MATH 2135, LINEAR ALGEBRA, Winter 2013

Handout 4: Problems
 Monday, March 4, 2013

Peter Selinger

Problem 1.

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
1 & 2 & -3 & 4 & 5 \\
2 & 3 & -1 & 5 & 7 \\
1 & 0 & -3 & 3 & 4 \\
2 & 1 & -2 & 4 & 6
\end{array}\right) \quad B=\left(\begin{array}{cccc}
1 & 1 & 1 & -3 \\
1 & 1 & -3 & 1 \\
1 & -3 & 1 & 1 \\
-3 & 1 & 1 & 1
\end{array}\right) \\
C=\left(\begin{array}{lllll}
1 & 2 & 0 & 2 & 1 \\
2 & 4 & 1 & 3 & 1 \\
3 & 6 & 2 & 4 & 1 \\
1 & 2 & 1 & 1 & 0
\end{array}\right)
\end{gathered}
$$

For each matrix $A, B, C:$ (a) Find its row canonical form. (b) Find the rank. (c) Find a basis for the null space. (d) Find the columns that are linear combinations of preceding columns (and express each of them explicitly as a linear combination of preceding columns). (e) Find a basis for the column space. (f) Find the rows that are linear combinations of preceding rows. (g) Find a basis of the row space.

Problem 2. Determine which of the following matrices have the same row space:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 4 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 3 & 0 \\
1 & 5 & 2
\end{array}\right) \\
C=\left(\begin{array}{lll}
2 & 3 & -2 \\
1 & 1 & -2
\end{array}\right)
\end{gathered}
$$

Problem 3. Consider the following matrix with scalars in \mathbb{Z}_{2} :

$$
A=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

(a) List all elements of the null space. (b) Find a basis of the null space. (c) List all element of the row space. (d) Find a basis of the row space.

Problem 4. On \mathbb{R}^{3}, consider the bases

$$
S=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right)\right\}, \quad T=\left\{\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right)\right\}
$$

(a) For each of the following vectors v_{i}, find its coordinates $\left[v_{i}\right]_{S}$ in basis S, and its coordinates $\left[v_{i}\right]_{T}$ in basis T.

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad v_{4}=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)
$$

(b) There is a vector v such that $[v]_{T}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. Find $[v]_{S}$.

Problem 5. Let $V=P_{3}(t)$, and consider the map $f: V \rightarrow V$ such that for every polynomial $p \in P_{3}(t), f(p)=p^{\prime}$, where p^{\prime} is the derivative of p. Let $S=\left\{1, t, t^{2}, t^{3}\right\}$. Find the matrix representation $[f]_{S}$ of f.

Problem 6. Consider the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by $f(v)=A v$, where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 0 \\
3 & 8 & 0 \\
1 & 3 & 0 \\
2 & 3 & -1
\end{array}\right)
$$

Consider the basis $S=\left\{\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ for \mathbb{R}^{3}, and the basis $T=\left\{\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1 \\ 0\end{array}\right)\right\}$ for \mathbb{R}^{4}. Find the matrix representation $[f]_{S, T}$ of f with respect to the bases S and T.

