Lemma 4.6. (a) For all M, M^{\prime}, if $M \rightarrow_{\beta \eta} M^{\prime}$ then $M \triangleright M^{\prime}$.
(b) For all M, M^{\prime}, if $M \triangleright M^{\prime}$ then $M \rightarrow{ }_{\beta \eta} M^{\prime}$.
(c) $\rightarrow_{\beta \eta}$ is the reflexive, transitive closure of \triangleright.

Proof. (a) First note that we have $P \triangleright P$, for any term P. This is easily shown by induction on P. We now prove the claim by induction on a derivation of $M \rightarrow \beta \eta$ M^{\prime}. Please refer to pages 14 and 24 for the rules that define $\rightarrow_{\beta \eta}$. We make a case distinction based on the last rule used in the derivation of $M \rightarrow_{\beta \eta} M^{\prime}$.

- If the last rule was (β), then $M=(\lambda x \cdot Q) N$ and $M^{\prime}=Q[N / x]$, for some Q and N. But then $M \triangleright M^{\prime}$ by (4), using the facts $Q \triangleright Q$ and $N \triangleright N$.
- If the last rule was (η), then $M=\lambda x . P x$ and $M^{\prime}=P$, for some P such that $x \notin F V(P)$. Then $M \triangleright M^{\prime}$ follows from (5), using $P \triangleright P$.
- If the last rule was $\left(\right.$ cong $\left._{1}\right)$, then $M=P N$ and $M^{\prime}=P^{\prime} N$, for some P, P^{\prime}, and N where $P \rightarrow_{\beta \eta} P^{\prime}$. By induction hypothesis, $P \triangleright P^{\prime}$. From this and $N \triangleright N$, it follows immediately that $M \triangleright M^{\prime}$ by (2).
- If the last rule was $\left(\mathrm{cong}_{2}\right)$, we proceed similarly to the last case.
- If the last rule was (ξ), then $M=\lambda x . N$ and $M^{\prime}=\lambda x . N^{\prime}$ for some N and N^{\prime} such that $N \rightarrow_{\beta \eta} N^{\prime}$. By induction hypothesis, $N \triangleright N^{\prime}$, which implies $M \triangleright M^{\prime}$ by (3).
(b) We prove this by induction on a derivation of $M \triangleright M^{\prime}$. We distinguish several cases, depending on the last rule used in the derivation.
- If the last rule was (1), then $M=M^{\prime}=x$, and we are done because $x \rightarrow{ }_{\beta \eta} x$.
- If the last rule was (2), then $M=P N$ and $M^{\prime}=P^{\prime} N^{\prime}$, for some P, P^{\prime}, N, N^{\prime} with $P \triangleright P^{\prime}$ and $N \triangleright N^{\prime}$. By induction hypothesis, $P \rightarrow_{\beta \eta} P^{\prime}$ and $N \rightarrow{ }_{\beta \eta} N^{\prime}$. Since $\rightarrow_{\beta \eta}$ satisfies (cong), it follows that $P N \rightarrow{ }_{\beta \eta} P^{\prime} N^{\prime}$, hence $M \rightarrow_{\beta \eta} M^{\prime}$ as desired.
- If the last rule was (3), then $M=\lambda x . N$ and $M^{\prime}=\lambda x \cdot N^{\prime}$, for some N, N^{\prime} with $N \triangleright N^{\prime}$. By induction hypothesis, $N \rightarrow_{\beta \eta} N^{\prime}$, hence $M=\lambda x . N \rightarrow$ $\rightarrow_{\beta \eta} \lambda x . N^{\prime}=M^{\prime}$ by (ξ).
- If the last rule was (4), then $M=(\lambda x \cdot Q) N$ and $M^{\prime}=Q^{\prime}\left[N^{\prime} / x\right]$, for some $Q, Q^{\prime}, N, N^{\prime}$ with $Q \triangleright Q^{\prime}$ and $N \triangleright N^{\prime}$. By induction hypothesis, $Q \rightarrow \beta \eta$ Q^{\prime} and $N \rightarrow_{\beta \eta} N^{\prime}$. Therefore $M=(\lambda x \cdot Q) N \rightarrow_{\beta \eta}\left(\lambda x \cdot Q^{\prime}\right) N^{\prime} \rightarrow_{\beta \eta}$ $Q^{\prime}\left[N^{\prime} / x\right]=M^{\prime}$, as desired.
- If the last rule was (5), then $M=\lambda x . P x$ and $M^{\prime}=P^{\prime}$, for some P, P^{\prime} with $P \triangleright P^{\prime}$, and $x \notin F V(P)$. By induction hypothesis, $P \rightarrow_{\beta \eta} P^{\prime}$, hence $M=\lambda x . P x \rightarrow_{\beta \eta} P \rightarrow_{\beta \eta} P^{\prime}=M^{\prime}$, as desired.
(c) This follows directly from (a) and (b). Let us write R^{*} for the reflexive transitive closure of a relation R. By (a), we have $\rightarrow_{\beta \eta} \subseteq \triangleright$, hence $\rightarrow_{\beta \eta}=\rightarrow_{\beta \eta}{ }^{*} \subseteq$ \triangleright^{*}. By (b), we have $\triangleright \subseteq \rightarrow \rightarrow_{\beta \eta}$, hence $\triangleright^{*} \subseteq \rightarrow_{\beta \eta^{*}}{ }^{*}=\rightarrow_{\beta \eta}$. It follows that $\triangleright^{*}=\rightarrow \beta \eta$.

