Lemma4.6. (a) Forall M, M’,if M —g, M'then M > M.
(b) Forall M, M’,if M > M’ then M —» g, M.

(c) —» gy is the reflexive, transitive closure of .

Proof. (a) First note that we have P > P, for any term P. This is easily shown by
induction on P. We now prove the claim by induction on a derivation of M — g,
M'. Please refer to pages 14 and 24 for the rules that define —3,,. We make a
case distinction based on the last rule used in the derivation of A/ — g, M.

o If the last rule was (3), then M = (Az.Q)N and M’ = Q[N/z], for some
Q@ and N. But then M > M’ by (4), using the facts @ > Q and N > N.

o If the last rule was (n), then M = Ax.Px and M’ = P, for some P such
that = ¢ FV(P). Then M > M’ follows from (5), using P > P.

e If the last rule was (cong;), then M = PN and M’ = P’'N, for some P,
P’,and N where P —g,, P’. By induction hypothesis, P > P’. From this
and N > N, it follows immediately that M > M’ by (2).

o If the last rule was (cong-), we proceed similarly to the last case.

o If the last rule was (£), then M = Az.N and M’ = A\z.N’ for some N and
N'suchthat N — g, N’. By induction hypothesis, N > N, which implies
M > M' by (3).

(b) We prove this by induction on a derivation of M > M’. We distinguish several
cases, depending on the last rule used in the derivation.

o If the last rule was (1), then M = M’ = =z, and we are done because
T _»577 xZ.

e If the last rule was (2), then M = PN and M’ = P'N’, for some P, P’,
N, N" with P> P" and N > N’. By induction hypothesis, P — g, P’ and
N — g3, N'. Since — g, satisfies (cong), it follows that PN —»3,, P'N’,
hence M —»3,, M’ as desired.

e If the last rule was (3), then M = A\zx.N and M’ = \z.N’, for some N, N’
with N > N’. By induction hypothesis, N — g, N’, hence M = \z.N —
— gy Ax.N" = M’ by (§).
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o If the last rule was (4), then M = (\z.Q)N and M’ = Q'[N"'/x], for some
Q,Q', N, N with @ > Q" and N > N'. By induction hypothesis, Q) — 3,
Q" and N —»g, N'. Therefore M = (\z.Q)N —g, (Az.Q")N" —p3,
Q'[N’/x] = M’, as desired.

o If the last rule was (5), then M = A\z.Pz and M’ = P’, for some P, P’
with P> P’, and « ¢ F'V(P). By induction hypothesis, P —» g, P’, hence
M = \x.Px —g, P —p, P' = M’, as desired.

(c) This follows directly from (a) and (b). Let us write R* for the reflexive transi-
tive closure of a relation R. By (a), we have —g3,, C >, hence — g3, = —p3,* C
>*. By (b), we have > C —»3,, hence >* C —»3,* = —»3,. It follows that
> = — - O

We will soon prove that > satisfies the diamond property. Note that together with
Lemma 4.6(c), this will immediately imply that — s,, satisfies the Church-Rosser

property.
Lemma 4.7 (Substitution). If M > M’ and U > U’, then M[U/y] > M'[U’/y].

Proof. We assume without loss of generality that any bound variables of M are
different from y and from the free variables of U. The claim is now proved by
induction on derivations of M > M’. We distinguish several cases, depending on
the last rule used in the derivation:

e If the last rule was (1), then M = M’ = x, for some variable z. If z = v,
then M[U/y] = U v U = M'[U'/y]. If x # y, then by (1), M[U/y] =
y>y=M[U"/yl.

o Ifthe last rule was (2), then M = PN and M’ = P'N’, forsome P, P’, N,
N’ with P> P"and N > N’. By induction hypothesis, P[U/y| > P'[U’/y]
and N[U/y] > N'[U’/y], hence by (2), M[U/y] = P[U/yIN[U/y] >
P'[U'Jy|N'[U' Jy] = M'[U’ Jy).

e Ifthe last rule was (3), then M = A\x.N and M’ = A\z.N’, for some N, N’
with N > N’. By induction hypothesis, N[U/y] > N'[U’/y], hence by (3)
M[U/y] = \e.N[U/y] > Xe.N'[U" Jy] = M'[U’ /y].

e If the last rule was (4), then M = (A\x.Q)N and M’ = Q'[N’/x], for some
Q,Q', N, N with @ > Q" and N > N’. By induction hypothesis, Q[U/y] >
Q'[U'/y] and N[U/y] > N'[U’/y], hence by (4), (A\z.Q[U/y|)N[U/y] >
QU [YIN'[U"/y]/x] = Q'IN"/z][U" /y]. Thus M[U/y] = M'[U’/y].
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e Ifthelast rule was (5), then M = Az.Px and M’ = P’, forsome P, P’ with
P> P, and z ¢ FV(P). By induction hypothesis, P[U/y] > P'[U/y],
hence by (5), M[U/y] = \x.P[U/y|x > P'|U" Jy] = M'[U’'/y]. O

A more conceptual way of looking at this proof is the following: consider any
derivation of M > M’ from axioms (1)—(5). In this derivation, replace any axiom
y > y by U > U’, and propagate the changes (i.e., replace y by U on the left-
hand-side, and by U’ on the right-hand-side of any ). The result is a derivation
of M[U/y] » M'[U’/y]. (The formal proof that the result of this replacement
is indeed a valid derivation requires an induction, and this is the reason why the
proof of the substitution lemma is so long).

Our next goal is to prove that > satisfies the diamond property. Before proving this,
we first define the maximal parallel one-step reduct M * of a term M as follows:

x* = x, for a variable.
PN)* = P*N*,if PN is not a 5-redex.
(Az.Q)N)* = Q*[N*/x].

