. Therefore, for each entry r = 1, . . . , n,

we only need to keep the generators coming from the rightmost occurrence of that r

in the antidiagonal filling of δ′(λ). So we delete all other occurrences of r in that filling

and the corresponding cell. We obtain a filling that contains exactly one occurrence of

each of the numbers from 1 to n. Now observe that the differences of heights between

adjacent columns of δ′(λ) are given by the sequence λ′
1, . . . , λ′

λ1
. So after the deletion

process, explained above, the remaining diagram will have columns of height λ′
1, . . . , λ′

λ1
.

Hence it is the diagram of our partition λ. Moreover, the resulting filling is the regular

filling, and this completes the proof. The case of the partition λ = (4, 4, 2, 1) is displayed

in Figure 4. �
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1
2
3
∗
∗ 4
∗ 5
∗ ∗
∗ ∗ 6
∗ ∗ ∗
∗ ∗ ∗ 7

11 10 9 8

↓
1
2 4
3 5 6 7
11 10 9 8

Fig. 4. From the antidiagonal to the regular filling

Remark 3.10. Observe that ej(S) for S of cardinality j is a square-free monomial of

degree j. So once we have all square-free monomials of degree n − λ1 + 1 in our ideal,

then we have the ones of higher degree. These monomials are obtained when we read the

generators coming from the rightmost entry of the bottom row. �

The following statement follows easily from the previous remark and Theo-

rem 3.9.

Corollary 3.11 (First reduction of Tanisaki’s generating set for Iλ). Let λ be a partition

of n. Then Iλ can be described as the sum of the following three ideals:

Iλ = Mλ + Eλ + Kλ,

where

• Mλ is generated by all square-free monomials of degree n − λ1 + 1;

• Eλ is generated by the elementary symmetric polynomials

e1(x1, . . . , xn), . . . , e�(λ)−1(x1, . . . , xn);

• Kλ is generated by the partially symmetric polynomials in er(k), where n − 1 ≥
k ≥ n − λ1 + 1, and r in an entry of the regular filling of λ, in the same column

as k, and strictly above it. �

In the particular case where the indexing partition λ is a hook, we recover the

minimal generating set for Iλ described in [3, Proposition 3.4].

4 Second Reduction of the Generating Set for Iλ

Our goal in the rest of the paper is to shave off as many redundant generators as possible

from the generating set given in Corollary 3.11 . It turns out that only partially symmetric

polynomials coming from the top value of each column are required in the generating
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1

2

b1 b2

bt

b1−1 b2−1 b3−1 n−s−1

n n−1 n−2 n−t bs=
n−s

Fig. 5. Diagram of a partition λ of n with the regular filling

set. This finding already gives a large reduction in the number of generators needed in

the generating set of Tanisaki. Several other reductions will be obtained in the following

sections.

Suppose we have a partition λ of an integer n, and we fill the diagram of λ with

the regular filling defined in Definition 3.4. For k ≥ 1 we label the value in the top cell

of the kth column with bk, as long as the height of the kth column is at least 2. If the

rightmost column of λ has height 1, then we label its entry bs. This is reflected in the

diagram in Figure 5. Note that with this notation we have

b1 = λ′
1, b2 = λ′

1 + λ′
2 − 1, . . . , bk = λ′

1 + · · · + λ′
k − k + 1 for k ≤ t , bs = n − s,

where we set

t = λ2 − 1, and s = λ1 − 1. (5)

Clearly if λ1 = λ2, then t = s and bs do not exist.

By Corollary 3.11, the reduced form of Tanisaki’s generating set for Iλ is the union

of the following sets:

Column 0 e1(n), . . . , eb1−1(n)

Column 1 eb1 (n − 1), . . . , eb2−1(n − 1)

Column 2 eb2 (n − 2), . . . , eb3−1(n − 2)
...

...

Column t ebt (n − t ), . . . , en−s−1(n − t )

Column s (if s > t ) en−s(n − s), or all square-free monomials of degree (n − s).

(6)
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Our goal here is to show that it is enough to pick only one set of generators in

each column, other than the 0th column; namely, the ones coming from the top values in

each column.

Theorem 4.1 (Principal reduction of the generating set for Iλ). Let λ be a partition of

n, and suppose that the diagram of λ has been filled as in Figure 5. Then a generating set

for Iλ is

Column 0 e1(n), . . . , eb1−1(n)

Column 1 eb1 (n − 1)
(
or xb1

1 , . . . , xb1
n

)
Column 2 eb2 (n − 2)
...

...

Column t ebt (n − t )

Last column (if s > t ) en−s(n − s), or all square-free monomials of degree (n − s).

(7)

If λ = (1n) is the one-column partition, then we also need to add the element

en(n) = x1 · · · xn to this generating set. If λ = (n) is the one-row partition, we only need

generators from the last column, in other words, I(n) = (x1, . . . , xn). �

Proof. We need to show that having in the ideal all generators read from the top index

of each column implies that the other partially symmetric functions coming from the

larger indices in that column also belong to the ideal. We go column-by-column, and

build a new ideal Iλ by adding generators described in equation (7) for each column of

λ. We show, each time, that Iλ contains all the other generators described in equation (6)

(coming from the same column), and therefore Iλ = Iλ.

Column 0 There is nothing to prove here, as we are keeping all the generators

e1(n), . . . , eb1−1(n).