We will soon prove that \triangleright satisfies the diamond property. Note that together with Lemma 4.6(c), this will immediately imply that $\rightarrow_{\beta \eta}$ satisfies the Church-Rosser property.

Lemma 4.7 (Substitution). If $M \triangleright M^{\prime}$ and $U \triangleright U^{\prime}$, then $M[U / y] \triangleright M^{\prime}\left[U^{\prime} / y\right]$.
Proof. We assume without loss of generality that any bound variables of M are different from y and from the free variables of U. The claim is now proved by induction on derivations of $M \triangleright M^{\prime}$. We distinguish several cases, depending on the last rule used in the derivation:

- If the last rule was (1), then $M=M^{\prime}=x$, for some variable x. If $x=y$, then $M[U / y]=U \triangleright U^{\prime}=M^{\prime}\left[U^{\prime} / y\right]$. If $x \neq y$, then by (1), $M[U / y]=$ $y \triangleright y=M^{\prime}\left[U^{\prime} / y\right]$.
- If the last rule was (2), then $M=P N$ and $M^{\prime}=P^{\prime} N^{\prime}$, for some P, P^{\prime}, N, N^{\prime} with $P \triangleright P^{\prime}$ and $N \triangleright N^{\prime}$. By induction hypothesis, $P[U / y] \triangleright P^{\prime}\left[U^{\prime} / y\right]$ and $N[U / y] \triangleright N^{\prime}\left[U^{\prime} / y\right]$, hence by (2), $M[U / y]=P[U / y] N[U / y] \triangleright$ $P^{\prime}\left[U^{\prime} / y\right] N^{\prime}\left[U^{\prime} / y\right]=M^{\prime}\left[U^{\prime} / y\right]$.
- If the last rule was (3), then $M=\lambda x . N$ and $M^{\prime}=\lambda x \cdot N^{\prime}$, for some N, N^{\prime} with $N \triangleright N^{\prime}$. By induction hypothesis, $N[U / y] \triangleright N^{\prime}\left[U^{\prime} / y\right]$, hence by (3) $M[U / y]=\lambda x \cdot N[U / y] \triangleright \lambda x . N^{\prime}\left[U^{\prime} / y\right]=M^{\prime}\left[U^{\prime} / y\right]$.
- If the last rule was (4), then $M=(\lambda x \cdot Q) N$ and $M^{\prime}=Q^{\prime}\left[N^{\prime} / x\right]$, for some $Q, Q^{\prime}, N, N^{\prime}$ with $Q \triangleright Q^{\prime}$ and $N \triangleright N^{\prime}$. By induction hypothesis, $Q[U / y] \triangleright$ $Q^{\prime}\left[U^{\prime} / y\right]$ and $N[U / y] \triangleright N^{\prime}\left[U^{\prime} / y\right]$, hence by (4), $(\lambda x . Q[U / y]) N[U / y] \triangleright$ $Q^{\prime}\left[U^{\prime} / y\right]\left[N^{\prime}\left[U^{\prime} / y\right] / x\right]=Q^{\prime}\left[N^{\prime} / x\right]\left[U^{\prime} / y\right]$. Thus $M[U / y]=M^{\prime}\left[U^{\prime} / y\right]$.
- If the last rule was (5), then $M=\lambda x . P x$ and $M^{\prime}=P^{\prime}$, for some P, P^{\prime} with $P \triangleright P^{\prime}$, and $x \notin F V(P)$. By induction hypothesis, $P[U / y] \triangleright P^{\prime}[U / y]$, hence by (5), $M[U / y]=\lambda x . P[U / y] x \triangleright P^{\prime}\left[U^{\prime} / y\right]=M^{\prime}\left[U^{\prime} / y\right]$.

