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1 An example

Consider the problem of tiling a 2×2 square with the two colors black and
white. Clearly, there are 24 = 16 possibilities:

, , , , , , , , , , , , , , , . (1)

We now wish to know the number of different tilings up to rotation. Let
us call two tilings rotationally equivalent if they differ only by a rotation
(of 0◦, 90◦, 180◦, or 270◦). Our problem is then to count the number of
equivalence classes. The equivalence classes are shown here:

{ },
{ , , , },
{ , , , },

{ , },
{ , , , },

{ }.

(2)

We note that each equivalence classes has 1, 2, or 4 members. The more
symmetries a tiling has, the smaller its equivalence class.

Let G be the set of available symmetry transformations. Then

G = {1, ρ, ρ2, ρ3}, (3)

where 1 is the identity (rotation by 0◦), ρ is a counterclockwise rotation
by 90◦, ρ2 is a rotation by 180◦, and ρ3 is a counterclockwise rotation by
270◦. We also call the members of G symmetries.

Let X be the set of 16 tilings.
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Definition. Let g ∈ G be a symmetry, and let x ∈ X be a tiling. Then we
write g · x for the result of applying the transformation g to the tile x. This
is called the action of g on X . For example:

1 · = ρ · = ρ2 · =
1 · = ρ · = ρ2 · =
1 · = ρ · = ρ2 · =

(4)

Definition. Let x ∈ X be a tiling, and let g ∈ G be a symmetry. We
say that g is a symmetry for x if g · x = x. We write Gx for the set of
symmetries for x, i.e.,

Gx = {g ∈ G | g · x = x}.

For example,
G = {1, ρ, ρ2, ρ3},

G = {1},

G = {1, ρ2}.

We call |Gx| the number of symmetries of a tiling x. Note that every tiling
has at least one symmetry, namely the identity 1. However, some tilings
have additional symmetries.

We now go back to our original picture of the equivalence classes. This
time, we annotate each tiling with its number of symmetries.
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(5)

We notice that the total number of symmetries of all the tilings in each
equivalence class adds up to 4. This is the key to Pólya’s counting method.
We can determine the number of equivalence classes by summing the num-
ber of symmetries of all 16 tilings, then dividing the answer by 4. Since the
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numbers of symmetries add up to 24, the answer is 24/4 = 6 equivalence
classes.

We need a faster way to determine the total number of symmetries of all of
the tilings. To clarify what we have to count, consider the following table.
The rows contain symmetries, and the columns contain tilings. A check-
mark (“

√

”) indicates that the given tiling possesses the given symmetry.

Total
1

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

16
ρ

√ √

2
ρ2 √ √ √ √

4
ρ3 √ √

2

Total 4 1 1 1 1 1 1 1 1 2 2 1 1 1 1 4 24

(6)

What we have counted is the number of checkmarks in this table. We have
done this by columns, considering one tiling at a time and asking how many
symmetries it has.

As faster way to count is by rows. We can consider one symmetry at a time,
and ask how many tilings have this symmetry. If the number of symmetries
is small, this is much faster.

To finish the example, we get that all 16 tilings are symmetric with respect
to the identity 1. Only 2 tilings are symmetric with respect to each of ρ and
ρ3. And 4 of the tilings are symmetric with respect to ρ2. Therefore, the
total number of symmetries of all tilings is 16+2+4+2 = 24. Therefore,
the number of equivalence classes is

24

4
= 6.

2 The general method

Definition. A group is a setGwith an operation ◦ : G×G→ G, satisfying

(a) Associativity: k ◦ (h ◦ g) = (k ◦ h) ◦ g for all g, h, k ∈ G.
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(b) Unit: there exists 1 ∈ G such that for all g ∈ G, we have 1 ◦ g =
g = g ◦ 1. The element 1 is called the unit of the group.

(c) Inverse: for every g ∈ G, there exists some h ∈ G such that g ◦ h =
1 = h ◦ g. The element h is called the inverse of g, and we often
write h = g−1.

