
Lemma 4.6. (a) For all M, M ′, if M →βη M ′ then M . M ′.

(b) For all M, M ′, if M . M ′ then M →→βη M ′.

(c) →→βη is the reflexive, transitive closure of ..

Proof. (a) First note that we have P . P , for any term P . This is easily shown by
induction on P . We now prove the claim by induction on a derivation of M →βη

M ′. Please refer to pages 14 and 24 for the rules that define →βη. We make a
case distinction based on the last rule used in the derivation of M →βη M ′.

• If the last rule was (β), then M = (λx.Q)N and M ′ = Q[N/x], for some
Q and N . But then M . M ′ by (4), using the facts Q . Q and N . N .

• If the last rule was (η), then M = λx.Px and M ′ = P , for some P such
that x 6∈ FV (P ). Then M . M ′ follows from (5), using P . P .

• If the last rule was (cong1), then M = PN and M ′ = P ′N , for some P ,
P ′, and N where P →βη P ′. By induction hypothesis, P . P ′. From this
and N . N , it follows immediately that M . M ′ by (2).

• If the last rule was (cong2), we proceed similarly to the last case.

• If the last rule was (ξ), then M = λx.N and M ′ = λx.N ′ for some N and
N ′ such that N →βη N ′. By induction hypothesis, N . N ′, which implies
M . M ′ by (3).

(b) We prove this by induction on a derivation of M . M ′. We distinguish several
cases, depending on the last rule used in the derivation.

• If the last rule was (1), then M = M ′ = x, and we are done because
x →→βη x.

• If the last rule was (2), then M = PN and M ′ = P ′N ′, for some P , P ′,
N , N ′ with P . P ′ and N . N ′. By induction hypothesis, P →→βη P ′ and
N →→βη N ′. Since →→βη satisfies (cong), it follows that PN →→βη P ′N ′,
hence M →→βη M ′ as desired.

• If the last rule was (3), then M = λx.N and M ′ = λx.N ′, for some N, N ′

with N . N ′. By induction hypothesis, N →→βη N ′, hence M = λx.N →

→βη λx.N ′ = M ′ by (ξ).
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• If the last rule was (4), then M = (λx.Q)N and M ′ = Q′[N ′/x], for some
Q, Q′, N, N ′ with Q . Q′ and N . N ′. By induction hypothesis, Q →→βη

Q′ and N →→βη N ′. Therefore M = (λx.Q)N →→βη (λx.Q′)N ′ →βη

Q′[N ′/x] = M ′, as desired.

• If the last rule was (5), then M = λx.Px and M ′ = P ′, for some P, P ′

with P . P ′, and x 6∈ FV (P ). By induction hypothesis, P →→βη P ′, hence
M = λx.Px →βη P →→βη P ′ = M ′, as desired.

(c) This follows directly from (a) and (b). Let us write R∗ for the reflexive transi-
tive closure of a relation R. By (a), we have →βη ⊆ ., hence →→βη = →βη

∗ ⊆

.∗. By (b), we have . ⊆ →→βη, hence .∗ ⊆ →→βη
∗ = →→βη. It follows that

.∗ = →→βη. �

We will soon prove that . satisfies the diamond property. Note that together with
Lemma 4.6(c), this will immediately imply that →→βη satisfies the Church-Rosser
property.

Lemma 4.7 (Substitution). If M . M ′ and U . U ′, then M [U/y] . M ′[U ′/y].

Proof. We assume without loss of generality that any bound variables of M are
different from y and from the free variables of U . The claim is now proved by
induction on derivations of M . M ′. We distinguish several cases, depending on
the last rule used in the derivation:

• If the last rule was (1), then M = M ′ = x, for some variable x. If x = y,
then M [U/y] = U . U ′ = M ′[U ′/y]. If x 6= y, then by (1), M [U/y] =
y . y = M ′[U ′/y].

• If the last rule was (2), then M = PN and M ′ = P ′N ′, for some P , P ′, N ,
N ′ with P . P ′ and N . N ′. By induction hypothesis, P [U/y] . P ′[U ′/y]
and N [U/y] . N ′[U ′/y], hence by (2), M [U/y] = P [U/y]N [U/y] .
P ′[U ′/y]N ′[U ′/y] = M ′[U ′/y].