A more conceptual way of looking at this proof is the following: consider any derivation of $M \triangleright M^{\prime}$ from axioms (1)-(5). In this derivation, replace any axiom $y \triangleright y$ by $U \triangleright U^{\prime}$, and propagate the changes (i.e., replace y by U on the left-hand-side, and by U^{\prime} on the right-hand-side of any \triangleright). The result is a derivation of $M[U / y] \triangleright M^{\prime}\left[U^{\prime} / y\right]$. (The formal proof that the result of this replacement is indeed a valid derivation requires an induction, and this is the reason why the proof of the substitution lemma is so long).
Our next goal is to prove that \triangleright satisfies the diamond property. Before proving this, we first define the maximal parallel one-step reduct M^{*} of a term M as follows:

1. $x^{*}=x$, for a variable.
2. $(P N)^{*}=P^{*} N^{*}$, if $P N$ is not a β-redex.
3. $((\lambda x \cdot Q) N)^{*}=Q^{*}\left[N^{*} / x\right]$.
4. $(\lambda x . N)^{*}=\lambda x . N^{*}$, if $\lambda x . N$ is not an η-redex.
5. $(\lambda x . P x)^{*}=P^{*}$, if $x \notin F V(P)$.

Note that M^{*} depends only on M. The following lemma implies the diamond property for \triangleright.

Lemma 4.8 (Maximal parallel one-step reductions). Whenever $M \triangleright M^{\prime}$, then $M^{\prime} \triangleright M^{*}$.

Proof. By induction on the size of M. We distinguish five cases, depending on the last rule used in the derivation of $M \triangleright M^{\prime}$. As usual, we assume that all bound variables have been renamed to avoid clashes.

- If the last rule was (1), then $M=M^{\prime}=x$, also $M^{*}=x$, and we are done.
- If the last rule was (2), then $M=P N$ and $M^{\prime}=P^{\prime} N^{\prime}$, where $P \triangleright P^{\prime}$ and $N \triangleright N^{\prime}$. By induction hypothesis $P^{\prime} \triangleright P^{*}$ and $N^{\prime} \triangleright N^{*}$. Two cases:
- If $P N$ is not a β-redex, then $M^{*}=P^{*} N^{*}$. Thus $M^{\prime}=P^{\prime} N^{\prime} \triangleright$ $P^{*} N^{*}=M^{*}$ by (2), and we are done.
- If $P N$ is a β-redex, say $P=\lambda x . Q$, then $M^{*}=Q^{*}\left[N^{*} / x\right]$. We distinguish two subcases, depending on the last rule used in the derivation of $P \triangleright P^{\prime}$:
* If the last rule was (3), then $P^{\prime}=\lambda x \cdot Q^{\prime}$, where $Q \triangleright Q^{\prime}$. By induction hypothesis $Q^{\prime} \triangleright Q^{*}$, and with $N^{\prime} \triangleright N^{*}$, it follows that $M^{\prime}=\left(\lambda x \cdot Q^{\prime}\right) N^{\prime} \triangleright Q^{*}\left[N^{*} / x\right]=M^{*}$ by (4).
* If the last rule was (5), then $P=\lambda x . R x$ and $P^{\prime}=R^{\prime}$, where $x \notin F V(R)$ and $R \triangleright R^{\prime}$. Consider the term $Q=R x$. Since $R x \triangleright R^{\prime} x$, and $R x$ is a subterm of M, by induction hypothesis $R^{\prime} x \triangleright(R x)^{*}$. By the substitution lemma, $M^{\prime}=R^{\prime} N^{\prime}=$ $\left(R^{\prime} x\right)\left[N^{\prime} / x\right] \triangleright(R x)^{*}\left[N^{*} / x\right]=M^{*}$.
- If the last rule was (3), then $M=\lambda x . N$ and $M^{\prime}=\lambda x . N^{\prime}$, where $N \triangleright N^{\prime}$. Two cases:
- If M is not an η-redex, then $M^{*}=\lambda x . N^{*}$. By induction hypothesis, $N^{\prime} \triangleright N^{*}$, hence $M^{\prime} \triangleright M^{*}$ by (3).
- If M is an η-redex, then $N=P x$, where $x \notin F V(P)$. In this case, $M^{*}=P^{*}$. We distinguish two subcases, depending on the last rule used in the derivation of $N \triangleright N^{\prime}$:
* If the last rule was (2), then $N^{\prime}=P^{\prime} x$, where $P \triangleright P^{\prime}$. By induction hypothesis $P^{\prime} \triangleright P^{*}$. Hence $M^{\prime}=\lambda x . P^{\prime} x \triangleright P^{*}=$ M^{*} by (5).
* If the last rule was (4), then $P=\lambda y \cdot Q$ and $N^{\prime}=Q^{\prime}[x / y]$, where $Q \triangleright Q^{\prime}$. Then $M^{\prime}=\lambda x \cdot Q^{\prime}[x / y]=\lambda y \cdot Q^{\prime}\left(\right.$ note $x \notin F V\left(Q^{\prime}\right)$). But $P \triangleright \lambda y \cdot Q^{\prime}$, hence by induction hypothesis, $\lambda y \cdot Q^{\prime} \triangleright P^{*}=$ M^{*}.
- If the last rule was (4), then $M=(\lambda x . Q) N$ and $M^{\prime}=Q^{\prime}\left[N^{\prime} / x\right]$, where $Q \triangleright Q^{\prime}$ and $N \triangleright N^{\prime}$. Then $M^{*}=Q^{*}\left[N^{*} / x\right]$, and $M^{\prime} \triangleright M^{*}$ by the substitution lemma.
- If the last rule was (5), then $M=\lambda x . P x$ and $M^{\prime}=P^{\prime}$, where $P \triangleright P^{\prime}$ and $x \notin F V(P)$. Then $M^{*}=P^{*}$. By induction hypothesis, $P^{\prime} \triangleright P^{*}$, hence $M^{\prime} \triangleright M^{*}$.

