
Math 4680, Topics in Logic and Computation, Winter 2012

Lecture Notes 5: Fitch style natural deduction

Peter Selinger

1 Prawitz style vs. Fitch style

In previous lecture notes, we have used the “Prawitz style” presentation of natural
deduction: a deduction is a certain kind of tree whose leavesrepresent hypotheses,
and whose root represents a conclusion. These trees are complicated by two facts:
first, sometimes hypotheses are discharged (“crossed out”)during a proof, and
second, the freshness conditions in the quantifier rules require that certain vari-
ables do not occur freely in the hypothesis and conclusions of certain subtrees,
excluding hypotheses that have “already” been discharged at the time the quanti-
fier rule is applied. There is also a certain practical disadvantage to writing proofs
as trees: large proofs tend to be much wider than they are high, so one quickly
runs out of space.

Here, we briefly describe an alternative notation for natural deduction derivations,
called the “Fitch style” notation. It is more linear, in the sense that a proof is
essentially a list of formulas, one on each line, and formulas on later lines are
meant to be consequences of formulas on earlier lines. Instead of crossing out
hypotheses, the Fitch style notation uses indentation to indicate a subderivation
using a temporary hypothesis.

2 First examples

In its simplest form, a Fitch style natural deduction is justa list of numbered lines,
each containing a formula, such that each formula is either ahypothesis (separated
from the rest of the proof by a horizontal line), or else follows from previous
formulas (indicated by a rule name and line numbers of relevant formulas). The
very last line in the derivation contains the conclusion.

1

Here is an example of a derivation ofA→B,B → C,A ⊢ C:

1 A→B

2 B → C

3 A

4 B →E, 1, 2

5 C →E, 2, 4

Note that lines 1–3 contain hypotheses; each subsequent line is justified by a rule.

Sometimes a derivation contains a subderivation that depends on a hypothetical,
or temporary, assumption. Such subderivations are indented and marked with
another vertical line. For example, here is a derivation ofA→B,B→C ⊢ A ⊢ C:

1 A→B

2 B → C

3 A

4 B →E, 1, 2

5 C →E, 2, 4

6 A→ C →I, 3–5

On line 3, we “temporarily” assumeA. Lines 4 and 5 are consequences. The
subderivation ends on line 5 with conclusionC; therefore, one has provedA→C
at the “next level up” on line 6.
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3 The rules of Fitch style natural deduction

Conjunction introduction ( ∧I)

m A.
.
.

.

.

.
n B.
.
.

.

.

.
p A ∧ B ∧I, m, n

m B.
.
.

.

.

.
n A.
.
.

.

.

.
p A ∧ B ∧I, m, n

Conjunction elimination (∧E)

m A ∧ B.
.
.

.

.

.
n A ∧E,m

m A ∧ B.
.
.

.

.

.
n B ∧E,m

Disjunction Introduction ( ∨I)

m A.
.
.

.

.

.
n A ∨ B ∨I, m

m B.
.
.

.

.

.
n A ∨ B ∨I, m

Disjunction Elimination ( ∨E)

m A ∨ B.
.
.

.

.

.
n A.
.
.

.

.

.
p ϕ

q B.
.
.

.

.

.
r ϕ

s ϕ ∨E,m, n–p, q–r

Implication Introduction ( →I)

m A.
.
.

.

.

.
n B

n + 1 A → B →I, m–n

Implication Elimination ( →E)

m A.
.
.

.

.

.
n A → B.
.
.

.

.

.
p B →E,m, n

m A → B.
.
.

.

.

.
n A.
.
.

.

.

.
p B →E,m, n
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Negation Introduction (¬I)

m A.
.
.

.

.

.
n ⊥

n + 1 ¬A ¬I, m–n

Negation Elimination (¬E)

m A.
.
.

.

.

.
n ¬A.
.
.

.

.

.
p ⊥ ¬E,m, n

m ¬A.
.
.

.

.

.
n A.
.
.

.

.

.
p ⊥ ¬E,m, n

Contradiction Elimination ( ⊥E)

m ⊥.
.
.

.

.

.
n C ⊥E,m

Proof by Contradiction (C)

m ¬A.
.
.

.

.

.
n ⊥

n + 1 A C,m–n

Repetition (R)

m A.
.
.

.

.

..
.
. · · ·

.

.

.
n A R,m

Forall-introduction ( ∀I)

m u
.
.
..

.

.
.
.
.

n A[u/x]

n + 1 ∀xA ∀I, m–n

Forall-elimination ( ∀E)

m ∀xA.
.
.

.

.

.
n A[t/x] ∀E,m

Exists-Introduction (∃I)

m A[t/x].
.
.

.

.

.
n ∃xA ∃I, m

Exists-Elimination (∃E)

p ∃xA.
.
.

.

.

.
m u A[u/x].
.
.

.

.

