Skolem Relations and Profunctors

Robert Paré

Aveiro, June 2015

Distributivity

Let $\left\langle K_{j}\right\rangle$ be a J-family of sets and $\left\langle\left\langle A_{j, k}\right\rangle_{k \in K_{j}}\right\rangle_{j}$ a family of families of sets

$$
\prod_{j \in J} \sum_{k \in K_{j}} A_{j, k} \cong \sum_{s \in \Pi K_{j}} \prod_{j \in J} A_{j, s(j)}
$$

Also holds in a topos

- $q: K \longrightarrow J$ is the canonical $\sum_{j \in J} K_{j} \longrightarrow J$
- $\operatorname{Sect}(q)$ is the object of sections of q, i.e. $\prod_{j \in J} K_{j}$
- $\operatorname{Sect}_{*}(q)$ is the object of pointed sections of q, i.e. $J \times \prod_{j \in J} K_{j}$
- $\operatorname{Sect}_{*}(q) \longrightarrow K$ is evaluation, $u: \operatorname{Sect}_{*}(q) \longrightarrow \operatorname{Sect}(q)$ forgetful

Intersection/Union

- Let $q: K \longrightarrow J$ be a morphism in a topos \mathbf{E} and $\left\langle A_{k}\right\rangle$ a family of subobjects of $A, \bullet>K \times A$
Consider

$$
\bigcap_{j} \bigcup_{q(k)=j} A_{k}=\bigcup_{s \in \operatorname{Sect}(q)} \bigcap_{j} A_{s(j)}
$$

Holds in Set (and more generally in any topos satisfying IAC)

- Internalizes as

$$
\begin{aligned}
& K \stackrel{v}{\longleftrightarrow} \operatorname{Sect}_{*}(q) \xrightarrow{u} \operatorname{Sect}(q)
\end{aligned}
$$

Skolem Relations

To prove

$$
\bigcap_{j} \bigcup_{q(k)=j} A_{k}=\bigcup_{s \in \operatorname{Sect}(q)} \bigcap_{j} A_{s(j)}
$$

- "〇" easy
- " \subseteq " $a \in \bigcap_{j} \bigcup_{q(k)=j} A_{k}$ iff for every j there is a k such that $q(k)=j$ and $a \in A_{k}$
- The k is not unique so you choose one (if you can) which gives a section $s: J \longrightarrow K$
- If you can't choose, take some or all of them. You get an entire relation $S: J \longrightarrow K$

Definition
A Skolem relation for q is a relation S such that $q_{*} \circ S=\operatorname{ld}_{\jmath}$

Distributivity I

Theorem

In any topos we have

$$
\bigcap_{j} \bigcup_{q(k)=j} A_{k}=\bigcup_{s \in S k(q)} \bigcap_{j \sim s k} A_{k}
$$

or

Properties of Skolem Relations

Proposition

(i) If q has a Skolem relation, then q is epi
(ii) If q is epi, then q^{*} is a Skolem relation
(iii) Any Skolem relation S is an entire relation
(iv) For any Skolem relation S we have $S \subseteq q^{*}$
(v) $\operatorname{Sk}(q)$ is an upclosed subset of q^{*}
(vi) Sections of q are minimal elements of $\operatorname{Sk}(q)$

Proposition

is a Skolem relation if and only if
(1) s_{1} is epi
(2) s_{2} is mono

Cutting Down the Size

P is internally projective if ()$^{P}: \mathbf{E} \longrightarrow \mathbf{E}$ preserves epimorphisms Let $e: P \rightarrow J$ be an internally projective cover of J. A P-section of q is $\sigma: P \longrightarrow K$ such that

We have a morphism

$$
\begin{aligned}
& \phi: P-\operatorname{Sect}(q) \longrightarrow S k(q) \\
& \left.\sigma \longmapsto \operatorname{lm}(\sigma)\right|_{\checkmark} ^{\downarrow_{J}^{K}}
\end{aligned}
$$

ϕ is internally initial

Cutting Down the Size

Theorem

$$
\bigcap_{j} \bigcup_{q(k)=j} A_{k}=\bigcup_{\sigma \in P-\operatorname{Sect}(q)} \bigcap_{p \in P} A_{\sigma(p)}
$$

Corollary
If J is internally projective we have

$$
\bigcap_{j} \bigcup_{q(h)=j} A_{K}=\bigcup_{\sigma \in \prod_{q} K} \bigcap_{j} A_{\sigma(j)}
$$

