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1 Algebra vs. abstract algebra

Operations such as addition and multiplication can be considered at several dif-
ferent levels:

• Arithmeticdeals with specific calculation rules, such as8 + 3 = 11. It is
usually taught in elementary school.

• Algebradeals with the idea that operations satisfylaws, such asa(b+c) =
ab + ac. Such laws can be used, among other things, to solve equations
such as3x+ 5 = 14.

• Abstract algebrais the idea that we can use the laws of algebra, such as
a(b + c) = ab + ac, while abandoning the rules of arithmetic, such as
8 + 3 = 11. Thus, in abstract algebra, we are able to speak of entirely
different “number” systems, for example, systems in which1 + 1 = 0.

The entities of abstract algebra need not be “numbers” in theusual sense. They
can be made-up things, such as{A,B,C,D,E}, together with made-up calcu-
lation rules, such asC + E = B andD · C = A. We could say that abstract
algebra is the study of “alternative arithmetics”. What is important, however, is
that the made-up rules must satisfy the correct laws of algebra.

Example 1.1. Consider the set ofbits (binary digits){0, 1}. We can multiply
them as usual, and add them as usual, subject to the alternative rule1 + 1 =
0 (instead of1 + 1 = 2). Here is a summary of the rules for addition and
multiplication:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

This particular alternative arithmetic is called “arithmetic modulo 2”. In com-
puter science, the addition is also called the “logical exclusive or” operation,
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and multiplication is also called the “logical and” operation. For example, we
can calculate like this:

1 · ((1 + 0) + 1) + 1 = 1 · (1 + 1) + 1
= 1 · 0 + 1
= 0 + 1
= 1.

2 Abstract number systems in linear algebra

As you already know, Linear Algebra deals with subjects suchas matrix multi-
plication, linear combinations, solutions of systems of linear equations, and so
on. It makes heavy use of addition, subtraction, multiplication, and division of
scalars (think, for example, of the rule for multiplying matrices).

It turns out that most of what we do in linear algebra does not rely on the spe-
cific laws of arithmetic. Linear algebra works equally well over “alternative”
arithmetics.

Example 2.1. Consider multiplying two matrices, using arithmetic modulo 2
instead of the usual arithmetic.





0 1 1
1 1 0
0 0 1



 ·





1 0 0
0 1 1
1 0 1



 =





1 1 0
1 1 1
1 0 1





For example, to calculate the entry in the first row and column, we compute

0 · 1 + 1 · 0 + 1 · 1 = 1.

There are important applications of linear algebra over such abstract number
systems, particularly in the area of cryptography. This is the reason we introduce
the concept of afield.

3 The field axioms

Definition. A field is a setF , together with two binary operations+ : F ×F →
F and · : F × F → F , calledaddition andmultiplication, respectively, and
satisfying the following nine axioms:
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(A1) for all a, b, c ∈ F , we have(a+ b) + c = a+ (b+ c);

(A2) there exists an element inF , usually denoted by0, such that
for all a ∈ F :

0 + a = a;

(A3) for eacha ∈ F , there exists an elementb ∈ F such that

a+ b = 0;

(A4) for all a, b ∈ F , we havea+ b = b+ a;

(FM1) for all a, b, c ∈ F , (ab)c = a(bc);

(FM2) there exists an element inF , usually denoted by1, such that
1 6= 0 and for alla ∈ F :

1a = a;

(FM3) for eacha ∈ F with a 6= 0, there exists an elementb ∈ F

such that
ab = 1;

(FM4) for all a, b ∈ F , we haveab = ba;

(D) for all a, b, c ∈ F , we havea(b+ c) = ab+ ac.

Notes. Axioms (A1)–(A4) are about addition, and axioms (FM1)–(FM4) are
about multiplication. The final axiom (D) is called thedistributive lawand it
relates addition and multiplication to each other. The element0 in axiom (A2) is
called theadditive unitor thezero element; the elementb in axiom (A3) is called
thenegativeof a and is usually denoted(−a); the element1 in (FM2) is called
the multiplicative unit; and the elementb in (FM3) is called themultiplicative
inverseof a, and is usually denoteda−1.

4 Examples

Example 4.1. (a) The setR of real numbers, with the usual addition and
multiplication, is a field.

(b) The setC of complex numbers, with the usual addition and multiplication,
is a field.
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(c) The setQ of rational numbers, with the usual addition and multiplication,
is a field.

(d) The setZ of integers, with the usual addition and multiplication, satisfies
all field axioms except (FM3). It is therefore not a field.

(e) The setN = {0, 1, 2, . . .} of natural numbers, with the usual addition
and multiplication, satisfies all field axioms except (A3) and (FM3). It is
therefore not a field.

This means we can do linear algebra taking the real numbers, the complex num-
bers, or the rational numbers as the scalars.

Example 4.2.Consider the setZ2 = {0, 1} from Example 1.1, with the addition
and multiplication given by the rules of arithmetic “modulo2”:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

With these operations,Z2 is a field.

This means we can do linear algebra overZ2.

Problem 1. What is subtraction inZ2?

Problem 2. Multiply the following matrices, taking scalars inZ2.




0 1 1
1 1 0
0 0 1



 ·





0 1 0
1 0 0
1 1 1





Compare your answer to what you get when doing the calculation with rational
scalars.

Problem 3. Find the inverse of the matrix

M =





0 1 1
1 1 0
0 0 1





usingZ2 as the set of scalars. Hint: follow the usual steps of Gaussian elimina-
tion, but use the modulo 2 operations. Compare this to the inverse ofM when
interpreted over the rational numbers.
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Problem 4. Consider the set{0, 1} with the following different addition and
multiplication rules:

+ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 1

Note that we have set1+1 = 1. Which of the nine axioms are satisfied? Which
of the nine axioms fail, if any? Is this a field?

