
MATH/CSCI 2113, DISCRETE STRUCTURES II, Winter 2010

Handout 7: Lecture Notes on Kleene’s Theorem

1 Solving language equations

Let Σ be an alphabet, and recall that Σ∗ is the set of words. A language is
a subset of Σ∗, i.e., an element of P(Σ∗).

Theorem 1.1. Let K and M be languages over an alphabet Σ, and con-
sider the equation

L = KL M. (1)

Then the smallest solution of (1) is the language

L′ = K∗M.

Proof. First, we need to show that L′ = K∗M is a solution of (1). Indeed,
using the laws of regular expressions, we have

L′ = K∗M = (KK∗ | ε)M = KK∗M | εM = KL′ | M,

and therefore L′ is a solution. Next, we need to show that, if L is any other
solution of (1), then L′ ⊆ L. To prove this, consider an arbitrary element
w ∈ L′. Then, by definition of K∗M , we have w = kn . . . k1m, for some
n > 0, k1, . . . , kn ∈ K , and m ∈ M . We prove that w ∈ L by induction
on n. For n = 0, we have w = m ∈ M ⊆ KL | M = L. For n > 0,
we know that w′ = kn−1 . . . k1m ∈ L by induction hypothesis. Then
w = knw′ ∈ KL ⊆ KL | M = L, as desired. Since w was arbitrary, this
shows that L′ ⊆ L. Since L was an arbitrary solution of (1), this proves
that L′ is the least solution. �

Remark 1.2. If K and M are languages such that ε 6∈ K , then the equation
(1) has a unique solution, which is given by L′ = K∗M .

1

Proof. We already know that L′ = K∗M is the least solution of (1). Let L

be some other solution, and assume that L′ 6= L. Since L′ ⊆ L, this means
that there exists some w ∈ L−L′. Let w be such a word of shortest length.
We will derive a contradiction.

By assumption, w ∈ L = KL | M . It cannot be the case that w ∈ M ,
or else we would have w ∈ L′. Therefore, we must have w ∈ KL. It
follows that w = kl, where k ∈ K and l ∈ L. By assumption, ε 6∈ K ,
therefore k 6= ε. It follows that l is of shorter length than w. Since w was
the shortest element of L − L′, it follows that l ∈ L′. But then w = kl ∈
KL′ = KK∗M ⊆ K∗M = L′, which is the desired contradiction. �

2 Finite state automata

Definition. Let Σ be an alphabet. A (deterministic) finite-state automaton
A over Σ is a labelled directed graph whose vertices are called states and
whose edges are labelled by elements of Σ, together with

• a distinguished vertex s0, called the initial state;

• a distinguished set of vertices T , called the accepting states;

such that the following condition holds:

• Determinism: for every vertex s and symbol a ∈ Σ, there exists
exactly one edge labelled a with source s.

We write S for the set of states. The edges are also called transitions. The
next-state function N : S ×Σ → S is defined so that N(s, a) is the unique
state s′ for which there exists an edge s

a
−→ s′.

Given a finite-state automaton, the eventual-state function N ∗ : S ×Σ∗ →
S is defined recursively as:

N∗(s, ε) = s,

N∗(s, aw) = N ∗(N(s, a), w).

2

In other words, for a word w = a1a2 . . . an ∈ Σ∗, N∗(s, w) is defined to
be the unique state s′ such that there exists a sequence of edges

s
a1−→

a2−→ · · ·
an−→ s′.

The language accepted by A (in the alphabet Σ) is defined as

L(A) = {w | N ∗(s0, w) ∈ T}.

3 Translation from finite-state automata to regular
expressions

Theorem 3.1 (Kleene’s theorem, part 1). Let L be the language accepted
by some finite-state automaton A. Then L is defined by some regular ex-
pression.

3.1 An example

Converting a finite-state automaton into a regular expression amounts to
solving a system of equations. We will illustrate how this works in a few
examples. It should then be clear that this can be done in general.

Consider the following finite-state automaton, which accepts all binary
strings that do not contain repeated zeros:

0
11

0,1
0

2ss1s0

Let N∗ : S × Σ∗ → S be the eventual-state function. For each state si, let
Li be the language accepted by the state si, which is defined as:

Li = {w | N∗(si, w) ∈ T}

3

Then from the description of the automaton, it is immediately clear that
L0, L1, and L2 satisfy the following equations:

L0 = 0L1 | 1L0 | ε (2)

L1 = 0L2 | 1L0 | ε (3)

L2 = 0L2 | 1L2. (4)

Note that these equations essentially tabulate the next-state function, and
that we have added ε to the equation for Li if and only if si is an accepting
state.