Limit/Colimit

We would like a similar formula expressing

$$
\lim _{J \in \mathbf{J}} \underset{K \in \mathbf{K}_{J}}{\operatorname{colim}} \Gamma_{J} K
$$

as a colimit of limits, for diagrams

$$
\Gamma_{J}: \mathrm{K}_{J} \longrightarrow \text { Set }
$$

Families of Diagrams

Γ_{J} should be functorial in J, so a functor

$$
J \longrightarrow \text { Diag }
$$

colim $K_{K \in K_{J}} \Gamma_{J} K$ should also be functorial in J, so a functor
Diag $\xrightarrow{\text { colim }}$ Set
A good notion of morphism of diagram, which works well for colim is

Families of Diagrams

We can put all the K's together in an opfibration

$$
Q: \mathbf{K} \longrightarrow \mathbf{J}
$$

and then the Γ 's and ϕ fit together to give a single diagram

$$
\Gamma: K \longrightarrow \text { Set }
$$

Notes:

(1) Our discussion leads to split opfibrations, but general opfibrations are better
(2) We could go further and take homotopy opfibrations, which are exactly the notion which makes colim functorial
(3) We could in fact take Q to be an arbitrary functor, and take Kan extension instead of colim, but we lose the "family of diagrams" intuition

Limits of Colimits

Let $Q: \mathbf{K} \longrightarrow \mathbf{J}$ be an opfibration and $\Gamma: \mathbf{K} \longrightarrow$ Set a J-family of diagrams, $\Gamma_{J}: \mathbf{K}_{J} \rightarrow$ Set
An element of

$$
\lim _{J} \underset{Q K=J}{\operatorname{colim}}\lceil K
$$

is a compatible family of equivalence classes

$$
\left\langle\left[x_{J} \in \Gamma K_{J}\right]_{K_{J}}\right\rangle_{J}
$$

- For every J we have a K_{J} such that $Q K_{J}=J$
- Not unique but there is a path of K 's in \mathbf{K}_{J} connecting any two choices
- For any $j: J \longrightarrow J^{\prime}$ there is a $k_{j}: K_{J} \longrightarrow j_{*} K_{J}$ and a path in $\mathbf{K}_{J^{\prime}}$ connecting $\Gamma\left(k_{j}\right)\left(x_{J}\right)$ with $x_{J^{\prime}}$

Profunctors

A profunctor $P: \mathbf{J} \longrightarrow \mathbf{K}$ is a functor $P: \mathbf{J}^{o P} \times \mathbf{K} \longrightarrow$ Set An element of $P(J, K)$ is denoted $J \xrightarrow{p} \rightarrow K$
Composition:

$$
(R \otimes P)(J, L)=\int^{K} R(K, L) \times P(J, K)
$$

An element is an equivalence class

$$
[J \xrightarrow{p} \rightarrow K \xrightarrow{\bullet} \rightarrow L]_{K}
$$

Examples: • $Q^{*}: \mathbf{J} \longrightarrow \mathbf{K}$ is $Q^{*}(J, K)=\mathbf{J}(J, Q K)$

- $Q_{*}: \mathbf{K} \longrightarrow \mathbf{J}$ is $Q_{*}(K, J)=\mathbf{J}(Q K, J)$
$\bullet \quad \mathrm{Id}_{\mathbf{J}}: \mathbf{J} \longrightarrow \mathbf{J}$ is $\quad \mathrm{Id}_{\mathbf{J}}\left(J, J^{\prime}\right)=\mathbf{J}\left(J, J^{\prime}\right)$
- $Q_{*} \dashv Q^{*}$

Prosections

A prosection for Q is a profunctor $S: \mathbf{J} \longrightarrow \mathbf{K}$ such that $Q_{*} \otimes S \cong \mathrm{Id}_{\mathbf{J}}$ The isomorphism corresponds to a morphism $\sigma: S \longrightarrow Q^{*}$

Definition

A prosection for Q is a profunctor $S: \mathbf{J} \longrightarrow \mathbf{K}$ and a morphism $\sigma: S \longrightarrow Q^{*}$ such that

$$
Q_{*} \otimes S \xrightarrow{Q_{*} \otimes \sigma} Q_{*} \otimes Q^{*} \xrightarrow{\epsilon} \mathrm{Id}_{\mathrm{J}}
$$

is an isomorphism
A morphism of prosections $(S, \sigma) \longrightarrow\left(S^{\prime}, \sigma^{\prime}\right)$ is $t: S \longrightarrow S^{\prime}$ such that $\sigma^{\prime} t=\sigma$