Column 1 Assume that we have eb1 (S) ∈ Iλ for all S with |S| = n − 1. By part 2 of

Lemma 2.1, setting j = b1, we see that we have eb1 (n) ∈ Iλ.

For each i > b1, we can assume by induction on i that

e1(n), . . . , ei−1(n) ∈ Iλ and eb1 (n − 1), . . . , ei−1(n − 1) ∈ Iλ.

Apply part 3 of Lemma 2.1 with j = i to see that ei(n) ∈ Iλ.

Fix a set S with |S| = n − 1 and x /∈ S. Let Sx = S ∪ {x}. Part 1 of Lemma 2.1

implies that

ei(S) = ei(S
x) − xei−1(S),

which demonstrates that ei(S) ∈ Iλ. Hence ei(n − 1) ∈ Iλ.
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The fact that the generators eb1 (n − 1) can be replaced by the powers

xb1
1 , . . . , xb1

n follows directly from Proposition 2.2. Note that, in particular,

we have ei(n − 1) ∈ Iλ, for all i ≥ b1.

Column j Suppose Iλ contains all generators from the previous columns 0, . . . , j − 1 as

described in equation (7). Let |S| = n − j, and suppose x /∈ S, so that |Sx| =
n − j + 1, (Sx = S ∪ {x}). We know by induction that Iλ contains eh(Sx) for all

h ≥ bj−1. Therefore, since bj > bj−1, for i ≥ bj we have by part 1 of Lemma 2.1

ei(S) = ei(Sx) − xei−1(S) = −xei−1(S)

= −x(ei−1(Sx) − xei−2(S)) = x2ei−2(S)

= x2(ei−2(Sx) − xei−3(S)) = −x3ei−3(S)
...

= (−1)i−bj xi−bj ebj (S) (mod Col. j − 1)
This means that once we include ebj (S) in Iλ, we will have all ei(S) ∈ Iλ for

i ≥ bj. �

In the case where λ is a hook, the generating set described in Theorem 4.1 coin-

cides with the minimal generating set for Iλ introduced in our earlier work [3].

Example 4.2. Let λ = (5, 4, 4, 3). Then the regular filling of λ is

1 4 7

2 5 8 10

3 6 9 11

16 15 14 13 12 .

So the generators of Iλ are

Column Generators Number of generators

0 e1(16), e2(16), e3(16) 3

1 x4
1 , . . . , x4

16 16

2 e7(14) 120

3 e10(13) 560

4 e12(12), or all square-free monomials of degree 12 1,820

Total 2,519
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p = 1 X

p = 2 X

p = 3 X

p = 4 X X

p = 5 X X

p = 6 X X X

p = 7 X X X X

p = 8 X X X X

p = 9 X X X

p = 10 X X

p = 11 X

i = 0 1 2 3

Fig. 6. Weyman diagram for λ = (4, 4, 2, 1)

Later in Example 6.4, we shall further reduce the generating set of this particular parti-

tion. �

Remarks on a related conjecture of Weyman

We end this section by showing some relations between the generating set of Theorem 4.1

and two generating sets for Iλ arising in the work of Weyman [11].

In [11] Weyman uses the representation theory of the general linear group to

construct and study generating sets for the ideal Jλ of polynomial functions vanishing

on the conjugacy class Cλ. The generators in the first family, denoted by Vλ, are expressed

as sums of minors, and come from reducible representations of GL(n). The second set of

generators Uλ, on the other hand, arises from the irreducible representations of GL(n).

The set Uλ is smaller than Vλ, but how to compute its elements is not explicit in the paper.

The set Vλ (respectively, Uλ) is given by the disjoint union of sets Vi,p (respectively,

Ui,p), where the family of indices (i, p) can be read off from a special diagram introduced

by Weyman; see [11, Example 4.5]. We call this diagram the Weyman diagram of λ. It is

possible to construct the Weyman diagram of a partition starting from the antidiagonal

filling (see Definition 3.7) as follows. First, consider the antidiagonal filling of δ′(λ), and

justify its columns in such a way that equal entries are now in same rows. Then replace

any entry of this diagram by an X. The resulting picture is the Weyman diagram. In

Figure 6 we illustrate the Weyman diagram corresponding to the partition λ = (4, 4, 2, 1).

Compare this diagram to the one in Figure 3. Note that if the top X in the ith column
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of Weyman diagram of λ has coordinates (i, p), then the top cell of the ith column of the

regular filling of λ is filled by p.

We would like to remark that Weyman follows a convention opposite to ours when

labeling the ideals Iλ and Jλ: he labels Jλ the ideal of polynomial functions vanishing

on all nilpotent matrices with Jordan blocks λ1, . . . , λn, while we use the transpose. On

the other hand, he associates to a partition λ what in our setting would be the Weyman

diagram of λ′. These two facts cancel out, and we do not need to take any transpose when

reading statements involving his diagrams.

Definition 4.3 (Weyman’s generating set for Jλ).

