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Introduction
I [GP] Families Parametrized by Coalgebras, J. Alg. 107

(1987), 316-375.
I CCoalg is a good category: set-like

I complete and cocomplete
I sums are disjoint and universal
I cartesian-closed

I Can be used to parametrize families of “linear structures”
I Vector spaces
I Algebras
I Coalgebras
I Hopf algebras
I etc.

I Gives a deeper understanding of various concepts
I Cotensor of coalgebras
I Measurings
I Alg is not enriched in Vect but it is in CCoalg

I Homomorphisms ≡ group-likes
I Derivations ≡ primitives



I Cocommutative coalgebras are considered “trivial” by Hopf
algebra people

I Good - can consider them completely understood
I But they are not as trivial as sets

I This point of view has, by and large, not been taken up either
by the Hopf algebra people or the category theorists. Still
much to be done:

I Decomposition theorems for algebras, coalgebras, Hopf
algebras, etc.

I Category objects in CCoalg are Hopf algebroids, should be
explored further

I Understand the categorical meaning of the non-commutative
coalgebras

I CCoalg is the set theory of linear structures: it embodies a
logic specific to them



Rel
- Objects are sets, A,B,C , ...
- Morphisms R : A • //B are relations R ⊆ A× B
- Composition S ◦ R = {(a, c)|∃b((b, c) ∈ S & (a, b) ∈ R)}
- Identity I : A • //A is the diagonal

I Has a ⊗
I A⊗ A′ = A× A′

I R ⊗ R ′ is the image of

R × R ′ ⊆ (A× B)× (A′ × B ′)
∼= // (A× A′)× (B × B ′)

I Unit is 1 = {0}
I Symmetric
I Has associated hom

Rel(A× B,C ) ∼= Rel(A,B × C )

[B,C ] = B × C

I Is self-dual
( )◦ : Relop

' // Rel

A◦ = A

R◦ : B◦ // A◦

R◦ = {(b, a)|(a, b) ∈ R}
I Compact closed

1 is the dualizing object



Rel (continued)
I Coproducts - disjoint union
I Products - same
I “Inclusion” ( )∗ : Set // Rel

takes a function to its graph
I Has a right adjoint P : Rel // Set

PA = power set of A = {X |X ⊆ A}

PR : PA // PB

X 7→ {b ∈ B|∃a ∈ X ((a, b) ∈ R)}
I ( )∗ preserves colimits - Rel has colimits of diagrams of

functions
I Equivalence relation R : A • //A

I IA ⊆ R
I R◦ ⊆ R (R◦ = R)
I R ◦ R ⊆ R (R ◦ R = R)
I q : A // A/R gives a splitting of R

R = q∗ · q∗ & q∗ · q∗ = IA/R (q∗ = q◦∗)



Comonoids
A comonoid in Rel is a set A with relations ε : A • // 1,
δ : A • //A× A satisfying

A A× A•δ //A

A× 1

∼= %%

A× A

A× 1

•A×ε
��

A A× A•δ //A

1× A

∼= %%

A× A

1× A

•ε×A
��

A× A A× A× A•
δ×A

//

A

A× A

•δ
��

A A× A•δ // A× A

A× A× A

•A×δ
��

It is cocommutative if it also satisfies

A

A× A
•

δ
**

A× A

A
44•δ
A× A

A× A

σ
��

A morphism of comonoids R : (A, ε, δ) • // (B, ε′, δ′) is a relation
R : A • //B such that

A

1

•
ε ��

A B•R // B

1

•
ε′��

and

A× A B × B•
R×R

//

A

A× A

•δ
��

A B•R // B

B × B

•δ′
��



Examples (Small)
Initial and Terminal
The empty set 0 and the one-point set 1 each have unique
comonoid structures. These are the initial and terminal objects of
Comon (and CComon).
Trigonometric
T = {s, c}
ε(s) = ∅ = 0, ε(c) = {0} = 1
δ(s) = {(s, c), (c, s)}
δ(c) = {(s, s), (c, c)}

T T × T•δ //T

T × 1
∼= ''

T × T

T × 1

•T×ε��
T × T T × T × T•

δ×T
//

T

T × T

•δ ��

T T × T•δ // T × T

T × T × T

•T×δ��

s 7→ {(s, c), (c , s)} 7→ {s} × 1 ∪ {c} × 0 = {(s, 0)}
c 7→ {(s, s), (c , c)} 7→ {(s, s, c), (s, c , s)} ∪ {(c, s, s), (c , c , c)}
c 7→ {(s, s), (c , c)} 7→ {(s, c, s), (c , s, s)} ∪ {(s, s, c), (c , c , c)}



Example (Discrete)
Every set A admits a discrete comonoid structure, ∆A:

ε : A • // 1, ε(a) = 1

δ : A • //A× A, δ(a) = {(a, a)}.

