MATH 2135, LINEAR ALGEBRA, Winter 2013

Handout 6: Problems on inner product spaces Monday, April 1, 2013

Peter Selinger

Problem 1. Find an orthonormal basis of \mathbb{R}^3 containing the vector $\frac{1}{3}(1,2,2)$ as the first basis vector.

Problem 2. Consider the subspace of \mathbb{R}^4 spanned by (1, 1, 0, 0), (1, 0, 1, 0), and (1, 0, 0, 1). Use the Gram-Schmidt method to find an orthogonal basis of this subspace.

Problem 3. On \mathbb{R}^3 , consider the inner product defined by $\langle v, w \rangle = v^T A w$, where

$$A = \left(\begin{array}{rrr} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{array}\right)$$

Use the Gram-Schmidt method to find a basis of \mathbb{R}^3 that is orthonormal with respect to this inner product.

Problem 4. Consider the vector space V = C[0, 1] of continuous, real-valued functions defined on the unit interval $[0, 1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$. Consider the inner product on V that is defined by

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx.$$

Let $W \subseteq V$ be the subspace spanned by the following three functions: $f_0(x) = 1$, $f_1(x) = x$, and $f_2(x) = x^2$.

- (a) Calculate the inner products $\langle f_i, f_j \rangle$ for all $i, j \in \{0, 1, 2\}$.
- (b) Using the Gram-Schmidt method starting from $\{f_0, f_1, f_2\}$, find an orthonormal basis for W.
- (c) Approximation. Consider the function g on [0, 1] defined by $g(x) = x^3$. Find the best quadratic approximation of g, i.e., find the quadratic function $h \in W$ such that

$$\int_{0}^{1} (h(x) - g(x))^2 \, dx$$

is as small as possible. Hint: this is equivalent to requiring that ||h - g|| is as small as possible, i.e., h is the orthogonal projection of g onto the subspace W.

The following problems are additional proof drills.

Problem 5. Let $f: V \to W$ be a linear function, and assume f is one-to-one. Let $v_1, \ldots, v_n \in V$ be linearly independent. Prove that $f(v_1), \ldots, f(v_n)$ are linearly independent.

Problem 6. Let $f: V \to W$ be a linear function, and assume $v_1, \ldots, v_n \in V$ are points such that $f(v_1), \ldots, f(v_n)$ are linearly independent. Prove that v_1, \ldots, v_n are linearly independent.

Problem 7. Let $f: V \to W$ be a linear function. Prove that ker f is a subspace of V. Also prove that Im f is a subspace of W.

Problem 8. Let $f: V \to W$ be a linear function, and let $U \subseteq V$ be a subspace of V. Recall the definition of direct image:

$$f(U) = \{ w \in W \mid \text{there exists } u \in U \text{ with } f(u) = w \}.$$

Prove that f(U) is a subspace of W.

Problem 9. Let $f: V \to W$ be a linear function, let $v_1, \ldots, v_m \in V$ be a basis of the kernel of f, and let $w_1, \ldots, w_p \in W$ be a basis of the image of f. Let $u_1, \ldots, u_p \in V$ be vectors such that $f(u_1) = w_1, \ldots, f(u_p) = w_p$. Prove that $\{v_1, \ldots, v_m, u_1, \ldots, u_p\}$ is a basis of V.