MATH 2135, LINEAR ALGEBRA, Winter 2013

Handout 6: Problems on inner product spaces

Monday, April 1, 2013

Peter Selinger

Problem 1. Find an orthonormal basis of \mathbb{R}^{3} containing the vector $\frac{1}{3}(1,2,2)$ as the first basis vector.

Problem 2. Consider the subspace of \mathbb{R}^{4} spanned by $(1,1,0,0),(1,0,1,0)$, and $(1,0,0,1)$. Use the Gram-Schmidt method to find an orthogonal basis of this subspace.

Problem 3. On \mathbb{R}^{3}, consider the inner product defined by $\langle v, w\rangle=v^{T} A w$, where

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 1 & 1 \\
2 & 1 & 3
\end{array}\right)
$$

Use the Gram-Schmidt method to find a basis of \mathbb{R}^{3} that is orthonormal with respect to this inner product.

Problem 4. Consider the vector space $V=C[0,1]$ of continuous, real-valued functions defined on the unit interval $[0,1]=\{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 1\}$. Consider the inner product on V that is defined by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Let $W \subseteq V$ be the subspace spanned by the following three functions: $f_{0}(x)=1$, $f_{1}(x)=x$, and $f_{2}(x)=x^{2}$.
(a) Calculate the inner products $\left\langle f_{i}, f_{j}\right\rangle$ for all $i, j \in\{0,1,2\}$.
(b) Using the Gram-Schmidt method starting from $\left\{f_{0}, f_{1}, f_{2}\right\}$, find an orthonormal basis for W.
(c) Approximation. Consider the function g on $[0,1]$ defined by $g(x)=x^{3}$. Find the best quadratic approximation of g, i.e., find the quadratic function $h \in W$ such that

$$
\int_{0}^{1}(h(x)-g(x))^{2} d x
$$

is as small as possible. Hint: this is equivalent to requiring that $\|h-g\|$ is as small as possible, i.e., h is the orthogonal projection of g onto the subspace W.

The following problems are additional proof drills
Problem 5. Let $f: V \rightarrow W$ be a linear function, and assume f is one-to-one. Let $v_{1}, \ldots, v_{n} \in V$ be linearly independent. Prove that $f\left(v_{1}\right), \ldots, f\left(v_{n}\right)$ are linearly independent.

Problem 6. Let $f: V \rightarrow W$ be a linear function, and assume $v_{1}, \ldots, v_{n} \in V$ are points such that $f\left(v_{1}\right), \ldots, f\left(v_{n}\right)$ are linearly independent. Prove that v_{1}, \ldots, v_{n} are linearly independent.

Problem 7. Let $f: V \rightarrow W$ be a linear function. Prove that $\operatorname{ker} f$ is a subspace of V Also prove that $\operatorname{Im} f$ is a subspace of W.

Problem 8. Let $f: V \rightarrow W$ be a linear function, and let $U \subseteq V$ be a subspace of V Recall the definition of direct image:

$$
f(U)=\{w \in W \mid \text { there exists } u \in U \text { with } f(u)=w\} .
$$

Prove that $f(U)$ is a subspace of W.
Problem 9. Let $f: V \rightarrow W$ be a linear function, let $v_{1}, \ldots, v_{m} \in V$ be a basis of the kernel of f, and let $w_{1}, \ldots, w_{p} \in W$ be a basis of the image of f. Let $u_{1}, \ldots, u_{p} \in V$ be vectors such that $f\left(u_{1}\right)=w_{1}, \ldots, f\left(u_{p}\right)=w_{p}$. Prove that $\left\{v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{p}\right\}$ is a basis of V.