In [11, Theorem 4.6] Weyman shows that the ideal Jλ is generated by the Ui,p,

where the (i, p)’s are the coordinates of the top cells of the columns (i ≥ 1) of the Weyman

diagram of λ, together with the invariants U0,p with 1 ≤ p ≤ n. This result implies that

the ideal Jλ is also generated by the Vi,p coming from the same set of indices (i, p). �

Example 4.4. For the partition λ = (4, 4, 2, 1), whose Weyman diagram is in Figure 6,

Weyman’s set Uλ consists of U0,p, with 1 ≤ p ≤ 11, U1,4, U2,6, and U3,7 (and similarly for

the set Vλ). The cells X whose coordinates label this generating set are underlined. �

After adding the generators for the ideal defining the diagonal matrices to the

two sets Vλ and Uλ, one gets two generating sets for Iλ; we denote these two generating

sets by Ṽλ and Ũλ.

Instead of going into the definitions of Vλ and Uλ that can be found in [11, Section

4], we explicitly state the cardinalities of their components in order to compare them

with our generating set. We emphasize the fact that Tanisaki’s generators (the ones we

use) are easier to handle than Weyman’s generators. We have that

|Vi,p| =
(

n

i

)2

and |Ṽi,p| =
(

n

i

)
,

and

|Ui,p| =
(

n

i

)2

−
(

n

i − 1

)2

and |Ũi,p| =
(

n

i

)
−

(
n

i − 1

)
.

It turns out that the cardinalities of the generating set for Iλ given by the Ṽi,p’s

and the generating set given in Theorem 4.1 are the same. Moreover, it is not difficult

to describe a one-to-one correspondence between the two generating sets. Under this
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correspondence Weyman’s Vi,p generators correspond to our generators read from the

top cell of the ith column of the regular filling, as described in Theorem 4.1.

Weyman conjectured that a special subset of Uλ gives a minimal generating set

of Jλ; see Conjecture 5.1 and Remark 5.3 of [11].

Conjecture 4.5 (Weyman’s original conjecture). Let λ be a partition. The set consisting

of U0,p for 1 ≤ p ≤ �(λ), and Ui,p, where (i, p) labels a top cell of the ith row (in the Weyman

diagram of λ), such that there are no X’s to the right of or on the line segment joining

(i, p) with (0, 1), is a minimal set of generators Wλ of Jλ. �

The following is a very interesting question.

Question 4.6 (Diagonal version of Weyman’s conjecture). Is the generating set W̃λ for

Iλ arising from Weyman’s conjecture minimal? �

In the following sections, we show that the the answer to this question is negative.

Indeed, we provide some infinite families of counterexamples. These observations, to-

gether with the help of Macaulay2 led us to the discovery that even the original conjecture

of Weyman (Conjecture 4.5) fails already for one of the smallest elements in these families.

5 Reducing Generators of Iλ of a Fixed Degree

The aim of this section is to consider the generating set of Iλ described in Theorem 4.1,

and eliminate as many redundant generators as possible from each column.

Proposition 5.1 (Columns of height greater than 1). Let λ be a partition whose diagram

is represented in Figure 5. For k ≥ 2, if the height of the (k − 1)st column is greater than 1,

then we can eliminate (n − 1
k − 1) + 1 generators of Iλ (as described in equation (7)) that come

from the kth column. Indeed, if S denotes the set of variables x1, . . . , xn, we can eliminate

the elements in the set {ebk (S1,i2,...,ik ) | 1 < i2 < · · · < ik ≤ n} and ebk (S2,3,...,k+1). �

Proof. Let k > 1, by using part 2 of Lemma 2.1 we write

∑
j /∈{i1,...,ik−1}

ebk

(
Si1,...,ik−1, j

) = (n − bk − k + 1)ebk

(
Si1,...,ik−1

) ≡ 0 (mod Ik−1), (8)

where Ik−1 is the ideal of generators coming from columns 0 to k − 1.
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12 13 14 23 24 34

2 1 0 0 1 1 0

3 0 1 0 1 0 1

4 0 0 1 0 1 1

1 1 1 1 0 0 0

123 124 134 234

23 1 0 0 1

24 0 1 0 1

34 0 0 1 1

12 1 1 0 0

13 1 0 1 0

14 0 1 1 0

Fig. 7. The nonsingular submatrices for n = 4, k = 2, and n = 4, k = 3

So we have a system of ( n
k − 1) linear homogeneous equations in (nk) variables. In fact,

we have one equation for each choice of a (k − 1)-subset {i1, . . . , ik−1}, and one variable

ebk (Si1,...,ik−1, j) for each k-subset {i1, . . . , ik−1, j}.
The matrix associated to this system has columns J indexed by the k-subsets of

{1, 2, . . . , n}, and rows I indexed by k − 1-subsets of {1, 2, . . . , n}. Equation (8) says that at

position (I , J) the entry will be 1 if I ⊆ J, and 0 if I 	⊆ J.

We claim that we can drop from the generating set of Theorem 4.1 ebk (SJ ), for all

J of cardinality k containing 1, and ebk (S2,...,k+1). To prove this, it suffices to show that the

submatrix corresponding to these columns has full rank (n − 1
k − 1) + 1.

We order the columns of this submatrix in this way: first, we put the the columns

indexed by a J containing 1 in alphabetical order, and then the column indexed by

{2, . . . , k + 1}. Similarly, we order the rows starting with those indexed by subsets I that

do not contain 1, in alphabetical order, then the row indexed by {1, . . . , k − 1}, and then

the other rows in any order. In Figure 7 two examples are displayed.