• If the last rule was (3), then M = λx.N and M ′ = λx.N ′, for some N, N ′

with N . N ′. By induction hypothesis, N [U/y] . N ′[U ′/y], hence by (3)
M [U/y] = λx.N [U/y] . λx.N ′[U ′/y] = M ′[U ′/y].

• If the last rule was (4), then M = (λx.Q)N and M ′ = Q′[N ′/x], for some
Q, Q′, N, N ′ with Q . Q′ and N . N ′. By induction hypothesis, Q[U/y] .
Q′[U ′/y] and N [U/y] . N ′[U ′/y], hence by (4), (λx.Q[U/y])N [U/y] .
Q′[U ′/y][N ′[U ′/y]/x] = Q′[N ′/x][U ′/y]. Thus M [U/y] = M ′[U ′/y].
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• If the last rule was (5), then M = λx.Px and M ′ = P ′, for some P, P ′ with
P . P ′, and x 6∈ FV (P ). By induction hypothesis, P [U/y] . P ′[U/y],
hence by (5), M [U/y] = λx.P [U/y]x . P ′[U ′/y] = M ′[U ′/y]. �

A more conceptual way of looking at this proof is the following: consider any
derivation of M . M ′ from axioms (1)–(5). In this derivation, replace any axiom
y . y by U . U ′, and propagate the changes (i.e., replace y by U on the left-
hand-side, and by U ′ on the right-hand-side of any .). The result is a derivation
of M [U/y] . M ′[U ′/y]. (The formal proof that the result of this replacement
is indeed a valid derivation requires an induction, and this is the reason why the
proof of the substitution lemma is so long).

Our next goal is to prove that . satisfies the diamond property. Before proving this,
we first define the maximal parallel one-step reduct M ∗ of a term M as follows:

1. x∗ = x, for a variable.

2. (PN)∗ = P ∗N∗, if PN is not a β-redex.

3. ((λx.Q)N)∗ = Q∗[N∗/x].

4. (λx.N)∗ = λx.N∗, if λx.N is not an η-redex.

5. (λx.Px)∗ = P ∗, if x 6∈ FV (P ).

Note that M∗ depends only on M . The following lemma implies the diamond
property for ..

Lemma 4.8 (Maximal parallel one-step reductions). Whenever M . M ′, then
M ′ . M∗.

Proof. By induction on the size of M . We distinguish five cases, depending on
the last rule used in the derivation of M . M ′. As usual, we assume that all bound
variables have been renamed to avoid clashes.

• If the last rule was (1), then M = M ′ = x, also M∗ = x, and we are done.

• If the last rule was (2), then M = PN and M ′ = P ′N ′, where P . P ′ and
N . N ′. By induction hypothesis P ′ . P ∗ and N ′ . N∗. Two cases:

– If PN is not a β-redex, then M∗ = P ∗N∗. Thus M ′ = P ′N ′ .
P ∗N∗ = M∗ by (2), and we are done.
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– If PN is a β-redex, say P = λx.Q, then M ∗ = Q∗[N∗/x]. We dis-
tinguish two subcases, depending on the last rule used in the derivation
of P . P ′:

∗ If the last rule was (3), then P ′ = λx.Q′, where Q . Q′. By
induction hypothesis Q′ . Q∗, and with N ′ . N∗, it follows that
M ′ = (λx.Q′)N ′ . Q∗[N∗/x] = M∗ by (4).

∗ If the last rule was (5), then P = λx.Rx and P ′ = R′, where
x 6∈ FV (R) and R . R′. Consider the term Q = Rx. Since
Rx . R′x, and Rx is a subterm of M , by induction hypothe-
sis R′x . (Rx)∗. By the substitution lemma, M ′ = R′N ′ =
(R′x)[N ′/x] . (Rx)∗[N∗/x] = M∗.

