## Math 4680, Topics in Logic and Computation, Winter 2012

## Answers to Homework 2

Problem 1.5 \#1 (a) $G(x, y, z)=(\neg x \wedge \neg y \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z) \vee$ $(\neg x \wedge y \wedge \neg z) \vee(x \wedge \neg y \wedge \neg z)$
(b) $G(x, y, z)=(y \vee z) \rightarrow(\neg(x \vee(y \wedge z))$

Problem 1.5 \#4 (a) To show that $\{M, \perp\}$ is complete, it suffices to show that the Boolean formulas $A \mapsto \neg A$ and $(A, B) \mapsto A \wedge B$ can be expressed. We have:

```
\(\neg A=M(A, A, A)\)
\(A \wedge B=\neg M(A, B, \perp)=M(M(A, B, \perp), M(A, B, \perp), M(A, B, \perp))\).
```

(b) To show that $\{M\}$ is not complete, consider any formula $\varphi$ constructed from Boolean variables $x$ and $y$ by (possibly repeated) application of $M$. We prove by induction: $\varphi$ is logically equivalent to either $x$ or $y$ or $\neg x$ or $\neg y$.

Base case: if $\varphi$ is a variable, then $\varphi$ is either $x$ or $y$, so the claim trivially holds.
Induction step: suppose $\varphi=M\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$. By induction hypothesis, each of $\varphi_{1}, \varphi_{2}$, and $\varphi_{3}$ is logically equivalent to one of $x, y, \neg x$, or $\neg y$. Then we must have either $\varphi_{i} \models=\mid \varphi_{j}$ for some $i \neq j$, or $\varphi_{i} \models=\neg \varphi_{j}$ for some $i \neq j$.
Case 1: $\varphi_{i} \models=\varphi_{j}$ for some $i \neq j$. Without loss of generality, $\varphi_{1} \models=\mid \varphi_{2}$. In this case:

$$
\varphi=M\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \models==M\left(\varphi_{1}, \varphi_{1}, \varphi_{3}\right) \models=\neg \varphi_{1} .
$$

Case 2: $\varphi_{i} \models=\neg \varphi_{j}$ for some $i \neq j$. Without loss of generality, $\varphi_{1} \models=$ $\neg \varphi_{2}$. In this case:

$$
\varphi=M\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \models=M\left(\varphi_{1}, \neg \varphi_{1}, \varphi_{3}\right) \models=\neg \neg \varphi_{3} .
$$

In either case, the claim follows by induction hypothesis.

Finally, you may wonder whether one can perhaps construct a formula $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ using more than 2 variables, such that $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is logically equivalent to $x_{1} \wedge x_{2}$. However, this is clearly not the case, because then $\varphi\left(x_{1}, x_{2}, x_{2}, \ldots, x_{2}\right)$ is also logically equivalent to $x_{1} \wedge x_{2}$, and it uses only 2 variables, so the above argument applies to it.

Problem 1.7\#12 (a) $\{A, \neg A\}$.
(b) $\{A, B, \neg(A \wedge B)\}$.
(c) $\{A, B, C, \neg(A \wedge B \wedge C)\}$.

Problem 2.1 \#1 Recall the restricted quantifiers:

- For all numbers $x, \ldots: \forall x(N(x) \rightarrow(\ldots))$.
- There is a number $x$ such that $\ldots: \exists x(N(x) \wedge(\ldots))$.
- There is no number $x$ such that $\ldots: \neg \exists x(N(x) \wedge(\ldots))$.

Translations:
(a) $\forall x(N(x) \rightarrow 0<x)$.
(b) $\forall x(N(x) \rightarrow I(x) \rightarrow I(0))$ or equivalently $(\exists x(N(x) \wedge I(x))) \rightarrow$ $I(0)$.
(c) $\neg \exists x \cdot N(x) \wedge x<0$.
(d) $\forall x \cdot[(N(x) \wedge \neg I(x) \wedge(\forall y \cdot[(N(y) \wedge y<x) \rightarrow I(y)])) \rightarrow I(x)]$.
(e) $\neg \exists x \cdot[N(x) \wedge \forall y .(N(y) \rightarrow y<x)]$.
(f) $\neg \exists x \cdot[N(x) \wedge \neg \exists y$. $[N(y) \wedge y<x]]$.

Problem 2.2 \#2 (a) Consider the structure $\mathfrak{A}$ with $|\mathfrak{A}|=\{a, b, c\}$ and $P=\{(a, b),(b, c)\}$. This satisfies (b) and (c), but not (a).
(b) Consider the structure $\mathfrak{B}$ with $|\mathfrak{B}|=\{a, b\}$ and with the predicate $P=\{(a, a),(a, b),(b, a),(b, b)\}$. This satisfies (a) and (c) but not (b).
(c) Consider the structure $\mathfrak{C}$ with $|\mathfrak{C}|=\{a, b\}$ and with $P=\{(a, a),(b, b)\}$. This satisfies (a) and (b) but not (c).