The category of prosections is denoted $\mathbf{P s}(Q)$

Analysis of Prosections

In general an element of $\left(Q_{*} \otimes S\right)\left(J, J^{\prime}\right)$ is an equivalence class of pairs

$$
\left[J \xrightarrow{\bullet} \rightarrow K, Q K \xrightarrow{j} J^{\prime}\right]_{K}
$$

If Q is an opfibration, $Q K \xrightarrow{j} J^{\prime}$ lifts to $K \xrightarrow{k_{j}} j_{*} K$ and $\left[J \xrightarrow{\bullet} \rightarrow K, Q K \xrightarrow{j} J^{\prime}\right]=\left[J \xrightarrow{\bullet} \rightarrow K \xrightarrow{k_{j}} j_{*} K, Q\left(j_{*} K\right)=J^{\prime}\right]$

Proposition

For Q an opfibration and $S: \mathbf{J} \longrightarrow \mathbf{K}$ a profunctor, $\left(Q_{*} \otimes S\right)\left(J, J^{\prime}\right)$ consists of equivalence classes $\left[J \xrightarrow{\bullet} \rightarrow K^{\prime}\right]_{Q K^{\prime}=J^{\prime}}$ where the equivalence relation is generated by $s \sim \bar{s}$ if there exists k such that

with $Q k=1^{\prime}$

Analysis of Prosections

For a prosection $(S, \sigma), \sigma: S \longrightarrow Q^{*}$

$$
(J \xrightarrow[\bullet]{\bullet} K) \stackrel{\sigma}{\longrightarrow}(J \xrightarrow{\sigma(s)} Q K)
$$

Induces $Q_{*} \otimes S \longrightarrow \mathrm{Id}_{J}$

$$
\left[J \xrightarrow{\stackrel{s}{\longrightarrow}} K^{\prime}\right]_{Q K^{\prime}=J^{\prime}} \longmapsto\left(J \xrightarrow{\sigma(s)} J^{\prime}\right)
$$

Proposition

(S, σ) is a prosection if and only if for every J there exists $s_{J}: J \longrightarrow K_{J}$ such that
(1) $\sigma\left(s_{J}\right)=1_{J}$ (so in particular $Q K_{J}=J$),
(2) for every $s: J \longrightarrow K$ we have

$$
\left[J \xrightarrow{\sigma s} Q K \xrightarrow{s_{Q K}} K_{Q K}\right]_{\kappa_{Q K}}=[J \xrightarrow{s} K]_{\kappa_{Q K}}
$$

Distributivity II

Theorem
For $Q: \mathbf{K} \longrightarrow \mathbf{J}$ an opfibration and $\Gamma: \mathbf{K} \longrightarrow$ Set we have

$$
\lim _{J \in J} \operatorname{colim}_{K \in K_{J}} \Gamma K \cong \operatorname{colim}_{(S, \sigma) \in \mathbf{P s}(Q)} \lim _{s \in S(J, K)}\lceil K
$$

- We can write $\lim _{s \in S(J, K)}\lceil K$ as an iterated limit to get an equivalent form of the isomorphism

$$
\lim _{J} \operatorname{colim}_{Q K=J} \Gamma K \cong \operatorname{colim}_{(S, \sigma) \in \mathbf{P s}(Q)} \lim _{J} \lim _{s \in S(J, K)}\lceil K
$$

- If (S, σ) is representable $S=\Phi_{*}$, for Φ an actual section, then $\lim _{s \in S(J, K)} \cong\lceil Ф Ј$

Distributivity II (continued)

Theorem

$\mathbf{P s}_{*}(Q)$ the category of pointed prosections

- Objects $(S, \sigma, s), S: \mathbf{J} \longrightarrow \mathbf{K}, \sigma: S \longrightarrow Q^{*}, s: J \longrightarrow K,(S, \sigma)$ a prosection
- Morphisms $(t, j, k):(S, \sigma, s) \longrightarrow\left(S^{\prime}, \sigma^{\prime}, s^{\prime}\right) t: S \longrightarrow S^{\prime}$ such that $\sigma^{\prime} t=\sigma$ and

$U: \mathbf{P s}_{*}(Q) \longrightarrow \mathbf{P s}(Q)$ and $\quad V: \mathbf{P s}_{*}(Q)^{o p} \longrightarrow \mathbf{K}$ forgetful functors

