Math 4680, Topics in Logic and Computation, Winter 2012 Answers to Homework 2

Problem 1.5 #1 (a) $G(x, y, z) = (\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land \neg z) \lor (x \land \neg y \land \neg z)$ (b) $G(x, y, z) = (y \lor z) \rightarrow (\neg (x \lor (y \land z)))$

Problem 1.5 #4 (a) To show that $\{M, \bot\}$ is complete, it suffices to show that the Boolean formulas $A \mapsto \neg A$ and $(A, B) \mapsto A \land B$ can be expressed. We have:

 $\neg A = M(A, A, A)$ $A \land B = \neg M(A, B, \bot) = M(M(A, B, \bot), M(A, B, \bot), M(A, B, \bot)).$

(b) To show that $\{M\}$ is not complete, consider any formula φ constructed from Boolean variables x and y by (possibly repeated) application of M. We prove by induction: φ is logically equivalent to either x or y or $\neg x$ or $\neg y$.

Base case: if φ is a variable, then φ is either x or y, so the claim trivially holds.

Induction step: suppose $\varphi = M(\varphi_1, \varphi_2, \varphi_3)$. By induction hypothesis, each of φ_1, φ_2 , and φ_3 is logically equivalent to one of $x, y, \neg x$, or $\neg y$. Then we must have either $\varphi_i \models = \varphi_j$ for some $i \neq j$, or $\varphi_i \models = \neg \varphi_j$ for some $i \neq j$.

Case 1: $\varphi_i \models = \varphi_j$ for some $i \neq j$. Without loss of generality, $\varphi_1 \models = \varphi_2$. In this case:

$$\varphi = M(\varphi_1, \varphi_2, \varphi_3) \models = M(\varphi_1, \varphi_1, \varphi_3) \models = \neg \varphi_1.$$

Case 2: $\varphi_i \models \exists \neg \varphi_j$ for some $i \neq j$. Without loss of generality, $\varphi_1 \models \exists \neg \varphi_2$. In this case:

$$\varphi = M(\varphi_1, \varphi_2, \varphi_3) \models \dashv M(\varphi_1, \neg \varphi_1, \varphi_3) \models \dashv \neg \varphi_3.$$

In either case, the claim follows by induction hypothesis.

Finally, you may wonder whether one can perhaps construct a formula $\varphi(x_1, x_2, \ldots, x_n)$ using *more* than 2 variables, such that $\varphi(x_1, x_2, \ldots, x_n)$ is logically equivalent to $x_1 \wedge x_2$. However, this is clearly not the case, because then $\varphi(x_1, x_2, x_2, \ldots, x_2)$ is also logically equivalent to $x_1 \wedge x_2$, and it uses only 2 variables, so the above argument applies to it.

Problem 1.7 #12 (a) $\{A, \neg A\}$. (b) $\{A, B, \neg (A \land B)\}$. (c) $\{A, B, C, \neg (A \land B \land C)\}$.

Problem 2.1 #1 Recall the restricted quantifiers:

- For all numbers $x, ...: \forall x(N(x) \rightarrow (...))$.
- There is a number x such that ...: $\exists x(N(x) \land (...))$.
- There is no number x such that $\dots \neg \exists x(N(x) \land (\dots))$.

Translations:

(a) ∀x(N(x) → 0 < x).
(b) ∀x(N(x) → I(x) → I(0)) or equivalently (∃x(N(x) ∧ I(x))) → I(0).
(c) ¬∃x.N(x) ∧ x < 0.
(d) ∀x.[(N(x) ∧ ¬I(x) ∧ (∀y.[(N(y) ∧ y < x) → I(y)])) → I(x)].
(e) ¬∃x.[N(x) ∧ ∀y.(N(y) → y < x)].
(f) ¬∃x.[N(x) ∧ ¬∃y.[N(y) ∧ y < x]].

Problem 2.2 #2 (a) Consider the structure \mathfrak{A} with $|\mathfrak{A}| = \{a, b, c\}$ and $P = \{(a, b), (b, c)\}$. This satisfies (b) and (c), but not (a).

(b) Consider the structure \mathfrak{B} with $|\mathfrak{B}| = \{a, b\}$ and with the predicate $P = \{(a, a), (a, b), (b, a), (b, b)\}$. This satisfies (a) and (c) but not (b).