The square submatrix given by the first (n − 1
k − 1) + 1 rows consists of two blocks. An

identity (n − 1
k − 1)-matrix, together with an additional row: (1, . . . , 1, 0, . . . , 0), with n − k + 1

ones. In fact, this last row is indexed by {1, . . . , k − 1}, and the entries are 1 at columns

indexed by {1, 2, . . . , k − 1, j} for j > k, and zero otherwise. By Gauss elimination, it is

easy to see that this submatrix has full rank. �

Remark 5.2. The system (8) has ( n
k − 1) linear equations and (nk) variables. If all the equa-

tions are independent, then ( n
k − 1) variables are redundant. Hence, only (nk) − ( n

k − 1) of them

are necessary. Then using Gauss elimination we would obtain an explicit generating set

of the same size as Weyman’s Ũk,p. We note that there is no explicit construction for the

generators in Uλ in Weyman’s paper [11]. �
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Remark 5.3. Let λ be a partition of n different than (n). As a consequence of Proposi-

tion 5.1, the number of generators coming from the top cell of column k in our generating

set for Iλ is (nk) − (n − 1
k − 1) − 1. On the other hand, and as discussed in Section 4, the corre-

sponding Ũk,p in Weyman’s generating set consists of (nk) − ( n
k − 1) elements. Since for all

partitions other than (n), we have that n > k, we conclude that the difference between

the two sets is (n − 1
k − 1) − 1, for each k > 2. For columns 0, 1, and 2, their cardinalities

coincide. �

We now focus on eliminating generators from a column of height 1.

Proposition 5.4 (Columns of height 1). Let λ be a diagram represented in Figure 5. If

s > t ≥ 1, then we can eliminate (n − s + t
t ) square-free monomial generators of Iλ coming

from the last column. �

Proof. Note that as n − s > bt (see Figure 5), from the proof of Theorem 4.1 we know

that en−s(n − t ) ∈ Iλ. We now claim that we can drop monomial generators of the form

en−s(S1,2,...,s−t ,i1,...,it ), s − t < i1 < i2 < · · · < it ≤ n

Since there are (n − s + t
t ) such choices for sets {i1, . . . , it }, this will settle the statement of

the proposition. But this follows from the trivial identity

ek(A) =
∑
J⊆A
|J|=k

ek(J),

which implies

en−s(S1,2,...,s−t ,i1,...,it ) = en−s
(
Si1,...,it

) −
∑

{ j1,..., js−t }	={1,...,s−t}
{ j1,..., js−t }∩{i1,...,it }=∅

en−s
(
Sj1,..., js−t ,i1,...,it

) ∈ Iλ. �

Therefore using Propositions 5.1 and 5.4, we have reduced our generating set to

that in the table in Figure 8, using the Vandermonde identity (nk) = (n − 1
k − 1) + (n − 1

k ).

Example 5.5. Consider the partition λ = (4, 4, 2, 1) in Figure 2. Our formula gives 177

generators, but in fact, Macaulay2 verifies that 168 generators are enough. The extra

generators are in degree 7 (see table in Figure 8). Recall that the ideal Iλ is Sn-invariant.

The representation structure of the minimal generators is given in the third

column in the table below. We denote by Sµ the Specht module indexed by the partition

µ of n. That is, the irreducible representation of Sn indexed by µ. For more details, we

refer to [6, §4]). �
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Column Generators Number

0 e1(n), . . . , eb1−1(n) b1 − 1 = λ′
1 − 1

1 xb1
1 , . . . , xb1

n

(n
1

) = (n−1
1

) + 1

2 eb2 (n − 2)
(n

2

) − (n−1
1

) − 1 = (n−1
2

) − 1
...

...
...

t ebt (n − t )
(n

t

) − (n−1
t−1

) − 1 = (n−1
t

) − 1

s (if s > t ) en−s(n − s)
(n

s

) − (n−s+t
t

)

Fig. 8. Number of generators in each degree in the reduced generating set for Iλ

Numbers from Minimal Representation

Degrees Figure 8 generators structure

1 1 1 One copy of the

trivial representation S(11)

2 1 1 S(11)

3 1 1 S(11)

4 11 11 S(10,1) ⊕ S(11)

6 44 44 S(9,2)

7 119 110 S(8,3)

While in many examples such as the previous one, the predictions of the diagonal

version of Weyman’s conjecture are correct, this is not always the case.

Example 5.6. Consider the partition λ = (5, 4, 1). We denote by I01 = (e1(10),

1
2 3 4 5
10 9 8 7 6

Fig. 9. The partition λ = (5, 4, 1)

e2(10), x3
1 , . . . , x3

10) the ideal generated by the elements of the 0th and 1st column. Now con-

sider e4(8) coming from the second column. Let A ⊆ {1, . . . , n} be a subset of of cardinality

8, and let B be its complement (|B| = 2). By Proposition 2.2, we have mod E3(10),

e4(A) ≡ h4(B) = m(4)(B) + m(3,1)(B) + m(2,2)(B). (9)
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Among the monomial symmetric polynomials appearing in equation (9), m(4) and

m(3,1) are already in the I01, since it contains x3
1 , . . . , x3

n. So from the second column, we

only need to add the set m(2,2)(2) to the generators of I01 to obtain a bigger ideal denoted

by I012 included in Iλ. That is, we need to add all generators of the form (xixj)2 for i < j.