• If the last rule was (3), then M = λx.N and M ′ = λx.N ′, where N . N ′.
Two cases:

– If M is not an η-redex, then M ∗ = λx.N∗. By induction hypothesis,
N ′ . N∗, hence M ′ . M∗ by (3).

– If M is an η-redex, then N = Px, where x 6∈ FV (P ). In this case,
M∗ = P ∗. We distinguish two subcases, depending on the last rule
used in the derivation of N . N ′:

∗ If the last rule was (2), then N ′ = P ′x, where P . P ′. By
induction hypothesis P ′ . P ∗. Hence M ′ = λx.P ′x . P ∗ =
M∗ by (5).

∗ If the last rule was (4), then P = λy.Q and N ′ = Q′[x/y], where
Q . Q′. Then M ′ = λx.Q′[x/y] = λy.Q′ (note x 6∈ FV (Q′)).
But P . λy.Q′, hence by induction hypothesis, λy.Q′ . P ∗ =
M∗.

• If the last rule was (4), then M = (λx.Q)N and M ′ = Q′[N ′/x], where
Q . Q′ and N . N ′. Then M∗ = Q∗[N∗/x], and M ′ . M∗ by the
substitution lemma.

• If the last rule was (5), then M = λx.Px and M ′ = P ′, where P . P ′ and
x 6∈ FV (P ). Then M∗ = P ∗. By induction hypothesis, P ′ . P ∗, hence
M ′ . M∗. �

The previous lemma immediately implies the diamond property for .:

Lemma 4.9 (Diamond property for .). If M . N and M . P , then there exists Z
such that N . Z and P . Z.
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Proof. Take Z = M∗. �

Finally, we have a proof of the Church-Rosser Theorem:

Proof of Theorem 4.2: Since . satisfies the diamond property, it follows that
its reflexive transitive closure .∗ also satisfies the diamond property, as shown in
Figure 3. But .∗ is the same as →→βη by Lemma 4.6(c), and the diamond property
for →→βη is just the Church-Rosser property for →βη. �

4.5 Exercises

Exercise 12. Give a detailed proof that property (c) from Section 4.3 implies
property (a).

Exercise 13. Prove that M . M , for all terms M .

Exercise 14. Without using Lemma 4.8, prove that M . M ∗ for all terms M .

Exercise 15. Let Ω = (λx.xx)(λx.xx). Prove that Ω 6=βη ΩΩ.

Exercise 16. What changes have to be made to Section 4.4 to get a proof of the
Church-Rosser Theorem for →β , instead of →βη?

Exercise 17. Recall the properties (a)–(c) of binary relations → that were dis-
cussed in Section 4.3. Consider the following similar property, which is some-
times called the “strip property”:

(d) M

��
??

??
?

������
��

�

P

����

N

�� ��

Z.

Does (d) imply (a)? Does (b) imply (d)? In each case, give either a proof or a
counterexample.

Exercise 18. To every lambda term M , we may associate a directed graph (with
possibly multiple edges and loops) G(M) as follows: (i) the vertices are terms
N such that M →→β N , i.e., all the terms that M can β-reduce to; (ii) the edges
are given by a single-step β-reduction. Note that the same term may have two (or
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more) reductions coming from different redexes; each such reduction is a separate
edge. For example, let I = λx.x. Let M = I(Ix). Then

G(M) = I(Ix)
**
44 Ix // x .

Note that there are two separate edges from I(Ix) to Ix. We also sometimes
write bullets instead of terms, to get •

((
66 • // • . As another example, let

Ω = (λx.xx)(λx.xx). Then

G(Ω) = • dd .

(a) Let M = (λx.I(xx))(λx.xx). Find G(M).

(b) For each of the following graphs, find a term M such that G(M) is the given
graph, or explain why no such term exists. (Note: the “starting” vertex need
not always be the leftmost vertex in the picture). Warning: some of these
terms are tricky to find!

(i)
• // • dd

(ii)
• • dd

oo

(iii)
• • //oo •

(iv)
• •oo ((

•hh

(v)
•:: •

((oo • //hh • dd

(vi)
• // •

����
��

��

•

[[666666

(vii)
•:: // • dd

����
��

��

• ZZ

[[666666
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