1.
2.
3.
4. (Ax.N)* = Az.N*, if Ax.N is not an n-redex.
5.

(
(
(
(Az.Px)* = P*,ifx & FV(P).

Note that M* depends only on M. The following lemma implies the diamond
property for .

Lemma 4.8 (Maximal parallel one-step reductions). Whenever M > M’, then

M’ > M*.

Proof. By induction on the size of M. We distinguish five cases, depending on
the last rule used in the derivation of M > M’. As usual, we assume that all bound
variables have been renamed to avoid clashes.

e Ifthe last rule was (1), then M = M’ = x, also M* = z, and we are done.

e If the last rule was (2), then M = PN and M’ = P'N’, where P > P’ and
N > N’. By induction hypothesis P’ > P* and N’ > N*. Two cases:

— If PN is not a B-redex, then M* = P*N*. Thus M’ = P'N’
P*N* = M* by (2), and we are done.
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— If PN is a 5-redex, say P = A\z.Q), then M* = Q*[N*/z]. We dis-
tinguish two subcases, depending on the last rule used in the derivation
of P P":

x If the last rule was (3), then P/ = A\z.Q’, where Q > Q’. By
induction hypothesis Q' > Q*, and with N’ > N*, it follows that
M’ = (\z.Q")N' > Q*[N* /x| = M* by (4).

« If the last rule was (5), then P = A\z.Rx and P’ = R/, where
x ¢ FV(R) and R > R’. Consider the term ¢ = Rx. Since
Rx > R'z, and Rz is a subterm of M, by induction hypothe-
sis R’z > (Rx)*. By the substitution lemma, M’ = R'N’ =
(R'x)[N'/z] > (Rx)*[N*/x] = M*.

o If the last rule was (3), then M = Ax.N and M’ = A\z.N’, where N > N’.
Two cases:

— If M is not an n-redex, then M* = A\xz.N*. By induction hypothesis,
N’ > N*, hence M’ > M* by (3).

— If M is an n-redex, then N = Pz, where ¢ FV(P). In this case,
M* = P*. We distinguish two subcases, depending on the last rule
used in the derivation of N > N’:

x If the last rule was (2), then N’ = P’z, where P > P’. By
induction hypothesis P’ > P*. Hence M’ = \z.P'z > P* =
M* by (5).

« |fthe last rule was (4), then P = \y.Q and N’ = Q'[x/y], where
Qv Q. Then M' = Xz.Q'[z/y] = \y.Q' (note z & FV(Q")).
But P > \y.Q’, hence by induction hypothesis, \y.Q’' > P* =
M*.

e If the last rule was (4), then M = (Ax.Q)N and M’ = Q'[N’/z], where
Qo> Q and N > N'. Then M* = Q*[N*/x], and M’ > M* by the
substitution lemma.

o If the last rule was (5), then M = Az.Px and M’ = P’, where P > P’ and
x ¢ FV(P). Then M* = P*. By induction hypothesis, P’ > P*, hence
M’ > M*. O
The previous lemma immediately implies the diamond property for i

Lemma 4.9 (Diamond property for ). If M > N and M > P, then there exists Z
suchthat N> Z and P> Z.
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Proof. Take Z = M*. O

Finally, we have a proof of the Church-Rosser Theorem:

Proof of Theorem 4.2: Since > satisfies the diamond property, it follows that
its reflexive transitive closure >* also satisfies the diamond property, as shown in
Figure 3. But>* is the same as — g,, by Lemma 4.6(c), and the diamond property
for — g, is just the Church-Rosser property for — 3,,. O

45 Exercises

Exercise 12. Give a detailed proof that property (c) from Section 4.3 implies
property (a).

Exercise 13. Prove that M > M, for all terms M.

Exercise 14. Without using Lemma 4.8, prove that M > M * for all terms M.
Exercise 15. Let Q = (Az.zz)(Az.xz). Prove that 2 # 3, Q€Q.

Exercise 16. What changes have to be made to Section 4.4 to get a proof of the
Church-Rosser Theorem for — g, instead of — ,,?

Exercise 17. Recall the properties (a)—(c) of binary relations — that were dis-
cussed in Section 4.3. Consider the following similar property, which is some-
times called the “strip property”:

(d)

N/M\P

Z.

Does (d) imply (a)? Does (b) imply (d)? In each case, give either a proof or a
counterexample.

Exercise 18. To every lambda term M, we may associate a directed graph (with
possibly multiple edges and loops) G(M) as follows: (i) the vertices are terms
N such that M —3 N, i.e., all the terms that A/ can 8-reduce to; (ii) the edges
are given by a single-step 5-reduction. Note that the same term may have two (or
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more) reductions coming from different redexes; each such reduction is a separate
edge. For example, let I = \z.xz. Let M = I(Ix). Then

GM)= I(Iz) __ T Iz——=.

Note that there are two separate edges from I(Ix) to Ix. We also sometimes
write bullets instead of terms, to get e — o . As another example, let
Q= (\z.zz)(Az.2z). Then

(@) Let M = (Ax.I(zz))(Ax.zz). Find G(M).

(b) For each of the following graphs, find a term M such that G(1) is the given
graph, or explain why no such term exists. (Note: the “starting” vertex need
not always be the leftmost vertex in the picture). Warning: some of these
terms are tricky to find!

0]
o—)oQ

(i)
o<—03

(iii)
0e— o — o

(iv)
o<—0$o

V)

Co(—oCo—)oQ
(vi)
.’\—\/.
(vii)

CorD

N/

@
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