Note that the equations are of the form of Remark 1.2, and we can solve
them explicitly to obtain a regular expression for L0 = L(A).

We rewrite (4) as
L2 = (0 | 1)L2 | ∅,

and solve it:
L2 = (0 | 1)∗∅ = ∅. (5)

Substituting (5) into (3), we obtain

L1 = 0∅ | 1L0 | ε = 1L0 | ε. (6)

Substituting (6) into (2), we obtain

L0 = 0(1L0 | ε) | 1L0 | ε,

which can be rewritten by the laws of regular expressions as

L0 = 01L0 | 0ε | 1L0 | ε

= 01L0 | 1L0 | 0 | ε

= (01 | 1)L0 | (0 | ε).

This has solution
L0 = (01 | 1)∗(0 | ε). (7)

And indeed, this is the desired regular expression for the language of binary
strings containing no repeated zeros.

4

3.2 Another example

Consider the automaton

0
11

0,1
0

2ss1s0
,

which is the complement of the automaton of the previous example (i.e., it
accepts exactly those binary strings that do contain a repeated zero). The
system of equation then becomes

L0 = 0L1 | 1L0

L1 = 0L2 | 1L0

L2 = 0L2 | 1L2 | ε.

Notice that the only change is that we have added ε the last equation, in-
stead of the first two. Solving the last equation for L2, we get

L2 = (0 | 1)∗ | ε = (0 | 1)∗.

Substituting this into the second equation, we get

L1 = 0(0 | 1)∗ | 1L0.

Substituting this into the first equation, we get

L0 = 0(0(0 | 1)∗ | 1L0) | 1L0

= 00(0 | 1)∗ | (01 | 1)L0,

which we solve as
L0 = (01 | 1)∗00(0 | 1)∗.

4 Non-deterministic finite state automata

A non-deterministic finite state automaton is defined similarly to a deter-
ministic one, with the following exceptions:

5

• Edges are labelled by elements of Σ∪ {ε}, where ε is a special sym-
bol not contained in the alphabet Σ. An edge that is labelled by ε is
called an ε-transition or an ε-edge.

• We drop the condition of determinism. Therefore, there could be
more than one edge labelled a from a given state, or none.

• We allow a set of initial states, instead of just one.

More formally:

Definition. Let Σ be an alphabet and let ε be a symbol that is different
from all elements of Σ. A non-deterministic finite-state automaton A over
Σ is a labelled directed graph whose vertices are called states and whose
edges are labelled by elements of Σ ∪ {ε}, together with

• a distinguished set of vertices I , called the initial states;

• a distinguished set of vertices T , called the accepting states.

As before, we write S for the set of states. We write s
a
−→ s′ if there exists

an a-labelled edge from s to s′. We write s ⇒ s′ if s′ can be reached from
s by following zero or more ε-edges.

For a word w = a1a2 . . . an ∈ Σ∗, we write s
w
⇒ s′ if there exists a

sequence of edges

s ⇒
a1−→⇒

a2−→⇒ . . . ⇒
an−→⇒ s′.

We write N ∗(s, w) = {s′ | s
w
⇒ s′}. Note that this is a set of states, so

the eventual-state function of a non-deterministic automaton is a function
N∗ : S × Σ∗ → PS.

A word w ∈ Σ∗ is accepted by A if there exists some initial state s ∈ I

and some accepting state s′ ∈ T such that s
w
⇒ s′. We define L(A), the

language accepted by A, to be the set of all w ∈ Σ∗ accepted by A.

6

5 Translation from non-deterministic finite-state au-
tomata to deterministic finite-state automata

If X is a set of states of a non-deterministic finite state automaton, we
write X̄ = {s′ | ∃s ∈ X.s ⇒ s′}. In other words, X̄ is the set of all states
reachable from X by zero or more ε-transitions. We say that X is ε-closed
if X = X̄ .

Definition. Suppose we are given a non-deterministic finite state automa-
ton A with state set S, initial states I , and accepting states T . We define a
deterministic finite state automaton det(A) as follows:

• The states of det(A) are the ε-closed sets of states of A.

• The initial state of det(A) is Ī .

• A state X is accepting if and only if X ∩ T 6= ∅.

• For any a ∈ Σ, and any state X is det(A), there is an edge X
a
−→ X ′

if and only if X ′ = N∗(X, a). This means that X ′ is the set of all
states of A that can be reached from a state in X by means of a single
a-transition and zero or more ε-transitions.