Proposition

A relation R : A • //B is a comonoid morphism ∆A • //∆B iff
it is (the graph of) a function A // B.

Proof.
R is single-valued if and only if it preserves δ, and it is everywhere
defined if and only if it preserves ε.

Corollary

∆ : Set // Comon is a full and faithful functor.

Proposition

∆ has a right adjoint Γ, given by ΓA = Comon(1,A).



Example (Matrices)

For any set A we have a comonoid MA = (A× A, ε, δ)

ε : A× A • // 1

ε(a, b) =

{
1 if a = b
0 otherwise

δ : A× A • // (A× A)× (A× A)

δ(a, b) = {((a, x), (x , b))|x ∈ A}

MA is not cocommutative.



Example (Power series)

Example

I X = {x0, x1, x2, . . .}

I ε(xn) =

{
1 if n = 0
0 ow

I δ(xn) = {(xp, xq)|p + q = n}
I Set-like: x0

I Primitive: x1

I Y = {xnym|n,m ∈ N}

I ε(xnym) =

{
1 if n = m = 0
0 ow

I δ(xnym) = {(xpy r , xqy s)|p + q = n and r + s = m}
I Set-like: 1(= x0y0)
I Primitives: x(= x1y0) and y(= x0y1).



Example (Dirichlet series)

D = {x0, x1, x2, . . .}

I ε(xn) =

{
1 if n = 1
0 ow

I δ(xn) = {(xp, xq)|pq = n}
I Set-like: x1
I Primitives: {xp|p prime}.



Example (Monoid algebra)
( )∗ : Set // Rel preserves ⊗ so preserves monoids. M monoid (in
Set) is also a monoid in Rel. By duality it is also a comonoid in
Rel.
M◦ = M
ε(x) = 1 if x = 1 and 0 otherwise. δ(x) = {(y , z)|yz = x}
I Power series and Dirichlet series are special cases

((N, 0,+), (N2, 0,+), (N, 1, ·))

I We can get power series in an arbitrary set of variables X by
taking the free commutative monoid, N(X ), on X . The free
monoid X ∗ gives power series in non-commuting variables.

I A monoid homomorphism f : M // N in Set produces one in
Rel, f∗ : M • //N, and by duality a comonoid
homomorphism

f ∗ : N◦ //M◦

I Gives an inclusion Monop // Comon which is not full in
general.



“Spectrum”

I Γ(M◦) = Comon(1,M◦)

1 • //M◦ ↔ N ⊆ M

1 ∈ N

x ∈ N and y ∈ N ⇔ xy ∈ N

I The complement P = M\N is prime

1 /∈ P

x ∈ P & y ∈ M ⇒ xy ∈ P

x ∈ M & y ∈ P ⇒ xy ∈ P

xy ∈ P ⇒ x ∈ P or y ∈ P

So Γ is some kind of “spectrum”.



Example (Shuffles)

I Interesting comonoid structure on the free monoid, related to
the shuffle algebra.

I A k-shuffle on n is σ ∈ Sn which is order-preserving on
{1, . . . , k} and {k + 1, . . . , n}.

I The free monoid on X is the set of all words

X ∗ = {x1x2 . . . xn|xi ∈ X , n ≥ 0}

I ε(w) =

{
1 if w = 1
0 ow

δ(x1x2 . . . xn) =
{(xσ1xσ2 . . . xσk , xσ(k+1) . . . xσn)|0 ≤ k ≤ n, σ is a k-shuffle}

I E.g. δ(xyx) =
{(1, xyx), (x , yx), (y , xx), (x , xy), (xy , x), (xx , y), (yx , x), (xyx , 1)}



Example (“Lie sets”)

I A “Lie set” is a set X with a symmetric and reflexive relation
[ , ].

I Think: [x , y ]⇔ x and y commute.