.
n ϕ

n + 1 ϕ ∃E,p, m–n
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4 Remarks

The biconditional (↔)

To simplify our formal proof system, we do not introduce any special rules for the
connective↔. Instead, we simply regard the formulaA↔ B as anabbreviation
for (A→B)∧ (B →A).

Falsity (⊥)

The symbol⊥ stands for “contradiction” or “falsity”. The formula⊥ is always
false, and it is used in the rules for negation and contradiction above.

Negation (¬)

As we have done before, it is possible to regard negation¬A as an abbreviation
for A→⊥. In this case, the negation introduction and elimination rules are simply
instances of the implication introduction and eliminationrules.

Repetition (R)

LetA be a formula written at linek (either as a hypothesis, or as a formula already
proven). Then one can repeatA at linem if:

(1) k < m, and

(2) every vertical from linek continues without interruption to linem.

Examples of repetition:

This is ok:

k A
...

...

m A R, k

This too:

...
...

k A

...
...

n B

...
...

m A R, k
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But not this:

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✡❏

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❏

...
...

k A

...
...

n B

...
...

m A R, k

Quantifiers

In the rules for quantifiers:

• in ∀E and∃I, t is any term.

• in ∀I and∃E, u is a fresh variable. Here “fresh” means that this variable
does not occur anywhere else in the derivation. It may only occur in the
subderivation from linesm–n. The “u” that is written between the vertical
lines on linem is called aguard — it serves as a reminder thatu must
be fresh in this subderivation. In particular, this means that no formula
containingu can be imported (repeated) into linesm–n from outside lines
m–n. Also, this means thatu cannot occur in the formulaϕ in linesn and
n+ 1 of ∃E.
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5 Longer examples

Without using the “logical equivalence” rule, we derive onedirection of Morgan’s
law for disjunction,

¬(A∨B) ⊢ ¬A∧¬B.

1 ¬(A∨B)

2 A

3 A∨B ∨I, 2

4 ¬(A∨B) R, 1

5 ⊥ ¬E, 3, 4

6 ¬A ¬I, 2–5

7 B

8 A∨B ∨I, 7

9 ¬(A∨B) R, 1

10 ⊥ ¬E, 8, 9

11 ¬B ¬I, 7–10

12 ¬A∧¬B ∧I, 6, 11

The next two examples use quantifiers.

1 ∀x(A(x) →B(x))

2 ∃y A(y)

3 u A(u)

4 ∀x(A(x) →B(x)) R, 1

5 A(u)→B(u) ∀E, 4

6 B(u) →E, 3, 5

7 ∃y B(y) ∃I, 6

8 ∃y B(y) ∃E, 2, 3–7

9 ∃y A(y)→ ∃y B(y) →I, 2–8
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1 ∀xP (x, x)

2 u ∀xP (x, x) R, 1

3 P (u, u) ∀E, 2

4 ∃z P (u, z) ∃I, 3

5 ∀y ∃z P (y, z) ∀I, 2–4

6 ∀xP (x, x) → ∀y ∃z P (y, z) →I, 1–5

6 Non-examples

Non-example 1

1 ∀x(A(x) →B(x))

2 ∃y A(y)

3 u A(u)

4 ∀x(A(x) →B(x)) R, 1

5 A(u)→B(u) ∀E, 4

6 B(u) →E, 3, 5

7 B(u) ∃E, 2, 3–6

8 ∃y A(y)→B(u) →I, 2–7

WRONG, because u is
not fresh in lines 3–6 (u
must not occur in lines
6,7,8).

Non-example 2

1 ∀xP (x, x)

2 P (u, u) ∀E, 1

3 u P (u, u) R, 2

4 ∃z P (u, z) ∃I, 3

5 ∀y ∃z P (y, z) ∀I, 2–4

6 ∀xP (x, x)→ ∀y ∃z P (y, z) →I, 1–5

WRONG, because u is
not fresh in lines 3–4 (u
cannot be repeated past
the guard from line 2 to
line 3).
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Non-example 3

1 ∀x(A(x) → ∃y B(x, y))

2 A(y)

3 A(y)→ ∃y B(y, y) ∀E, 1

4 ∃y B(y, y) →E, 2, 3

WRONG, because the
substitution in line 3
impropertly captured the
variable y in the scope of
a quantifier.

Example

1 ∀x(A(x) → ∃y B(x, y))

2 A(y)

3 ∀x(A(x) → ∃z B(x, z)) rename bound variables,1

4 A(y)→ ∃z B(y, z) ∀E, 1

5 ∃z B(y, z) →E, 2, 4

CORRECT, be-
cause now the
variable y does
not get captured
in the substitu-
tion in line 4.