Now let us consider e5(A), where |A| = 7 and B is its complement. From the third

column,

−e5(A) ≡ h5(B) = m(5)(B) + m(3,2)(B) + m(4,1)(B) + m(3,1,1)(B) + m(2,2,1)(B).

It is clear that each one of these monomial symmetric polynomials is already in the ideal

I012. In fact, every monomial in the first four summands in equation (5.6) contains a

power x3
i , and each element in m(2,2,1)(B) can be obtained as a combination of elements

in m(2,2)(2). Hence, the third column will not contribute any new generator. The same

happens for the last column. Let |A| = 6 and B be its complement, |B| = 4. Then

e6(A) = h6(B) = m(6)(B) + m(5,1)(B) + m(4,2)(B) + m(3,3)(B)

+ m(4,1,1)(B) + m(3,2,1)(B) + m(2,2,2)(B)

+ m(3,1,1,1)(B) + m(2,2,1,1)(B),

and all monomials in this sum are already in the ideal, since they contain either a power

x3
i , or a monomial (xixj)2. So we have Iλ = I012. �

Counterexample 5.7 (Counterexample to the diagonal version of Weyman’s conjec-

ture). Example 5.6 proves that the generating set W̃λ for Iλ coming from the minimal

generating set for Jλ conjectured by Weyman is not in general minimal (see Question 4.6).

More precisely, according to his diagram in Figure 10, some generators of degree 5 and

6 should be needed, while they are not, as we just showed. In Figure 10 the coordinates

of the underlined X’s label the generators of Iλ arising from the diagonal version of

Weyman’s conjecture. The generators coming from the shaded X’s are not needed. This

is the convention that we shall use later as well. �

It might be possible to generalize the reasoning used in Example 5.6 with an

algorithm, as explained below.

Algorithm 5.8. Consider the Young diagram of λ filled with the regular filling. Let b1, . . . , bs

be the top-cell entries of λ as in Figure 5. Set G0 = {e1(n), . . . , eb1−1(n)}, and create a list of
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p = 1 X

p = 2 X

p = 3 X X

p = 4 X X X

p = 5 X X X X

p = 6 X X X X X

p = 7 X X X X

p = 8 X X X

p = 9 X X

p = 10 X

i = 0 1 2 3 4

Fig. 10. Weyman diagram for λ = (5, 4, 1)

partitions L0 = ∅. For all k ≥ 1, define

Uk = {µ � bk | �(µ) ≤ k and ν 	⊆ µ, for any ν ∈ Lk−1},

where ν ⊆ µ means that the Young diagram of ν is contained in that of µ.

(1) If |Uk| = 1, say Uk = {θ}, then Lk = Lk−1 ∪ {θ} and Gk = Gk−1 ∪ mθ (k).

(2) If |Uk| = 0, then Gk = Gk−1 and Lk = Lk−1.

(3) If |Uk| > 1, then Gk = Gk−1
⋃ (⋃

l≥k hbl (l)
)
, and stop.

Denote by G the set produced by the algorithm at the last step.

Question 5.9. Is the set G a generating set for Iλ? �

Clearly, this algorithm produces a subset of the generating set given by Theo-

rem 4.1. All generators coming from cells labeled bk satisfying condition (2) in the above

algorithm would become redundant.

We used this algorithm to produce generating sets for all families of examples

and counterexamples considered in the next section. Then we proceeded to prove their

correctness on a one-by-one basis. A proof of the correctness of the algorithm would be

greatly welcomed.



22 R. Biagioli et al.

6 Families of Examples and a Counterexample to Weyman’s Conjecture

We conclude the paper by producing simple generating sets for some particular families

of shapes (see also [12]). In particular, this allows us to construct two infinite families of

counterexamples to the diagonal version of Weyman’s conjecture (Question 4.6), as well

as a counterexample to the original conjecture of Weyman for a minimal generating set

of the ideal Jλ (see Conjecture 4.5).

Example 6.1 (The case of two-column partitions). As mentioned above a partition of n

of the form λ = (2a , 1c), where a + c = � = �(λ) is the length of the partition, Iλ is generated

by e1(n), . . . , e�−1(n), x�
1, . . . , x�

n. �

Theorem 6.2 (The case of partially rectangular partitions). Let λ be a partition of n,

and let k > 2 be any integer. If columns 0, 1, . . . , k − 1 of the Young diagram have the same

height, then in the generating set for the ideal Iλ described in Theorem 4.1, generators

coming from columns 2, . . . , k are redundant. �

Proof. The regular filling of the partition λ has the following form.

1 g+1 2g+1 ···

2 g+2 2g+2 ··· kg+1

··· ··· ··· ··· ··· ···

g 2g 3g ··· ··· ···

n ··· ··· ··· ··· ···

By Theorem 4.1 and Proposition 2.2, modulo the previous columns, the generators

coming from column k are of the form

hkg+1 =
∑

a1+···+ak=kg+1

xa1
j1 . . . xak

jk ,

where 1 ≤ j1 ≤ · · · ≤ jk ≤ n.

