MATH/CSCI 2113, DISCRETE STRUCTURES II, Winter 2010

Handout 5: Last year's midterm

Prof. P. Selinger
This is a "closed book" test. No notes or papers are allowed. You have 50 minutes. When possible, state integer answers as a decimal integer, and rational answers as a fraction.

Problem 1 (5 points). How many subsets of $\{1,2, \ldots, 12\}$ contain exactly twice as many even as odd numbers?
Problem 2 (5 points). n fair dice are rolled. What is the probability that the highest number rolled is 4 ?
Problem 3 ($\mathbf{5}$ points). How many 4-digit numbers are there with the digits in strictly decreasing order? Examples: 7521, 9840, 3210 are allowed, 8554, 5211, 2130 are not allowed.
Problem 4 (5 points). There are two identical-looking urns. Urn A contains 2 red balls and 8 blue balls. Urn B contains 3 red balls and 2 blue balls. (a) You pick an urn at random, and then you pick a ball at random from that urn. What is the probability that you get a red ball? (b) Your friend picks an urn at random, and then a ball at random. The ball she picked is blue. What is the probability it came from Urn A?
Problem 5 (5 points). Consider circular necklaces made up of 6 colored beads. If there are 2 colors available, then there are $2^{6}=64$ such necklaces. Here is an example:

We call two necklaces equivalent if they differ by a rotation. How many equivalence classes are there?

Note: this year's midterm (2010) will also cover recurrences. See Handout 4 problems $\mathbf{1 , 2 , 4 , 5}$ for sample problems. Generating functions are not covered.

