R.J. Wood

Dalhousie University

Waves and total distributivity

Following joint work with Francisco Marmolejo and Bob Rosebrugh on "Completely and totally distributive categories", I reported at CT2013 on the *wave functor* W: $\mathscr{H} \to \widehat{\mathscr{H}} = \mathbf{set}^{\mathscr{H}^{\mathrm{op}}}$ of a totally cocomplete category \mathscr{H} . Indeed, if the defining property of \mathscr{K} is given by an adjunction $\bigvee \dashv Y : \mathscr{H} \to \widehat{\mathscr{H}}$, where Y is the Yoneda functor, then W is given for objects A and K in \mathscr{H} by

$$W(A)(K) = \mathbf{set}^{\widehat{\mathscr{K}}}(\mathscr{K}(A, -), \bigvee, [K, -])$$

where [K, -] denotes evaluation of an object of $\widehat{\mathscr{K}}$ at K. **set** denotes the category of *small sets* and it requires some work to show that W is well-defined. W arises along with natural transformations $\beta : W \bigvee \rightarrow 1_{\widehat{\mathscr{K}}}$ and $\gamma : \bigvee W \rightarrow 1_{\mathscr{K}}$ that satisfy $\bigvee \beta = \gamma \bigvee$ and $\beta W = W\gamma$. A total \mathscr{K} is said to be *totally distributive* if \bigvee has a left adjoint. It was shown that \mathscr{K} is totally distributive iff γ is invertible iff $W \dashv \bigvee$.

For any total \mathscr{K} there is a well-defined, associative composition of waves. If we write $\widetilde{\mathscr{K}} : \mathscr{K} \to \mathscr{K}$ for the small profunctor determined by W then composition becomes an arrow $\circ : \widetilde{\mathscr{K}} \circ_{\mathscr{K}} \widetilde{\mathscr{K}} \to \widetilde{\mathscr{K}}$, although $\widetilde{\mathscr{K}} \circ_{\mathscr{K}} \widetilde{\mathscr{K}}$ is not in general small. Moreover, there is also an augmentation $(-): \widetilde{\mathscr{K}}(-,-) \to \mathscr{K}(-,-)$, corresponding to a natural transformation $\delta : W \to Y$ constructed via β . We will show that if \mathscr{K} is totally distributive then $\circ : \widetilde{\mathscr{K}} \circ_{\mathscr{K}} \widetilde{\mathscr{K}} \to \widetilde{\mathscr{K}}$ is invertible, meaning that composition of waves is *interpolative*, and $\widetilde{\mathscr{K}}$ thus supports an idempotent comonad structure. In fact, $\widetilde{\mathscr{K}} \circ_{\mathscr{K}} \widetilde{\mathscr{K}} = \widetilde{\mathscr{K}} \circ_{\widetilde{\mathscr{K}}} \widetilde{\mathscr{K}}$ so that $\widetilde{\mathscr{K}}$ becomes a *taxon* structure, in the sense of Koslowski, on the objects of \mathscr{K} . In the paper with Marmolejo and Rosebrugh we showed that, for any small taxon \mathscr{T} , the category of taxon functors $\operatorname{Tax}(\mathscr{T}^{\operatorname{op}}, \operatorname{set})$ is totally distributive. To this we now add, for any totally distributive \mathscr{K} , there is an equivalence of categories $\mathscr{K} \to \operatorname{Tax}(\widetilde{\mathscr{K}^{\operatorname{op}}, \operatorname{set})$.