I Form the “universal enveloping monoid”

UX = X ∗/{xy ∼ yx |[x , y ]}

I If [ , ] is equality, then UX is the free monoid. If [ , ] is the
total relation, then UX is the free commutative monoid.

Theorem
δ : UX • //UX × UX given by δ[x1 . . . xn] =
{([xσ1 . . . xσk ], [xσ(k+1) . . . xσn])|0 ≤ k ≤ n, σ a k-shuffle} is well
defined, and makes UX into a cocommutative comonoid.

I UX has just one set-like element, [1]. The primitives are the
generators [x ] determined by words of length 1.



Quotients
Let (A, ε, δ) be a comonoid and R an equivalence relation on A.

I R : A • //A

I IA ⊆ R
I R◦ ⊆ R
I R ◦ R ⊆ R

I Let q : A // Ā = A/R be the quotient.

Proposition

Ā is a comonoid and q∗ a homomorphism if and only if
(i) ε ◦ R ⊆ ε
(ii) δ ◦ R ⊆ (R × R) ◦ δ.

I With ∼ from previous example.
(i) If w ∼ w ′ and ε(w) = 1 then ε(w ′) = 1. Holds because
equivalence words have the same length.
(ii) If x1 . . . xn ∼ y1 . . . yn and σ ∈ Sn is a k-shuffle then there
exists a k-shuffle τ ∈ Sn such that xσ1 . . . xσk ∼ yτ1 . . . yτk
and xσ(k+1) . . . xσn ∼ yτ(k+1) . . . yτn.



Coproducts

I Comon has coproducts given by disjoint union.

I ∆A is the coproduct of A copies of the terminal coalgebra 1.

I Nice: Disjoint and universal.

I A is connected if it is not the sum of two proper
subcomonoids.

Proposition

Every comonoid A can be decomposed uniquely as a sum of
connected subcomonoids A =

∑
i∈I Ai .

I Denote the set of connected components of A by π0A.

Proposition

π0 is left adjoint to ∆ : Set // Comon.



Binary products

I By general principles CComon has ⊗ as binary product (i.e.
cartesian product as sets).

Proposition

In CComon, binary product distributes over coproduct

B × (
∑
i∈I

Ai ) '
∑
i∈I

(B × Ai )

Proposition

A product of two connected cocommutative comonoids is
connected.

Corollary

π0 preserves binary products of cocommutative comonoids.

Remark
Similar statements hold for Comon with product replaced by ⊗.



Categories

I A small category is a sort of partially defined monoid with lots
of identities.

I Let A be a small category and A its set of morphisms.

I

ε : A • // 1

ε(f ) =

{
1 if f = id
0 ow

I

δ : A // AxA

δ(f ) = {(g , h)|gh = f }

A

Ā
h ��

A A′
f // A′

Ā

??
g

I (A, ε, δ) is a comonoid in Rel.



Categories (continued)

Example

I A category with one object is a monoid  monoid algebra

I A discrete category is a set  ∆A

I The indiscrete category gives matrices MA

I A poset (X ,≤) is a category

A = {(x , y)|x ≤ y}

ε(x , y) =

{
1 if x = y
0 ow

δ(x , y) = {(x , z), (z , y)|x ≤ z ≤ y}

(C.f. Sweedler)



Functors
Functors don’t give comonoid morphisms!

F : A // B

F : A // B

Neither F∗ : A • //B nor F ∗ : B • //A are morphisms.

Proposition

F∗ : A • //B comes from a functor iff

A

1

•
ε ��

A B•
F∗ // B

1

•
ε��

⊆

A× A B × B•
F∗×F∗

//

A

A× A

•δ
��

A B•
F∗ // B

B × B

•δ
��

⊆

iff

B

1

•
ε ��

B A•F
∗

// A

1

•
ε��

⊇

B × B A× A•
F∗×F∗

//

B

B × B

•δ
��

B A•F
∗

// A

A× A

•δ
��

⊇



Conclusion

I Comonoids in Rel seem interesting, and deserve more study.
E.g. classification of irreducible ones.

I All of the examples are bicomonoids, but few have antipods.

I Groups give Hopf monoids and we have Gr and Grop as full
subcategories.

I The analogy with coalgebras, bialgebras and Hopf algebras
over a field is good. Much like permutation representations of
groups as opposed to linear ones. It is strong enough to
suggest ideas, but not so strong that the theories are
completely parallel.

I Families indexed by comonoids have yet to be explored - but
should be.