7 Equivalence of Fitch style and Prawitz style

For the purpose of logic, what matters about a proof system isthe derivability
relation, i.e.,

Γ ⊢ ϕ,

meaning there is a derivation ofϕ from a set of hypothesesΓ. Although Fitch
style and Prawitz style natural deduction looks quite different, they both describe
the same derivability relation. The rules of both systems can be translated into
rules about the derivability relation in identical ways. Inboth cases, it is easy to
prove by induction that the derivability relation is the smallest relation satisfying:

Γ ⊢ A Γ ⊢ B
Γ ⊢ A∧B

(∧I) Γ ⊢ A∧B
Γ ⊢ A

(∧E) Γ ⊢ A∧B
Γ ⊢ B

(∧E)

Γ ⊢ A
Γ ⊢ A∨B (∨I) Γ ⊢ B

Γ ⊢ A∨B (∨I)
Γ ⊢ A∨B Γ, A ⊢ ϕ Γ, B ⊢ ϕ

Γ ⊢ ϕ (∨E)

Γ, A ⊢ B
Γ ⊢ A→B

(→I) Γ ⊢ A Γ ⊢ A→B
Γ ⊢ B

(→E)

Γ, A ⊢ ⊥

Γ ⊢ ¬A
(¬ I) Γ ⊢ A Γ ⊢ ¬A

Γ ⊢ ⊥
(¬E)
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Γ ⊢ ⊥

Γ ⊢ C (⊥E)
Γ,¬A ⊢ ⊥

Γ ⊢ A (C)

Γ ⊢ A[u/x]
Γ ⊢ ∀x.A

(∀I) Γ ⊢ ∀x.A
Γ ⊢ A[t/x]

(∀E)

Γ ⊢ A[t/x]
Γ ⊢ ∃x.A (∃I)

Γ ⊢ ∃x.A Γ, A[u/x] ⊢ ϕ
Γ ⊢ ϕ (∃E)

where the rules(∀I) and(∃E) are subject to the condition thatu is not free in the
conclusion of the rule, i.e., inΓ, ∀.A, andϕ.

8 Practice problems

You don’t have to do all these. They are just for practice.

Problem 1 Prove the following in natural deduction:

(a) Q→ ∀xP (x) ≡ ∀x (Q→ P (x)) — assume thatx does not occur inQ.

(b) ¬∃xP (x) ≡ ∀y ¬P (y).

(c) ∀xP (x)∧ ∀xQ(x) ≡ ∀x (P (x) ∧Q(x)).

(d) ∀xP (x)∨ ∀xQ(x) ⊢ ∀x (P (x) ∨Q(x)).

(e) ∃x∀y P (x, y) ⊢ ∀y ∃xP (x, y).

(f) ∃x∀y P (x, y) ⊢ ∃z P (z, z).

(g) ∃xP (x)∨ ∃xQ(x) ≡ ∃x(P (x) ∨Q(x)).

(h) ∃x(P (x) ∧Q(x)) ⊢ ∃xP (x)∧ ∃xQ(x).

(i) ∃xP (x, x) ⊢ ∃y ∃z P (y, z).

(j) ∀x (A(x)→B(x)) ⊢ ∃x ¬B(x)→ ∃x ¬A(x).

(k) ¬∃x (A(x) ∧ B(x)) ≡ ∀x (A(x)→¬B(x)).

(l) ∃x∀y P (x, y, x) ⊢ ∃x∀y ∃z P (x, y, z).

(m) ⊢ ∀x(P (x) → ∃y P (y)).

(n) ⊢ ∀x(∀y P (y)→ P (x)).
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(o) ∀xP (x) ⊢ ∃xP (x).

(p) ∀x(A(x)→B(x)), ∀y(B(y)→ C(y)) ⊢ ∀z(A(z)→ C(z)).

(q) ∃xA(x), ∀x (A(x) →B(x)) ⊢ ∃x(A(x) ∧ B(x)).

(r) ∀xA(x), ∃x (A(x) →B(x)) ⊢ ∃x(A(x) ∧ B(x)).

(s) ¬∃x(A(x) ∨B(x)) ≡ ∀x¬A(x) ∧ ∀x¬B(x).

(t) ∃xP (x)→ ∀y Q(y) ≡ ∀x∀y(P (x)→Q(y)).

Problem 2 Prove the following by natural deduction. Note: each of these prob-
lems requires the¬¬-elimination rule.

(u) Q→ ∃xP (x) ≡ ∃x (Q→ P (x)) — assume thatx does not occur inQ.

(v) ¬∀xP (x) ≡ ∃y ¬P (y).

(w) ∃x (A(x) ∧B(x)) ≡ ¬ ∀x (A(x)→¬B(x)).

(x) ⊢ ∃x(∃y P (y)→ P (x)).

(y) ¬∀x(A(x) ∧B(x)) ≡ ∃x¬A(x) ∨ ∃x¬B(x).

(z) ∀xP (x)→ ∃y Q(y) ≡ ∃x∃y(P (x)→Q(y)).

Problem 3 In Problem 1 (d), (e), (f), (h), (i), (j), (l), (o), (p), (q), (r), prove that
the converse direction does not hold by giving a counterexample, i.e., a structure
where it is false.
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