Example 4.3. The integers modulo 5are the setZ5 = {0, 1, 2, 3, 4}, with the
following addition and multiplication rules:

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

+ 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

This is called “arithmetic modulo 5”, because the numbers are wrapped after 4:
5 is treated the same as 0, 6 is treated the same as 1, 7 is treated the same as 2,
and so on. With these operations,Z5 is a field.

Example 4.4. Theintegers modulo 6are the setZ6 = {0, 1, 2, 3, 4, 5}, with the
addition and multiplication modulo 6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

+ 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

ThenZ6 satisfies all of the field axioms except (FM3). To see why (FM3)fails,
let a = 2, and note that there is nob ∈ Z6 such thatab = 1. Therefore,Z6 is
not a field.

Example 4.5. More generally, for any natural numbern > 2, theintegers mod-
ulo n are given byZn = {0, 1, . . . , n − 1}, with addition and multiplication
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“modulo n”. For all n, Zn satisfies the axioms (A1)–(A4), (FM1), (FM2),
(FM4), and (D). However, the axiom (FM3) is only satisfied when n is a prime
number. It is a fact thatZn is a field if and only ifn is prime.

Problem 5. Solve the following system of linear equations with scalarsin Z5:

2x + z = 1
x + 4y + z = 3
x + 2y + 3z = 2

5 Elementary properties of fields

Our goal is to make arithmetic in a field look “as much as possible” as arithmetic
in the real numbers. For this reason, it will be useful to state some additional
algebraic laws, which are consequences of the field axioms.

Proposition 5.1(Cancellation of addition). For all elementsx, y, a of a field, if
x+ a = y + a, thenx = y.

Proof. Assumex+ a = y + a. By axiom (A3), there exists an elementb such
thata+ b = 0. But then we have:

x = 0 + x by (A2)
= x+ 0 by (A4)
= x+ (a+ b) by assumption onb
= (x+ a) + b by (A1)
= (y + a) + b by assumption
= y + (a+ b) by (A1)
= y + 0 by assumption onb
= 0 + y by (A1)
= y by (A2)

Note how all four axioms of addition have been used. �

Proposition 5.2 (Cancellation of multiplication). For all elementsx, y, a of a
field, ifxa = ya anda 6= 0, thenx = y.

Problem 6. Prove Prop. 5.2.
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Proposition 5.3. For all elementsa of field,0a = 0.

Proof. Using distributivity and (A2), we have0 + 0a = 0a = (0 + 0)a =
0a+ 0a, therefore the claim follows by cancellation. �

Proposition 5.4. In any field, ifab = 0, thena = 0 or b = 0.

Proof. Supposea andb are elements in a field such thatab = 0. We must show
thata = 0 or b = 0. We consider two cases:

Case 1:a = 0. Then the conclusion holds and we are done.

Case 2:a 6= 0. In this case, by (FM3), there exists an elementc such that
ac = 1. We have:

b = 1b by (FM2)
= (ac)b by definition ofc
= (ca)b by (FM4)
= c(ab) by (FM1)
= c0 by assumptionab = 0
= 0 by Prop. 5.3

In each of the two cases, we have proveda = 0 or b = 0. �

The following four propositions show that certain elements, whose existence is
guaranteed by the field axioms, are in fact unique.

Proposition 5.5. In a field, the element0 is uniquely determined by axiom (A2).

Proof. Suppose thatz is another element also satisfyingz + a = a for all a.
Thenz+0 = 0, by definition ofz, but also0+ z = z, by definition of0. Using
commutativity, it follows thatz = 0 + z = z + 0 = 0, so there cannot be more
than one zero element. �

Proposition 5.6. For any elementa of a field, the elementb in axiom (A3) is
uniquely determined.

Proof. Let a be arbitrary, and suppose that there are two elementsb andb′ such
that botha + b = 0 anda + b′ = 0. By commutativity,b + a = 0 = b′ + a,
and by cancellation,b = b′. It follows that there is no more than one elementb

satisfying the condition of axiom (A3).
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Remark. If a, b are elements such thata+ b = 0, we usually writeb = (−a).
This notation is justified by Prop. 5.6.

Proposition 5.7. In a field, the element1 is uniquely determined by axiom
(FM2).

Problem 7. Prove Prop. 5.7.

Proposition 5.8. For any elementa 6= 0 of a field, the elementb in axiom (FM3)
is uniquely determined.

Problem 8. Prove Prop. 5.8.

The next two propositions are also useful.

Proposition 5.9. Distributivity also holds on the right:(b+ c)a = ba+ ca.

Proof. This is a direct consequence of (D) and (FM4). �

Proposition 5.10. The following hold in any field, for alla, b:

(a) −(−a) = a,

(b) −(ab) = (−a)b = a(−b),

(c) −a = (−1)a.

Proof. (a) By definition of(−a), we havea+ (−a) = 0. Also, by definition of
−(−a) (and commutativity), we have(−(−a))+ (−a) = 0. By cancellation, it
follows thata = −(−a).

(b) To show that−(ab) = (−a)b, we need to show that(−a)b is the negative
of ab, in other words, thatab + (−a)b = 0. This follows from the axioms as
follows:

ab+ (−a)b = (a+ (−a))b by distributivity
= 0b by (A3)
= 0 by Prop. 5.3

The proof of−(ab) = a(−b) is similar.

(c) By (FM2) and (b), we have−a = −(1a) = (−1)a. �
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