Consider a term xa1
j1 . . . xak

jk in the sum above. We claim that for at least one power

ai, ai ≥ g + 1, making this monomial redundant in the presence of the second column

generators, which are the (g + 1)st powers of the variables.
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To see this, suppose a1 ≤ g, . . . , ak ≤ g. Then we should have that

kg + 1 = a1 + · · · + ak ≤ kg,

which is a contradiction. �

Remark 6.3. Drawing the Weyman diagram associated to partially rectangular par-

titions considered in Theorem 6.2, one can see that the points (0, 1), (1, g + 1), (2, 2g +
1), . . . , (k, kg + 1) are collinear because they can successively obtained by adding the vec-

tor (1, g). Therefore, the diagonal version of Weyman’s conjecture predicts that the gen-

erators coming from cells (2, 2g + 1), . . . , (k, kg + 1) are redundant. This is true: in fact,

these are precisely the redundant cells according to Theorem 6.2. �

Example 6.4. Let λ = (5, 4, 4, 3) be the partition in Example 4.2. Theorem 6.2 implies that

the generating set for Iλ consists of the elements in the second column in the table below

(compare with Example 4.2), and the reduced number from the table in Figure 8 is in the

third column. The 7 and 10 degree generators are not needed in the generating set. In this

case, the prediction of the diagonal version of Weyman’s conjecture was correct: cells

(2, 7) and (3, 10) are redundant; see Figure 11. Weyman’s results imply that the minimal

number of generators in degree 12 is at most 1,260. �

Column Generators Numbers from Figure 8

0 e1(16), e2(16), e3(16) 3

1 x4
1 , . . . , x4

16 16

2 Redundant –

3 Redundant –

4 e12(12) 1,365

Total 1,384

Corollary 6.5 (The case of rectangular partitions). For a rectangular partition of n of

the form λ = (u�), the generating set of Iλ will simply be e1(n), . . . , e�−1(n), x�
1, . . . , x�

n, where

n = u �. �

Corollary 6.6 (The case of two-row partitions). For a two-row partition of n of the

form λ = (u, v), a generating set is given by e1(n), x2
1 , . . . , x2

n and eu(u). �
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1 X

2 X

3 X

4 X X

5 X X

6 X X

7 X X X

8 X X X

9 X X X

10 X X X X

11 X X X X

12 X X X X X

13 X X X X

14 X X X

15 X X

16 X

i = 0 1 2 3 4

Fig. 11. An example of a partially rectangular partition λ = (5, 4, 4, 3)

Theorem 6.7. Let λ be a partition of n.

(1) If λ = (ua , (u − 1)c) with g = a + c, then a generating set of Iλ is given by

e1(n), . . . , eg−1(n), xg
1 , . . . , xg

n.

(2) If λ = (ua , (u − 1)c, 1) with u ≥ 3 and g = a + c > 1, then Iλ is generated by

e1(n), . . . , eg(n), xg+1
1 , . . . , xg+1

n , (x1x2)g, (x1x3)g, . . . , (xn−1xn)g.

(3) If λ = (ua , (u − 1)c, 1, 1) with u ≥ 4 and g = a + c + 1 > 2, then Iλ is generated

by

e1(n), . . . , eg(n), xg+1
1 , . . . , xg+1

n , (xi + xj)(xixj)
g−1 for all i 	= j, and (xixjxk)g−1

for all i < j < k. �
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Proof. (1) This is an easy consequence of Theorem 6.2.

(2) The regular filling of (ua , (u − 1)c, 1) will be of the form

1

2 g+1 2g 3g−1 ··· lg−l
+2

···

··· ··· ··· ··· ··· ··· ···

··· ··· ··· ··· ··· ··· ··· (u−1)g
−u+3

g ··· ··· ··· ··· ··· ··· ···

n n−1 n−2 n−3 ··· n−l ··· n−u
+1

Columns 0 and 1 clearly provide the generators e1(n), . . . , eg(n), xg+1
1 , . . . xg+1

n .

By Proposition 2.2, column 2 provides generators of the form

h2g =
∑

a+b=2g

xa
i xb

j

for 1 ≤ i < j ≤ n. Since we already have xg+1
i and xg+1

j in the ideal, this sum re-

duces to the monomial xg
i xg

j . Hence, the third column provides the remaining

generators (x1x2)g, (x1x3)g, . . . , (xn−1xn)g.

It remains to show that the generators coming from columns 3, . . . , u − 1 are

redundant. Let l be any integer such that 3 ≤ l ≤ u − 1. The generators from

column l, by Proposition 2.2 and the fact that we have all (g + 1)st powers of

the variables in the ideal, are of the form

hlg−l+2 =
∑

a1+···+al=lg−l+2
a1,...,al≤g

xa1
i1 . . . xal

il ,

where 1 ≤ i1 < i2 < · · · < il ≤ n, and in each monomial xa1
i1 . . . xal

il , at most one

of the powers au is equal to g. For such a monomial in the sum, we therefore

have

a1 + · · · + al ≤ (l − 1)(g − 1) + g = lg − l + 1 =⇒ lg − l + 2 ≤ lg − l + 1,

which is a contradiction. So there is no generator from column l if l ≥ 3.
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(3) The regular filling of (ua , (u − 1)c, 1, 1) will be of the following form.

1

2

3 g+1 2g−1 3g−3 ··· lg−2l
+3

···

··· ··· ··· ··· ··· ··· ···

g ··· ··· ··· ··· ··· ··· (u−1)g
−2u+5

n ··· ··· ··· ··· ··· ···

Again, columns 0 and 1 provide the generators e1(n), . . . , eg(n), xg+1
1 , . . . , xg+1

n .