Proposition 5.1. The automata A and det(A) accept the same language.
Moreover, det(A) is a deterministic finite state automaton.

Corollary 5.2. A language is accepted by some non-deterministic finite
state automaton if and only if it is accepted by some deterministic finite
state automaton.

Proof. If L is accepted by some non-deterministic finite state automaton A,
then it is also accepted by the deterministic finite state automaton det(A)
by Proposition 5.1. Conversely, every deterministic finite state automaton
can be regarded as a non-deterministic finite state automaton, which hap-
pens to have a single initial state and no ε-transitions. �

7

5.1 An example

In theory, if A is a non-deterministic finite state automaton with n states,
then det(A) has up to 2n states. However, in practice, it suffices to enu-
merate the states of det(A) that can actually be reached from the initial
state, and these are often much fewer than 2n.

Consider the following non-deterministic finite state automaton A, which
accepts the language (ab|aba)∗.

s t u v
a b a

ε

ε

a

w

x

b

We can represent this automaton by its state transition table. At first, let’s
ignore the ε-transitions:

a b

s t, w ∅ accepting, initial
t ∅ u

u v ∅
v ∅ ∅
w ∅ x

x ∅ ∅

Next, we ε-close each entry in the table. For example, any state that can
reach v can also reach s.

a b

s t, w ∅ accepting, initial
t ∅ u

u v, s ∅
v ∅ ∅
w ∅ x, s

x ∅ ∅

8

Now the states of det(A) are ε-closed sets of states of A, and the transitions
of det(A) are calculated as unions of rows of the transition table of A. We
start from the initial state s, and enumerate only states that occur in the
columns for a or b in a previous row.

a b

s t, w ∅ accepting, initial
t, w ∅ u, x, s

∅ ∅ ∅
u, x, s v, s, t, w ∅ accepting

v, s, t, w t, w u, x, s accepting

The process ends after 5 states (of the 26 = 64 possible) have been enumer-
ated. Renaming these states {s} = s0, {t, w} = s1, ∅ = s2, {u, x, s} =
s3, {v, s, t, w} = s4, we can rewrite the transition table of the deterministic
FSA as follows:

a b

s0 s1 s2 accepting, initial
s1 s2 s3

s2 s2 s2

s3 s4 s2 accepting
s4 s1 s3 accepting

Here is a picture of the reachable states of det(A):

s

s0 s1 s s3 4

2

a

a,b

a

b a b

b

b

a

9

6 Translation from regular expressions to non-de-
terministic finite-state automata

We will translate each regular expression as a non-deterministic automaton.

The base-case regular expressions ∅, ε, and a are easy to express as non-
deterministic finite state automata. The are, respectively:

ss0 1
a

s0 s0

Given non-deterministic finite state automata A and B, we will define au-
tomata A|B, AB, and A∗, such that

L(A|B) = L(A) ∪ L(B), L(AB) = L(A)L(B), L(A∗) = L(A)∗.

Definition (Union). The automaton A|B is defined as the disjoint union of
A and B, with their original transitions, initial states, and accepting states.
In pictures:

A

B

Definition (Concatenation). The automaton AB is defined as follows:
take the disjoint union A and B, with their original transitions. Keep the
initial states of A initial, and keep the accepting states of B accepting. Add
an ε-transition from each old accepting state of A to each old initial state
of B. In pictures:

A B
ε

Definition (Iteration). The automaton A∗ is defined as follows: take the
same states, initial states, accepting states, and transitions as A, but add

10

an ε-transition from each accepting state to each initial state, and make all
initial states accepting. In pictures:

A

ε

Lemma 6.1. The following hold:

L(A|B) = L(A) ∪ L(B), L(AB) = L(A)L(B), L(A∗) = L(A)∗.

7 Kleene’s theorem, part 2

Theorem 7.1 (Kleene’s theorem, part 2). Let L be the language defined
by some regular expression. Then L is accepted by some deterministic
finite state automaton.

Proof. First, by induction on the size of the regular expression, and using
the constructions of Section 6, we can construct a non-deterministic finite
state automaton A that accepts the language L. Second, by Proposition 5.1,
det(A) is a deterministic finite state automaton that accepts L. �

Remark. The number of states of the non-deterministic automaton A is
proportional to the size of the regular expression. The number of states
of the deterministic automaton det(A) is exponentially larger in the worst
case. However, in practice, the size of the deterministic automaton can be
reduced in two ways: first, by removing non-reachable states (as discussed
in Section 5.1), and second, by identifying ∗-equivalent states (as discussed
in Chapter 12.3 of the textbook).

11