The previous lemma immediately implies the diamond property for \triangleright :
Lemma 4.9 (Diamond property for \triangleright). If $M \triangleright N$ and $M \triangleright P$, then there exists Z such that $N \triangleright Z$ and $P \triangleright Z$.

Proof. Take $Z=M^{*}$.

Finally, we have a proof of the Church-Rosser Theorem:
Proof of Theorem 4.2: Since \triangleright satisfies the diamond property, it follows that its reflexive transitive closure \triangleright^{*} also satisfies the diamond property, as shown in Figure 3. But \triangleright^{*} is the same as $\rightarrow_{\beta \eta}$ by Lemma 4.6(c), and the diamond property for $\rightarrow_{\beta \eta}$ is just the Church-Rosser property for $\rightarrow \beta \eta$.

4.5 Exercises

Exercise 12. Give a detailed proof that property (c) from Section 4.3 implies property (a).

Exercise 13. Prove that $M \triangleright M$, for all terms M.
Exercise 14. Without using Lemma 4.8, prove that $M \triangleright M^{*}$ for all terms M.
Exercise 15. Let $\Omega=(\lambda x . x x)(\lambda x . x x)$. Prove that $\Omega \neq{ }_{\beta \eta} \Omega \Omega$.
Exercise 16. What changes have to be made to Section 4.4 to get a proof of the Church-Rosser Theorem for \rightarrow_{β}, instead of $\rightarrow_{\beta \eta}$?

Exercise 17. Recall the properties (a)-(c) of binary relations \rightarrow that were discussed in Section 4.3. Consider the following similar property, which is sometimes called the "strip property":
(d)

Does (d) imply (a)? Does (b) imply (d)? In each case, give either a proof or a counterexample.
Exercise 18. To every lambda term M, we may associate a directed graph (with possibly multiple edges and loops) $\mathcal{G}(M)$ as follows: (i) the vertices are terms N such that $M \rightarrow_{\beta} N$, i.e., all the terms that M can β-reduce to; (ii) the edges are given by a single-step β-reduction. Note that the same term may have two (or
more) reductions coming from different redexes; each such reduction is a separate edge. For example, let $I=\lambda x$.x. Let $M=I(I x)$. Then

$$
\mathcal{G}(M)=I(I x) \longrightarrow I x \longrightarrow x .
$$

Note that there are two separate edges from $I(I x)$ to $I x$. We also sometimes write bullets instead of terms, to get $\bullet \bullet \longrightarrow$. As another example, let $\Omega=(\lambda x . x x)(\lambda x . x x)$. Then

$$
\mathcal{G}(\Omega)=\bullet \bigcirc
$$

(a) Let $M=(\lambda x \cdot I(x x))(\lambda x \cdot x x)$. Find $\mathcal{G}(M)$.
(b) For each of the following graphs, find a term M such that $\mathcal{G}(M)$ is the given graph, or explain why no such term exists. (Note: the "starting" vertex need not always be the leftmost vertex in the picture). Warning: some of these terms are tricky to find!

(vii)