One should think of G as a set of symmetry transformations, as in (3).

Definition. Let G be a group and X a set. Then an action of G on X is
given by a function · : G×X → X , satisfying:

(a) Identity: 1 · x = x,

(b) Composition: (h ◦ g) · x = h · (g · x).

One should think of X as a set of objects, such as the tilings in (1). The
action specifies how symmetry transformations act on objects, as we did in
(4).

Definition. We say that x is a fixed point of g if g · x = x. (In the above
example, we said that x “has the symmetry” g). We define:

the stabilizer of x: Gx = {g ∈ G | g · x = x},
the set of fixed points of g: fix(g) = {x ∈ X | g · x = x},
the orbit of x: Gx = {g · x | g ∈ G}.

We also say that x, y ∈ X are equivalent, in symbols x ∼ y, if y ∈ Gx.

Note: in our example above, a stabilizer Gx corresponds to a column of
table (6), whereas fix(g) corresponds to a row. The orbit Gx corresponds
to an equivalence class in (2).

Lemma 2.1. Equivalence is a reflexive, transitive, and symmetric relation.
The equivalence class of x is the orbit of x.
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Proof. Reflexivity: by the identity axiom, we have 1 · x = x, therefore
x ∈ Gx, therefore x ∼ x. Transitivity: assume x ∼ y and y ∼ z. Then
y ∈ Gx and z ∈ Gy. By definition of orbits, there exist g, h ∈ G such that
y = g·x and z = h·y. By the composition axiom, z = h·(g·x) = (h◦g)·x.
Therefore z ∈ Gx, therefore x ∼ y. Reflexivity: assume x ∼ y. By
definition of orbit, there exists some g ∈ G such that y = g ·x. Then using
the axioms, we get x = 1 · x = (g−1 ◦ g) · x = g−1 · (g · x) = g−1 · y.
Therefore x ∈ Gy, hence y ∼ x. Finally, the equivalence class of x is the
set {y | x ∼ y}, which is the orbit Gx by definition. �

Corollary 2.2. x ∼ y if and only if Gx = Gy. �

Our goal is to count the number of equivalence classes, i.e., the number of
orbits.

Lemma 2.3 (Orbit-stabilizer theorem). Let G be a finite group acting on
a finite set X . Then for any x ∈ X ,

|Gx| · |Gx| = |G|.

Proof. Fix x ∈ X . For any y ∈ Gx, we define Gxy = {g ∈ G | g ·x = y}.
We first claim that Gxy has the same number of elements as Gx.

Indeed, let g be some group element such that g · x = y. (This exists
because y ∈ Gx). Then we can define functions ϕ : Gx → Gxy and
ψ : Gxy → Gx by ϕ(h) = g ◦ h and ψ(h) = g−1 ◦ h. Note that for all
h ∈ Gx, we have

ϕ(h) · x = (g ◦ h) · x = g · (h · x) = g · x = y,

and therefore ϕ(h) is indeed an element of Gxy . Conversely, for any h ∈
Gxy , we have

ψ(h) · x = (g−1 ◦ h) · x = g−1 · (h · x) = g−1 · y = g−1 · (g · x)
= (g−1 ◦ g) · x = 1 · x = x,

and therefore ψ(h) is indeed an element of Gx. Therefore, ϕ and ψ are
well-defined functions. They are also each other’s inverses, and therefore
they establish a bijection between Gx and Gxy.
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Now let Gx = {y1, . . . , yn}. (Note that, because x is a member of its
own orbit, one of the yi’s must be equal to x itself). We claim that the sets
Gxy1

, . . . , Gxyn
are disjoint, and that their union is G.

To prove disjointness, assume that Gxyi
∩ Gxyj

is non-empty for some
i 6= j. Then there exists some g ∈ Gxyi

∩ Gxyj
. By definition of Gxyi

,
it follows that g · x = yi, and similarly g · x = yj . Therefore we have
yi = yj , contradicting i 6= j. To prove that G = Gxy1

∪ . . . ∪ Gxyn
, let

some arbitrary g ∈ G be given. Then g · x ∈ Gx, therefore g · x = yi for
some i. It follows that g ∈ Gxyi

.