Problem 2.2 \#8 " $\Rightarrow$ ": We prove the contrapositive. Assume $\Sigma \not \vDash \tau$. By assumption, we have $\Sigma \models \neg \tau$. Since $\mathfrak{A}$ is a model of $\Sigma$, it follows by definition of logical consequence that $\models_{\mathfrak{A}} \neg \tau$, hence $\models_{\mathfrak{A}} \tau$, as desired.
" $\Leftarrow$ ": Assume $\Sigma \models \tau$. Since $\mathfrak{A}$ is a model of $\Sigma$, it follows by definition of logical consequence that $\models_{\mathfrak{A}} \tau$, as desired.

Problem 2.2 \#11 For greater clarity, we write " $\equiv$ " for equality in the metalanguage and " $=$ " for equality in the object language.
(a) $\varphi_{a}(x) \equiv \forall y(x+y=y)$.
(b) $\varphi_{b}(x) \equiv \forall y(x \cdot y=y)$.
(c) $\varphi_{c}(x, y) \equiv \exists z\left(\varphi_{b}(z) \wedge x+z=y\right)$.
(d) $\varphi_{d}(x, y) \equiv \neg x=y \wedge \exists z(x+z=y)$.

Problem 2.2 \#15 Let $p_{1}, p_{2}, p_{3}, \ldots=2,3,5,7, \ldots$ be the list of all prime numbers. Recall that every natural number $n>0$ has a unique factorization into primes: $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdot \ldots$, where all but finitely many of $k_{1}, k_{2}, k_{3}, \ldots$ are 0 . Define the following function $f: \mathbb{N} \rightarrow \mathbb{N}$ :

$$
\begin{aligned}
f(0) & =0 \\
f\left(p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdot \ldots\right) & =p_{1}^{k_{2}} \cdot p_{2}^{k_{1}} \cdot p_{3}^{k_{3}} \cdot \ldots .
\end{aligned}
$$

Note how $k_{1}$ and $k_{2}$ have been swapped on the right-hand side. Then it is easy to see that for all $n, m \in \mathbb{N}, f(n \cdot m)=f(n) \cdot f(m)$. Indeed, if $n$ or $m$ is 0 , then this is a triviality. If they are both non-zero, they have prime factorizations $n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdot \ldots$ and $m=p_{1}^{l_{1}} \cdot p_{2}^{l_{2}} \cdot p_{3}^{l_{3}} \cdot \ldots$, and we have

$$
\begin{aligned}
f(n m) & =f\left(p_{1}^{k_{1}+l_{1}} \cdot p_{2}^{k_{2}+l_{2}} \cdot p_{3}^{k_{3}+l_{3}} \cdot \ldots\right) \\
& =p_{1}^{k_{2}+l_{2}} \cdot p_{2}^{k_{1}+l_{1}} \cdot p_{3}^{k_{3}+l_{3}} \cdot \ldots \\
& =f(n) f(m) .
\end{aligned}
$$

If follows that $f: \mathbb{N} \rightarrow \mathbb{N}$ is an automorphism of $(\mathbb{N} ; \cdot)$. By the homomorphism theorem, it follows that any formula $\varphi$ satisfies

$$
\begin{equation*}
\models_{\mathbb{N}} \varphi[s] \Leftrightarrow \models_{\mathbb{N}} \varphi[f \circ s] . \tag{1}
\end{equation*}
$$

Suppose now that $\varphi(x, y, z)$ were a formula defining addition, i.e.,

$$
\begin{equation*}
\models_{\mathbb{N}} \varphi(x, y, z)[s] \Leftrightarrow s(x)+s(y)=s(z) . \tag{2}
\end{equation*}
$$

Putting (1) and (2) together, we have

$$
\begin{equation*}
s(x)+s(y)=s(z) \Leftrightarrow f(s(x))+f(s(y))=f(s(z)) . \tag{3}
\end{equation*}
$$

Now choose $s$ so that $s(x)=2, s(y)=5$, and $s(z)=7$. From (3), we have

$$
\begin{equation*}
2+5=7 \Leftrightarrow f(2)+f(5)=f(7) \tag{4}
\end{equation*}
$$

However, $f(2)=3, f(5)=5$, and $f(7)=7$, so the right-hand side is false whereas the left-hand side is true. This is a contradiction; hence addition is not definable by any formula $\varphi(x, y, z)$ in the language with only multiplication.