(c) Consider the structure \mathfrak{C} with $|\mathfrak{C}| = \{a, b\}$ and with $P = \{(a, a), (b, b)\}$. This satisfies (a) and (b) but not (c).

Problem 2.2 #8 " \Rightarrow ": We prove the contrapositive. Assume $\Sigma \not\models \tau$. By assumption, we have $\Sigma \models \neg \tau$. Since \mathfrak{A} is a model of Σ , it follows by definition of logical consequence that $\models_{\mathfrak{A}} \neg \tau$, hence $\not\models_{\mathfrak{A}} \tau$, as desired.

" \Leftarrow ": Assume $\Sigma \models \tau$. Since \mathfrak{A} is a model of Σ , it follows by definition of logical consequence that $\models_{\mathfrak{A}} \tau$, as desired.

Problem 2.2 #11 For greater clarity, we write " \equiv " for equality in the metalanguage and "=" for equality in the object language.

(a)
$$\varphi_a(x) \equiv \forall y(x+y=y).$$

(b) $\varphi_b(x) \equiv \forall y(x \cdot y = y).$
(c) $\varphi_c(x,y) \equiv \exists z(\varphi_b(z) \land x + z = y).$
(d) $\varphi_d(x,y) \equiv \neg x = y \land \exists z(x+z=y).$

Problem 2.2 #15 Let $p_1, p_2, p_3, \ldots = 2, 3, 5, 7, \ldots$ be the list of all prime numbers. Recall that every natural number n > 0 has a unique factorization into primes: $n = p_1^{k_1} \cdot p_2^{k_2} \cdot p_3^{k_3} \cdot \ldots$, where all but finitely many of k_1, k_2, k_3, \ldots are 0. Define the following function $f : \mathbb{N} \to \mathbb{N}$:

$$\begin{array}{lll} f(0) & = & 0, \\ f(p_1^{k_1} \cdot p_2^{k_2} \cdot p_3^{k_3} \cdot \ldots) & = & p_1^{k_2} \cdot p_2^{k_1} \cdot p_3^{k_3} \cdot \ldots. \end{array}$$

Note how k_1 and k_2 have been swapped on the right-hand side. Then it is easy to see that for all $n, m \in \mathbb{N}$, $f(n \cdot m) = f(n) \cdot f(m)$. Indeed, if n or m is 0, then this is a triviality. If they are both non-zero, they have prime factorizations $n = p_1^{k_1} \cdot p_2^{k_2} \cdot p_3^{k_3} \cdot \ldots$ and $m = p_1^{l_1} \cdot p_2^{l_2} \cdot p_3^{l_3} \cdot \ldots$, and we have

$$\begin{aligned} f(nm) &= f(p_1^{k_1+l_1} \cdot p_2^{k_2+l_2} \cdot p_3^{k_3+l_3} \cdot \ldots) \\ &= p_1^{k_2+l_2} \cdot p_2^{k_1+l_1} \cdot p_3^{k_3+l_3} \cdot \ldots \\ &= f(n)f(m). \end{aligned}$$

If follows that $f : \mathbb{N} \to \mathbb{N}$ is an automorphism of $(\mathbb{N}; \cdot)$. By the homomorphism theorem, it follows that any formula φ satisfies

$$\models_{\mathbb{N}} \varphi[s] \Longleftrightarrow \models_{\mathbb{N}} \varphi[f \circ s]. \tag{1}$$

Suppose now that $\varphi(x, y, z)$ were a formula defining addition, i.e.,

$$\models_{\mathbb{N}} \varphi(x, y, z)[s] \Longleftrightarrow s(x) + s(y) = s(z).$$
⁽²⁾

Putting (1) and (2) together, we have

$$s(x) + s(y) = s(z) \iff f(s(x)) + f(s(y)) = f(s(z)).$$
(3)

Now choose s so that s(x) = 2, s(y) = 5, and s(z) = 7. From (3), we have

$$2+5 = 7 \Longleftrightarrow f(2) + f(5) = f(7). \tag{4}$$

However, f(2) = 3, f(5) = 5, and f(7) = 7, so the right-hand side is false whereas the left-hand side is true. This is a contradiction; hence addition is not definable by any formula $\varphi(x, y, z)$ in the language with only multiplication.