By Proposition 2.2, column 2 provides generators of the form

h2g−1 =
∑

a+b=2g−1

xa
i xb

j

for 1 ≤ i < j ≤ n. Since we already have xg+1
i and xg+1

j in the ideal, we can

additionally assume that a, b ≤ g for each monomial xa
i xb

j in the sum, and so

at least one of a or b would have to be g − 1 and the other g. This produces a

generator of the form xg
i xg−1

j + xg−1
i xg

j = (xi + xj)(xixj)g−1.

Similarly, column 3 will produce generators of the form

h3g−3 =
∑

a+b+c=3g−3

xa
i xb

j x
c
k,

for 1 ≤ i < j < k ≤ n. Once more, we can assume that a, b, c ≤ g, which re-

duces the sum above to

xg−1
i xg−1

j xg−1
k + xg−2

i

(
xg

j xg−1
k + xg−1

j xg
k

) + xg−2
j

(
xg

i xg−1
k + xg−1

i xg
k

)
+ xg−2

k

(
xg

i xg−1
j + xg−1

i xg
j

)
= xg−1

i xg−1
j xg−1

k + xg−2
i xg−1

j xg−1
k (xj + xk) + xg−2

j xg−1
i xg−1

k (xi + xk)

+ xg−2
k xg−1

i xg−1
j (xi + xj).
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The last three summands are in the ideal already (coming from column 2), so

the generators from column 3 can all be written as xg−1
i xg−1

j xg−1
k for 1 ≤ i <

j < k ≤ n.

We now need to show that generators coming from column l, where 4 ≤ l ≤
u − 1 are redundant. The generators from column l, by Proposition 2.2 and

the fact that we have all (g + 1)st powers of the variables in the ideal, are of

the form

hlg−2l+3 =
∑

a1+···+al=lg−2l+3
a1,...,al≤g

xa1
i1 . . . xal

il ,

where 1 ≤ i1 < i2 < . . . < il ≤ n.

Suppose that M = xa1
i1 . . . xal

il is a monomial in this sum.

If one of the powers, say a1, is equal to g, then we must have another power

among a2, . . . , al that is g or g − 1. If not, all of a2, . . . , al are ≤ g − 2, and we

have

lg − 2l + 3 = a1 + · · · + al ≤ g + (l − 1)(g − 2) = lg − 2l + 2,

which is a contradiction. So there is at least another power, say a2, such that

a2 ≥ g − 1.

• a1 = a2 = g. In this case, we can write

xg
i1 xg

i2 xa3
i3 xa4

i4 . . . xal
il

= (
xi1 + xi2

)(
xi1 xi2 )

g−1[1/2xi2 xa3
i3 xa4

i4 . . . xal
il + 1/2xi1 xa3

i3 xa4
i4 . . . xal

il ]

−1/2xg+1
i1 xg−1

i2 xa3
i3 xa4

i4 . . . xal
il − 1/2xg−1

i1 xg+1
i2 xa3

i3 xa4
i4 . . . xal

il .

All the terms on the right-hand side are already in the ideal, and hence so

is xg
i1 xg

i2 xa3
i3 xa4

i4 . . . xal
il .

• a1 = g and a2 = g − 1. In this case, there is another monomial M′ =
xg−1

i1 xg
i2 xa3

i3 xa4
i4 . . . xal

il in the sum as well, and there is exactly one copy of

M and one copy of M′ in the sum. Now we have

M + M′ = (
xi1 + xi2

)
xg−1

i1 xg−1
i2

(
xa3

i3 xa4
i4 . . . xal

il

)
.

So each such monomial M is paired with a unique monomial M′ in the

sum, and their sum is already in the ideal.
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Now assume that all the powers a1, . . . , al are ≤ g − 1. If l − 2 of the powers

a1, . . . , al are ≤ g − 2, then we have

lg − 2l + 3 = a1 + · · · + al ≤ (l − 2)(g − 2) + 2(g − 1) = lg − 2l + 2,

which is a contradiction. So there are at least three powers among a1, . . . , al

that are equal to g − 1. But then the monomial xa1
i1 . . . xal

il is already in Iλ,

because it is a multiple of a generator coming from column 3. �

Corollary 6.8. Suppose that the first l + 1 columns of a partition λ belong to one of the

three families of shapes described in Theorem 6.7. Then we have the following.

(a) In cases 1 and 2, the generators coming from columns 3, . . . , l are redundant.

For columns 0, 1, 2 we can use the generators described in Theorem 6.7.

(b) In case 3, the generators coming from columns 4, . . . , l are redundant. For

columns 0, 1, 2, 3 we can use the generators described in Theorem 6.7. �

Counterexample 6.9 (Counterexamples to the diagonal version of Weyman’s conjec-

ture). The two infinite families of partitions described in parts 2 and 3 of Theorem 6.7

are counterexamples to the diagonal version of Weyman’s conjecture. Indeed, according

to it, all generators coming from each of the top cells of their diagrams should be neces-

sary because for k > 0, the top cells are collinear (for the first family we can move from

one top cell to the next one by adding the vector (1, g − 1), and for the second family, by

adding the vector (1, g − 2)). But the line containing those points does not pass through

(0, 1). Instead, it passes through (0, 2) for the first family, and through (0, 3) for the second

family.

