
5 Combinatory algebras

To give a model of the lambda calculus means to provide a mathematical space
in which the axioms of lambda calculus are satisfied. This usually means that the
elements of the space can be understood as functions, and that certain functions
can be understood as elements.

Naı̈vely, one might try to construct a model of lambda calculus by finding a set
X such that X is in bijective correspondence with the set XX of all functions
from X to X . This, however, is impossible: for cardinality reason, the equation
X ∼= XX has no solutions except for a one-element set X = 1. To see this, first
note that the empty set ∅ is not a solution. Also, suppose X is a solution with
|X | > 2. Then |XX | > |2X |, but by Cantor’s argument, |2X | > |X |, hence XX

is of greater cardinality than X , contradicting X ∼= XX .

There are two main strategies for constructing models of the lambda calculus, and
both involve a restriction on the class of functions to make it smaller. The first
approach, which will be discussed in this section, uses algebra, and the essential
idea is to replace the set XX of all function by a smaller, and suitably defined
set of polynomials. The second approach is to equip the set X with additional
structure (such as topology, ordered structure, etc), and to replace XX by a set
of structure-preserving functions (for example, continuous functions, monotone
functions, etc).

5.1 Applicative structures

Definition. An applicative structure (A, ·) is a set A together with a binary op-
eration “·”.

Note that there are no further assumptions; in particular, we do not assume that
application is an associative operation. We write ab for a · b, and as in the lambda
calculus, we follow the convention of left associativity, i.e., we write abc for (ab)c.

Definition. Let (A, ·) be an applicative structure. A polynomial with coefficients
in A and over a set of variables x1, . . . , xn is a formal expression built from
variables and elements of A by means of the application operation. In other words,
the set of polynomials is given by the following grammar:

t, s ::= x a ts,
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where x ranges over variables and a ranges over the elements of A. We write
A{x1, . . . , xn} for the set of polynomials with coefficients in A over x1, . . . , xn.

Here are some examples of polynomials over the variables x, y, z, where a, b ∈ A:

x, xy, axx, (x(y(zb)))(ax).

If t(x1, . . . , xn) is a polynomial over the indicated variables, and b1, . . . , bn are
elements of A, then we can evaluate the polynomial at the given elements: the
evaluation t(b1, . . . , bn) the element of A obtained by “plugging” xi = bi into the
polynomial, for i = 1, . . . , n, and evaluating the resulting expression in A. Note
that in this way, every polynomial t in n variables can be understood as a function
from A

n → A. This is very similar to the usual polynomials in algebra, which
can also either be understood as formal expressions or as functions.

If t(x1, . . . , xn) and s(x1, . . . , xn) are two polynomials with coefficients in A,
we say that the equation t(x1, . . . , xn) = s(x1, . . . , xn) holds in A if for all
b1, . . . , bn ∈ A, t(b1, . . . , bn) = s(b1, . . . , bn).

5.2 Combinatory completeness

Definition (Combinatory completeness). An applicative structure (A, ·) is com-
binatorially complete if for every polynomial t(x1, . . . , xn) of n > 0 variables,
there exists some element a ∈ A such that

ax1 . . . xn = t(x1, . . . , xn)

holds in A.

In other words, combinatory completeness means that every polynomial function
t(x1, . . . , xn) can be represented (in curried form) by some element of A. We
are therefore setting up a correspondence between functions and elements as dis-
cussed in the introduction of this section.

Note that we do not require the element a to be unique in the definition of combi-
natory completeness. This means that we are dealing with an intensional view of
functions, where a given function might have several different names in general
(but see the discussion of extensionality later in this section).

The following theorem characterizes combinatory completeness in terms of a
much simpler algebraic condition.
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Theorem 5.1. An applicative structure (A, ·) is combinatorially complete if and
only if there exist two elements s, k ∈ A, such that the following equations are
satisfied for all x, y, z ∈ A:

(1) sxyz = (xz)(yz)
(2) kxy = x

Example 5.2. Before we prove this theorem, let us look at a few examples.

