Math 4680, Topics in Logic and Computation, Winter 2012 Midterm answers, March 2, 2012

Problem 1 (Source: Enderton, 1.2 #13). An advertisement for a tennis magazine states: "If I am not playing tennis, I am watching tennis. And if I am not watching tennis, I am reading about tennis". (a) Translate this into propositional logic. (b) Assuming the speaker cannot do more that one of these activities at a time, then what is the speaker doing?

Answer: (a) Using P for "I am playing tennis", W for "I am watching tennis", and R for "I am reading tennis", the translation is

$$(\neg P \to W) \land (\neg W \to R).$$

(b) We examine the relevant rows of the truth table:

P	W	R	$\neg P \to W$	$\neg W \to R$	$(\neg P \to W) \land (\neg W \to R)$
T	F	F	T	F	F
F	T	F	T	T	T
F	F	T	F	T	F

So the speaker must be watching tennis.

Problem 2. Let C be the ternary *consensus* connective: $C(\alpha, \beta, \gamma)$ is true if α , β , and γ agree, and otherwise false. In other words, C is defined by the following truth table:

α	β	γ	$C(\alpha,\beta,\gamma)$
T	T	T	T
T	T	F	F
T	F	T	F
T	F	F	F
F	T	T	F
F	T	F	F
F	F	T	F
F	F	F	T

(a) Show that $\alpha \land \beta$, $\alpha \lor \beta$, and $\alpha \rightarrow \beta$ are all definable in terms of C.

Answer: We can define, in this order,

$$T = C(\alpha, \alpha, \alpha),$$

$$\alpha \land \beta = C(\alpha, \beta, T),$$

$$\alpha \rightarrow \beta = C(\alpha, \alpha, \alpha \land \beta),$$

$$\alpha \leftrightarrow \beta = C(\alpha, \alpha, \beta),$$

$$\alpha \lor \beta = C(\alpha \land \beta, \alpha \land \beta, \alpha \leftrightarrow \beta).$$

(b) Prove that $\{C, \bot\}$ is complete.

Answer: We have $\neg \alpha \models = \mid \alpha \rightarrow \bot$. Thus, using part (a), \neg and \land are definable from C and \bot . But $\{\land, \neg\}$ is a complete set of connectives.

(c) Prove that $\{C\}$ is not complete. Hint: consider a truth assignment that assigns T to every sentence symbol.

Answer: Let v_0 be the truth assignment that assigns T to every sentence symbol. Every formula α built from sentence symbols and C has the property that $\bar{v}_0(\alpha) = T$. Proof: by induction on α . If $\alpha = \mathbf{A}_n$ is a sentence symbol, then $\bar{v}_0(\alpha) = v_0(\mathbf{A}_n) = T$. If $\alpha = \mathsf{C}(\alpha_1, \alpha_2, \alpha_3)$, then $\bar{v}_0(\alpha_i) = T$, for i = 1, 2, 3, by induction hypothesis. Thus $\bar{v}_0(\alpha) = \mathsf{C}(T, T, T) = T$. This concludes the induction. Notice that $v_0(\bot) = F$, thus \bot is not definable in terms of C.

Problem 3. Find an unsatisfiable set of 4 formulas, such that every 3-element subset is satisfiable.

Answer: A possible such set is $\{A, B, C, \neg (A \land B \land C)\}$.

Problem 4. Show that neither of the following sentences logically implies the other. In each case, do this by giving a structure in which one sentence is true and the other false.

- (a) $\forall x \exists y \neg P(x, y)$
- (b) $\neg \forall x \exists y P(x, y)$

Answer: Consider models \mathfrak{A} and \mathfrak{B} with $|\mathfrak{A}| = |\mathfrak{B}| = \{a, b\}$ and $P_{\mathfrak{A}} = \{(a, a), (b, b)\}$ and $P_{\mathfrak{B}} = \{(a, a), (a, b)\}$. Then:

$\models_{\mathfrak{A}} (a)$	$\not\models_{\mathfrak{B}} (a)$
$\not\models_{\mathfrak{A}}(b)$	$\models_{\mathfrak{B}} (b)$

Therefore \mathfrak{A} demonstrates that $(a) \not\models (b)$, and \mathfrak{B} demonstrates that $(b) \not\models (a)$.

Problem 5. For each of the following relations, give a formula which defines it in $(\mathbb{N}; +, \cdot)$. The language is assumed to have equality.

- (a) {⟨m,n⟩ | n is the successor of m in ℕ}.
 Answer: φ(x,y) ≡ ∃z(x + z = y ∧ ∀w(z ⋅ w = w)).
- (b) $\{ \langle m, n \rangle \mid m < n \text{ in } \mathbb{N} \}.$
 - **Answer:** $\varphi(x, y) \equiv \exists z(x + z = y) \land x \neq y.$
- (c) $\{\langle m,n \rangle \mid \text{the greatest common divisor of } n \text{ and } m \text{ is } 1\}.$ **Answer:** $\varphi(x,y) \equiv \forall d(\exists k(d \cdot k = x) \land \exists k'(d \cdot k' = y) \rightarrow d = 1).$