Properties of Prosections

Proposition

(1) If Q has a prosection, then Q is pseudo epi $(F Q \cong G Q \Rightarrow F \cong G)$
(2) If (S, σ) is a prosection, then S is total $\left(\operatorname{colim}_{K} S(J, K)=1\right.$ for every J)
(3) $\operatorname{Ps}(Q)$ is closed under connected colimits in Set ${ }^{\mathrm{Jop}} \times \boldsymbol{K}$

Proof.
(1) $F Q \cong G Q \Rightarrow F_{*} \otimes Q_{*} \cong G_{*} \otimes Q_{*}$
$\Rightarrow F_{*} \otimes Q_{*} \otimes S \cong G_{*} \otimes Q_{*} \otimes S \Rightarrow F_{*} \cong G_{*} \Rightarrow F \cong G$
(2) S is total $\Leftrightarrow T_{*} \otimes S \cong T_{*}(T: ? \longrightarrow \mathbb{1})$
$Q_{*} \otimes S \cong \mathrm{Id}_{\jmath} \Rightarrow T_{*} \otimes Q_{*} \otimes S \cong T_{*} \otimes \mathrm{Id}_{\mathrm{J}} \Rightarrow T_{*} \otimes S \cong T_{*}$
(3) $Q_{*} \otimes\left(\operatorname{colim}_{\alpha} S_{\alpha}\right) \cong \operatorname{colim}_{\alpha}\left(Q_{*} \otimes S_{\alpha}\right) \cong \operatorname{colim}_{\alpha} I^{\prime} \mathrm{J}_{\mathrm{J}} \cong \mathrm{Id}_{\mathrm{J}}$

Properties of Prosections (continued)

Proposition

$\operatorname{Ps}(Q)$ is accessible

Proof.

is a pseudo pullback

Remark

$\operatorname{Ps}(Q)$ is models of a colimit-terminal object sketch. It is κ-accessible for any infinite $\kappa>\# \mathbf{K}_{J}$, all J

Cutting Down the Size

Corollary
$\operatorname{Ps}(Q)$ has a small initial subcategory
Proof.
If $\operatorname{Ps}(Q)$ is κ-accessible, then the full subcategory of the κ-presentable objects $\mathbf{P s}_{\kappa}(Q)$ is initial

So we have

Example (Q Discrete Opfibration)

Proposition

If Q is a discrete opfibration then any prosection is represented by an actual section
This gives the distributive law

$$
\lim _{J} \sum_{Q K=J} \Gamma_{J} K \cong \sum_{S \in \operatorname{Sect}(Q)} \lim _{J} \Gamma_{J} S(J)
$$

If \mathbf{J} is discrete we recover distributivity of Π over \sum

Example $(\mathbf{J}=\mathbb{1})$

A prosection $S: \mathbb{1} \longrightarrow \mathbf{K}$ of $Q: \mathbf{K} \longrightarrow \mathbb{1}$ is a functor $S: \mathbf{K} \longrightarrow$ Set such that colim $S=1$
So $\mathbf{P s}(Q) \simeq$ Conn $^{*}\left(\right.$ Set $\left.^{k}\right)$
The representables $\mathbf{K}^{o p} \longrightarrow \operatorname{Conn}^{*}\left(\right.$ Set $^{\mathbf{K}}$) form an initial subcategory, so our distributive law

$$
\lim _{J} \operatorname{colim}_{Q K=J}\left\lceil K \cong \underset{S \in \operatorname{Ps}(Q)}{\operatorname{colim}} \lim _{J} \lim _{s \in S(J, K)}\lceil K\right.
$$

reduces to

$$
\begin{aligned}
\operatorname{colim}_{K \in K} \Gamma K & \cong \operatorname{colim}_{K \in K} \lim _{K \in K / K} \Gamma(\operatorname{cod} k) \\
& \cong \operatorname{colim}_{K \in K}\lceil K
\end{aligned}
$$

Example (J Discrete)

$Q: \mathbf{K} \longrightarrow \mathbf{J}$ is just a \mathbf{J}-family of categories \mathbf{K}_{J} A prosection $S: \mathbf{J} \longrightarrow \mathbf{K}$ of Q is equivalent to a family of functors $S_{J}: \mathbf{K}_{J} \longrightarrow$ Set such that colim $S_{J}=1$ $\operatorname{Ps}(Q) \simeq \prod_{J} \operatorname{Conn}^{*}\left(\right.$ Set $\left.^{K_{\jmath}}\right)$