We now finish the proof of the lemma: because G is a disjoint union of
Gxy1

, . . . , Gxyn
, we have

|G| = |Gxy1
| + . . .+ |Gxyn

|.

Moreover, since |Gxyi
| = |Gx| for all i, we have

|G| = n|Gx|.

But n = |Gx|, and so we have |G| = |Gx| · |Gx| as desired. �

The orbit-stabilizer theorem corresponds to our observation, in (5), that the
number of symmetries on each tiling x (i.e., |Gx|), times the size of its
equivalence class (i.e., |Gx|), is equal to 4 (i.e., |G|).

Corollary 2.4. If H is any orbit, then
∑

x∈H |Gx| = |G|.

Proof. First, note that if x ∼ y, then |Gx| = |Gy|. This is a consequence
of Corollary 2.2 and Lemma 2.3. Now suppose H = Gx = {y1, . . . , yn}.
Then

∑

x∈H

|Gx| = |Gy1
| + . . .+ |Gyn

| = n|Gx| = |Gx| · |Gx| = |G|.

Lemma 2.5 (Burnside’s lemma). LetG be a finite group acting on a finite
set X . Then the number of orbits is equal to

1

|G|

∑

g∈G

|fix(g)|. (7)
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Proof. The proof is inspired by table (6). As we have already remarked,
|fix(g)| is the number of checkmarks in row g of that table, whereas |Gx| is
the number of checkmarks in column x. More formally, define the function

f(g, x) =

{

1 if g · x = x,
0 else.

Then

|fix(g)| =
∑

x∈X

f(g, x) and (8)

|Gx| =
∑

g∈G

f(g, x). (9)

The remainder of the proof is a calculation. Let Orb be the set of orbits.

∑

g∈G |fix(g)| =
∑

g∈G

∑

x∈X f(g, x) by (8)
=

∑

x∈X

∑

g∈G f(g, x) reverse order of sums
=

∑

x∈X |Gx| by (9)
=

∑

H∈Orb

∑

x∈H |Gx| rearrange sum
=

∑

H∈Orb |G| by Corollary 2.4
= |Orb| · |G|.

The lemma follows by dividing by |G|. �

Note that Burnside’s lemma can be summarized as saying that the number
of orbits of a group action is equal to the average number of fixed points of
the group elements.

Pólya’s counting method is the application of Burnside’s lemma in the case
where G is a group of symmetries on some number of slots that are to be
filled with objects (such as colors). The Pólya enumeration theorem is
actually a generalization of Burnside’s lemma that applies to more general
situations, such as when the objects are weighted. However, we will not
need those generalizations here.

7

3 More examples

Problem 1. Consider circular necklaces made up of 10 colored beads. If
there are 2 colors available, then there are 210 = 1024 such necklaces.
Here is one example:

We call two necklaces equivalent if they differ by a rotation. How many
equivalence classes are there?

The symmetry group in question is

G = {1, ρ, ρ2, . . . , ρ9},

where ρ is a counterclockwise rotation by 1 bead. Clearly, ρ10 = 1. We
apply Burnside’s lemma to count the number of orbits.

• fix(1) consists of all 1024 necklaces.

• Each of fix(ρ), fix(ρ3), fix(ρ7), and fix(ρ9) consists of necklaces of
the form

aa a
a

a
aaa

a

a (10)

where a is some color (either black or white). So there are 2 fixed
points in each case.

• Each of fix(ρ2), fix(ρ4), fix(ρ6), fix(ρ8) consists of all necklaces of
the form

a

a

aa

b

b

b

b

a
b

(11)
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where a, b are arbitrary colors. So there are 22 = 4 fixed points in
these cases.

