Math 4680, Topics in Logic and Computation, Winter 2012

Midterm answers, March 2, 2012
Problem 1 (Source: Enderton, 1.2 \#13). An advertisement for a tennis magazine states: "If I am not playing tennis, I am watching tennis. And if I am not watching tennis, I am reading about tennis". (a) Translate this into propositional logic. (b) Assuming the speaker cannot do more that one of these activities at a time, then what is the speaker doing?

Answer: (a) Using P for "I am playing tennis", W for "I am watching tennis", and R for "I am reading tennis", the translation is

$$
(\neg P \rightarrow W) \wedge(\neg W \rightarrow R) .
$$

(b) We examine the relevant rows of the truth table:

P	W	R	$\neg P \rightarrow W$	$\neg W \rightarrow R$	$(\neg P \rightarrow W) \wedge(\neg W \rightarrow R)$
T	F	F	T	F	F
F	T	F	T	T	T
F	F	T	F	T	F

So the speaker must be watching tennis.
Problem 2. Let C be the ternary consensus connective: $\mathrm{C}(\alpha, \beta, \gamma)$ is true if α, β, and γ agree, and otherwise false. In other words, C is defined by the following truth table:

α	β	γ	$\mathrm{C}(\alpha, \beta, \gamma)$
T	T	T	T
T	T	F	F
T	F	T	F
T	F	F	F
F	T	T	F
F	T	F	F
F	F	T	F
F	F	F	T

(a) Show that $\alpha \wedge \beta, \alpha \vee \beta$, and $\alpha \rightarrow \beta$ are all definable in terms of \mathbf{C}. Answer: We can define, in this order,

$$
\begin{aligned}
\top & =\mathrm{C}(\alpha, \alpha, \alpha), \\
\alpha \wedge \beta & =\mathrm{C}(\alpha, \beta, \mathrm{\top}), \\
\alpha \rightarrow \beta & =\mathrm{C}(\alpha, \alpha, \alpha \wedge \beta), \\
\alpha \leftrightarrow \beta & =\mathrm{C}(\alpha, \alpha, \beta), \\
\alpha \vee \beta & =\mathrm{C}(\alpha \wedge \beta, \alpha \wedge \beta, \alpha \leftrightarrow \beta) .
\end{aligned}
$$

(b) Prove that $\{\mathrm{C}, \perp\}$ is complete.

Answer: We have $\neg \alpha \models=\alpha \rightarrow \perp$. Thus, using part (a), \neg and \wedge are definable from C and \perp. But $\{\wedge, \neg\}$ is a complete set of connectives.
(c) Prove that $\{\mathrm{C}\}$ is not complete. Hint: consider a truth assignment that assigns T to every sentence symbol.

Answer: Let v_{0} be the truth assignment that assigns T to every sentence symbol. Every formula α built from sentence symbols and C has the property that $\bar{v}_{0}(\alpha)=T$. Proof: by induction on α. If $\alpha=\mathbf{A}_{n}$ is a sentence symbol, then $\bar{v}_{0}(\alpha)=v_{0}\left(\mathbf{A}_{n}\right)=T$. If $\alpha=\mathrm{C}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, then $\bar{v}_{0}\left(\alpha_{i}\right)=T$, for $i=1,2,3$, by induction hypothesis. Thus $\bar{v}_{0}(\alpha)=\mathrm{C}(T, T, T)=T$. This concludes the induction. Notice that $v_{0}(\perp)=F$, thus \perp is not definable in terms of C.

Problem 3. Find an unsatisfiable set of 4 formulas, such that every 3element subset is satisfiable.
Answer: A possible such set is $\{A, B, C, \neg(A \wedge B \wedge C)\}$.

Problem 4. Show that neither of the following sentences logically implies the other. In each case, do this by giving a structure in which one sentence is true and the other false.
(a) $\forall x \exists y \neg P(x, y)$
(b) $\neg \forall x \exists y P(x, y)$

Answer: Consider models \mathfrak{A} and \mathfrak{B} with $|\mathfrak{A}|=|\mathfrak{B}|=\{a, b\}$ and $P_{\mathfrak{A}}=$ $\{(a, a),(b, b)\}$ and $P_{\mathfrak{B}}=\{(a, a),(a, b)\}$. Then:

$$
\begin{array}{ll}
\models_{\mathfrak{A}}(a) & \not \models_{\mathfrak{B}}(a) \\
\not \vDash_{\mathfrak{A}}(b) & \models_{\mathfrak{B}}(b)
\end{array}
$$

Therefore \mathfrak{A} demonstrates that $(a) \not \vDash(b)$, and \mathfrak{B} demonstrates that $(b) \not \vDash$ (a).

Problem 5. For each of the following relations, give a formula which defines it in $(\mathbb{N} ;+, \cdot)$. The language is assumed to have equality.
(a) $\{\langle m, n\rangle \mid n$ is the successor of m in $\mathbb{N}\}$.

Answer: $\varphi(x, y) \equiv \exists z(x+z=y \wedge \forall w(z \cdot w=w))$.
(b) $\{\langle m, n\rangle \mid m<n$ in $\mathbb{N}\}$.

Answer: $\varphi(x, y) \equiv \exists z(x+z=y) \wedge x \neq y$.
(c) $\{\langle m, n\rangle \mid$ the greatest common divisor of n and m is 1$\}$.

Answer: $\varphi(x, y) \equiv \forall d\left(\exists k(d \cdot k=x) \wedge \exists k^{\prime}\left(d \cdot k^{\prime}=y\right) \rightarrow d=1\right)$.