Initial Functors

- $\Phi: \mathbf{X} \longrightarrow \mathbf{Y}$ is initial if
(1) for every $Y \in \mathbf{Y}$ there are $X \in \mathbf{X}$ and $y: \Phi X \longrightarrow Y$
(2) for any other $y^{\prime}: \Phi X^{\prime} \longrightarrow Y$ there exists a path

$$
X=X_{0} \longrightarrow X_{1} \leftarrow X_{2} \longrightarrow \cdots<X_{n}=X^{\prime}
$$

$$
\Phi X=\Phi X_{0} \rightarrow \Phi X_{1} \leftarrow \Phi X_{2} \rightarrow \cdots \leftarrow \Phi X_{n}=\Phi X^{\prime}
$$

- A finite product of initial functors $\Pi \Phi_{\alpha}: \mathbf{X}_{\alpha} \longrightarrow \mathbf{Y}_{\alpha}$ is again initial
- Does not hold for infinite products
- Say that $\Phi: \mathbf{X} \longrightarrow \mathbf{Y}$ is very initial if for every y and y^{\prime} there exists a path of length 2 joining them
- An infinite product of very initial functors is very initial

Example (J Discrete)

$Q: \mathbf{K} \longrightarrow \mathbf{J}$ is just a \mathbf{J}-family of categories \mathbf{K}_{J}
A prosection $S: \mathbf{J} \longrightarrow \mathbf{K}$ of Q is equivalent to a family of functors
$S_{J}: \mathbf{K}_{J} \longrightarrow$ Set such that colim $S_{J}=1$
$\operatorname{Ps}(Q) \simeq \prod_{J}$ Conn $^{*}\left(\mathbf{S e t}^{\mathrm{K}_{J}}\right)$

If \mathbf{J} is finite, then families of representables are initial in $\mathbf{P s}(Q)$

$$
\prod_{J} \mathbf{K}_{j}^{o p} \longrightarrow \prod_{J} \operatorname{Conn}^{*}\left(\text { Set }^{\mathbf{K}_{J}}\right)
$$

so our distributive law becomes

$$
\prod_{J} \operatorname{colim}_{K \in K_{J}} \Gamma_{J} K \cong \operatorname{colim}_{\left\langle K_{J}\right\rangle \in \prod_{J}} \prod_{J} \Gamma_{J} K_{J}
$$

For example, if \mathbf{J} is $\mathbb{1}+\mathbb{1}$

$$
\left(\underset{K_{1} \in \mathbf{K}_{1}}{\operatorname{colim}} \Gamma_{1} K_{1}\right) \times\left(\underset{K_{2} \in \mathbf{K}_{2}}{\operatorname{colim}_{2}} \Gamma_{2} K_{2}\right) \cong \operatorname{colim}_{\left(K_{1}, K_{2}\right)}\left(\Gamma_{1} K_{1} \times \Gamma_{2} K_{2}\right)
$$

Example

If the categories \mathbf{K}_{J} have the property that every span can be completed to a commutative square

then the representables $\mathbf{K}_{J}^{o p} \longrightarrow$ Conn $^{*}\left(\right.$ Set $\left.^{\mathbf{K}_{J}}\right)$ are very initial so we get a distributive law

$$
\prod_{J} \operatorname{colim}_{K \in \mathbf{K}_{J}} \Gamma_{J} K \cong \operatorname{colim}_{\left\langle K_{J}\right\rangle \in \prod_{K_{J}}} \prod_{J} \Gamma_{J} K_{J}
$$

If the \mathbf{K}_{J} are discrete we recover distributivity of Π over \sum again

Example

For general \mathbf{K}_{J} and \mathbf{J} infinite, the representables are no longer initial We can take finite nonempty connected colimits of representables

Let \mathbb{G} be a finite, nonempty, connected graph For any diagram $D: \mathbb{G} \longrightarrow \mathbf{K}$, let

$$
H_{D}=\operatorname{colim}_{v \in \mathbb{G}} \mathbf{K}(D(v),-)
$$

We have colim $H_{D} \cong 1$
Let Diago \mathbf{K} be the category of such diagrams $D: \mathbb{G} \longrightarrow \mathbf{K}$
Proposition
$H_{()}:$Diag $_{0} \mathbf{K} \longrightarrow$ Conn $^{*}\left(\right.$ Set $\left.^{\mathbf{K}}\right)$ is very initial
This gives the distributive law

$$
\prod_{J} \operatorname{colim}_{K \in \mathbf{K}_{J}} \Gamma_{J} K \cong \operatorname{colim}_{\left\langle D_{J}\right\rangle} \prod_{J} \lim _{v \in \mathbb{G}_{J}} \Gamma_{J} D_{J v}
$$