• fix(ρ5) consists of all necklaces of the form

a b
c

d
eab

c

d
e

(12)

where a, b, c, d, e are arbitrary colors. So ρ5 has 25 = 32 fixed
points.

By the Burnside lemma, the number of orbits is

1

10
(1024 + 2 + 4 + 2 + 4 + 32 + 4 + 2 + 4 + 2) =

1080

10
= 108.

Problem 2. Consider circular necklaces of 10 beads as in Problem 1, but
with n colors available instead of 2.

The reasoning is exactly the same. The number of necklaces is n10. All
of them are fixed points for 1. The other fixed points are again of the form
(10), (11), or (12), and there are respectively n, n2, and n5 of them. By the
Burnside lemma, the number of orbits is

1

10
(n10 + 4n+ 4n2 + n5).

It is interesting that in all Pólya-type problems, if n is the number of colors,
the answer is always a polynomial in n.

Problem 3. How many circular necklaces can one make from 10 black or
white beads, if rotations and reflections are taken into account?

Problem 4. Consider rooted binary trees of depth 2, with vertices colored
black and white. Here are some examples:

(13)
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We want to consider trees up to a re-ordering of branches, i.e., where left
and right don’t matter. For example, all the trees in the first row of (13) are
non-equivalent, but all the trees in the second row are equivalent to each
other. How many equivalence classes of trees are there?

For convenience, we number the locations as follows.

1

2 3

6 754

There are 27 colorings if symmetries are not taken into account.

There are three basic symmetries: α, which swaps the subtree at 2 with the
subtree at 3; β, which swaps 4 and 5, and γ, which swaps 6 and 7. Written
as permutations (in cycle notation), we have

α = (1)(23)(46)(57), β = (1)(2)(3)(45)(6)(7), γ = (1)(2)(3)(4)(5)(67)

Note that γ ◦ α = α ◦ β, β ◦ α = α ◦ γ, and γ ◦ β = β ◦ γ. Also, we
have α2 = β2 = γ2 = 1. Altogether, the symmetry group consists of 8
elements (we drop the symbol “◦” when convenient):

G = {1, α, β, αβ, γ, αγ, βγ, αβγ}.

We can write each group element as a permutation of vertices:

1 = (1)(2)(3)(4)(5)(6)(7)
α = (1)(23)(46)(57)
β = (1)(2)(3)(45)(6)(7)
αβ = (1)(23)(5647)
γ = (1)(2)(3)(4)(5)(67)
αγ = (1)(23)(6574)
βγ = (1)(2)(3)(45)(67)
αβγ = (1)(23)(47)(56)

(14)

We need to determine the number of fixed points for each group element.
They are related to the number of cycles in each permutation in (14).
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Namely, for a certain coloring to be a fixed point for g, all the vertices
that are part of a cycle of g must receive the same color. Therefore, the
number of fixed points of each group element g is 2c, where c is the num-
ber of cycles in the corresponding permutation in (14). The numbers of
fixed points of the respective group elements are 27, 24, 26, 23, 26, 23, 25,
24.

Therefore by Burnside’s lemma, the number of orbits is

1

8
(27 + 24 + 26 + 23 + 26 + 23 + 25 + 24) = 42.

Problem 5. Consider tilings of a 3× 3 square with two colors, such as the
following:

, , , , , , , ,

How many different tilings are there (a) up to rotation, and (b) up to rotation
and mirror images?

Problem 6. (a) In how many ways can the faces of a cube be colored with
two colors, up to a rotation of the cube? Hint: there are 24 rotations of the
cube, including the identity. (b) Answer the same question for n colors. (c)
Answer the same question for rotations and mirror images. (d) Answer the
same question for an octahedron.

Problem 7. (a) How many circular necklaces of length 11 can you make,
up to rotation, from black and white beads? (b) How many of length 12?

Problem 8. Among the tilings from Problem 5, consider those that consist
of exactly 5 black tiles and 4 white tiles. Up to rotation, how many such
tilings are there?
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