(a) The identity function. Can we find an element i ∈ A such that ix = x for
all x? Yes, indeed, we can let i = skk. We check that for all x, skkx =
(kx)(kx) = x.

(b) The boolean “false”. Can we find an element F such that for all x, y, Fxy =
x? Yes, this is easy: F = k.

(c) The boolean “true”. Can we find T such that Txy = y? Yes, what we need
is Tx = i. Therefore a solution is T = ki. And indeed, for all y, we have
kixy = iy = y.

(d) Find a function f such that fx = xx for all x. Solution: let f = sii. Then
siix = (ix)(ix) = xx.

Proof of Theorem 5.1: The “only if” direction is trivial. If A is combinatorially
complete, then consider the polynomial t(x, y, z) = (xz)(yz). By combinatory
completeness, there exists some s ∈ A with sxyz = t(x, y, z), and similarly for
k.

We therefore have to prove the “if” direction. Recall that A{x1, . . . , xn} is the set
of polynomials with variables x1, . . . , xn. For each polynomial t ∈ A{x, y1, . . . , yn}
in n + 1 variables, we will define a new polynomial λ∗x.t ∈ A{y1, . . . , yn} in n
variables, as follows by recursion on t:

λ∗x.x := i,
λ∗x.yi := kyi where yi 6= x is a variable,
λ∗x.a := ka where a ∈ A,
λ∗x.pq := s(λ∗x.p)(λ∗x.q).

We claim that for all t, the equation (λ∗x.t)x = t holds in A. Indeed, this is easily
proved by induction on t, using the definition of λ∗:

(λ∗x.x)x = ix = x,
(λ∗x.yi)x = kyix = yi,
(λ∗x.a)x = kax = a,
(λ∗x.pq)x = s(λ∗x.p)(λ∗x.q)x = ((λ∗x.p)x)((λ∗x.q)x) = pq.
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Note that the last case uses the induction hypothesis for p and q.

Finally, to prove the theorem, assume that A has elements s, k satisfying equations
(1) and (2), and consider a polynomial t ∈ A{x1, . . . , xn}. We must show that
there exists a ∈ A such that ax1 . . . xn = t holds in A. We let

a = λ∗x1. . . . .λ
∗xn.t.

Note that a is a polynomial in 0 variables, which we may consider as an element
of A. Then from the previous claim, it follows that

ax1 . . . xn = (λ∗x1.λ
∗x2. . . . .λ

∗xn.t)x1x2 . . . xn

= (λ∗x2. . . . .λ
∗xn.t)x2 . . . xn

= . . .
= (λ∗xn.t)xn

= t

holds in A. �

5.3 Combinatory algebras

By Theorem 5.1, combinatory completeness is equivalent to the existence of the s
and k operators. We enshrine this in the following definition:

Definition (Combinatory algebra). A combinatory algebra (A, ·, s, k) is an ap-
plicative structure (A, ·) together with elements s, k ∈ A, satisfying the following
two axioms:

(1) sxyz = (xz)(yz)
(2) kxy = x

Remark. The operation λ∗, defined in the proof of Theorem 5.1, is defined on
the polynomials of any combinatory algebra. It is called the derived lambda ab-
stractor, and it satisfies the law of β-equivalence, i.e., (λ∗x.t)b = t[b/x], for all
b ∈ A.

Finding actual examples of combinatory algebras is not so easy. Here are some
examples:

Example 5.3. The one-element set A = {∗}, with ∗ · ∗ = ∗, s = ∗, and k = ∗, is
a combinatory algebra. It is called the trivial combinatory algebra.

Example 5.4. Recall that Λ is the set of lambda terms. Let A = Λ/=β, the set of
lambda terms modulo β-equivalence. Define M ·N = MN , S = λxyz.(xz)(yz),
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