Let λ be a partition such that its first l columns belong to one of the two families

of the shapes described above, with l > 2 for the first family and l > 3 for the second one.

The preceding corollary shows that the generators coming from column k, with 3 < k ≤ l

are redundant. We conclude that each such λ is a counterexample to the diagonal version

of Weyman’s conjecture. A first counterexample was shown in Counterexample 5.7 �

Example 6.10. Consider the partition (5, 5, 1, 1) that fits inside one of the families in

Theorem 6.7. As proved in that theorem, the cell containing 7 is redundant. Translated

into the Weyman diagram, this means that the X in position (4, 7) is redundant (see

Figure 12).
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1

2

3 4 5 6 7

12 11 10 9 8

1 X

2 X

3 X

4 X X

5 X X X

6 X X X X

7 X X X X X

8 X X X X X

9 X X X X

10 X X X

11 X X

12 X

i = 0 1 2 3 4

Fig. 12. The regular filling and the Weyman diagram of λ = (5, 5, 1, 1)

The following table, computed with Macaulay2, confirms our prediction that the

275 degree 7 generators that should be in the generating set according to the diagonal

version of the conjecture, are not needed. �

Degrees Minimal number of generators Representation structure

1 1 One copy of the trivial

representation S(12)

2 1 S(12)

3 1 S(12)

4 12 S(11,1) ⊕ S(12)

5 54 S(10,2)

6 154 S(9,3)

7 Redundant –

Recall that Sλ denotes the Specht module indexed by λ.

Theorems 6.2 and 6.7 can be reformulated in a suggestive geometrical way as

special instances of the following statement.

Question 6.11. Let λ be a partition and draw the Weyman diagram of λ. If the X′s at the

top of columns 1, 2, . . . , r are collinear, and the line containing them passes through the

point (0, k), then are the generators coming from columns k + 1, . . . , r redundant?
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1 X

2 X

3 X

4 X

5 X X

6 X X X

7 X X X X

8 X X X X X

9 X X X X X X

10 X X X X X

11 X X X X

12 X X X

13 X X

14 X

i = 0 1 2 3 4 5

Fig. 13. An evidence regarding the statement in Question 6.11 for λ = (6, 5, 1, 1, 1)

We have evidence that suggests that this statement is true: it was proven to be

true when k = 1 in Theorem 6.2, for k = 2 in part 1 of Theorem 6.7, and for k = 3 in part

2 of Theorem 6.7 (see Figure 12: the collinear X’s have been surrounded). For k = 4, we

used Macaulay2 to verify whether the statement is still true for the smallest possible

member of this family, the partition (6,5,1,1,1) (see Figure 13). As predicted, all degree 9

generators are redundant.

Degrees Minimal number of generators Representation structure

1, 2, 3, 4 1 in each degree One copy of the trivial representation

S(14) in each degree

5 14 S(13,1) ⊕ S(14)

6 77 S(12,2)

7 273 S(11,3)

8 637 S(10,4)

9 Redundant –

�
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6.1 Weyman’s original conjecture

To finish our work, we focus our attention at the original conjecture of Weyman. It

seems plausible that those partitions that give counterexamples to the diagonal version

of Weyman’s conjecture are also counterexamples to Weyman’s original conjecture. We

used Macaulay2 to verify if this was the case for the smallest shape in the families

described in Counterexample 6.9.

Counterexample 6.12 (Counterexample to Weyman’s original conjecture). Consider

the partition (4, 3, 1) whose Weyman diagram is represented in Figure 14. The points

(1, 3), (2, 4), and (3, 5) are collinear, but the line that contains them does not pass through

(0, 1). So according to Weyman’s conjecture, all these cells contribute generators to a

minimal generating set of J(4,3,1). However, Theorem 6.7 suggests that the generators

coming from cell (3, 5) may be redundant.

Using Macaulay2, we computed the minimal generating set for J(4,3,1) and verified

that this is indeed the case. We conclude that (4, 3, 1) is a counterexample to Weyman’s

original conjecture.

Let Sa denote the irreducible GL(n)-module with dominant weight a, see [11, §2.3]

(or [6, §6]). The representation structure of the minimal generators of Jλ is given in the

third column of the following table.

Weyman’s Minimal number Representation structure

Degrees conjecture of generators

1 1 1 S(0,0,0,0,0,0,0,0), the trivial representation

2 1 1 S(0,0,0,0,0,0,0,0)

3 64 64 S(0,0,0,0,0,0,0,0) ⊕ S(1,0,0,0,0,0,0,−1)

4 720 720 S(1,1,0,0,0,0,−1,−1)

5 2,352 Redundant –

Total 3,138 786

To summarize, in this particular case, Weyman’s conjecture predicts that we need

3,138 generators, but only 786 of them are really necessary. Unfortunately, even large

servers were not able to handle slightly larger examples, so at this point we do not know

if other partitions in the families described earlier are counterexamples to Weyman’s

original conjecture. �
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1 X

2 X

3 X X

4 X X X

5 X X X X

6 X X X

7 X X

8 X

i = 0 1 2 3

Fig. 14. A counterexample to Weyman’s original conjecture: (4, 3, 1)

We end the paper with a natural question.

Question 6.13. Does the statement of Question 6.11 hold for Jλ?
�
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