Math 4680/5680, Topics in Logic and Computation, Winter 2017 Handout 4: Problems

Problem 1. Show that the theory of dense linear order without endpoints is not categorical in the cardinality of the continuum.

Recall the definition of *homomorphism* and *isomorphism* of structures (Definition 4.3.1). The following theorem is obvious and can be proved by induction on terms and formulas:

Theorem (Isomorphism theorem). Let $h : \mathfrak{A} \to \mathfrak{B}$ be an isomorphism of structures. Then for any first-order formula $\varphi(x_1, \ldots, x_n)$ and any elements $a_1, \ldots, a_n \in |\mathfrak{A}|$, we have

$$\mathfrak{A}\models\varphi(\bar{a}_1,\ldots,\bar{a}_n)\Leftrightarrow\mathfrak{B}\models\varphi(\overline{h(a_1)},\ldots,\overline{h(a_n)})$$

Problem 2. Let *h* be an *automorphism* of the structure \mathfrak{A} , i.e, an isomorphism from \mathfrak{A} to itself. Let *R* be an *n*-ary relation on $|\mathfrak{A}|$ definable in \mathfrak{A} . Prove: for all $a_1, \ldots, a_n \in |\mathfrak{A}|$,

$$(a_1,\ldots,a_n) \in R \iff (h(a_1),\ldots,h(a_n)) \in R.$$

Hint: use the isomorphism theorem.

Problem 3. Prove that \mathbb{R} and \emptyset are the only subsets of the real line \mathbb{R} that are definable in $(\mathbb{R}; <)$. Hint: use Problem 2.

Problem 4. Let Γ , Δ be two sets of sentences in predicate logic. We say that Γ and Δ are *equivalent*, written $\Gamma \equiv \Delta$, if $\Gamma \vdash \varphi \iff \Delta \vdash \varphi$ for all sentences φ .

Prove: If $\Gamma \equiv \Delta$ are equivalent, and Δ is finite, then there exists some finite subset $\Gamma' \subseteq \Gamma$ such that $\Gamma' \equiv \Gamma$. Hint: let $\Delta = \{\varphi_1, \ldots, \varphi_n\}$, and consider $\overline{\Gamma} = \Gamma \cup \{\neg(\varphi_1 \land \ldots \land \varphi_n)\}$. What can you say about the consistency of $\overline{\Gamma}$?

Note: In this problem, indicate exactly the places (if any) where you use the soundness, completeness, and/or compactness theorems.

Problem 5. Prove: If the sentence σ holds in all infinite structures, then there exists some finite number n such that σ holds in all structures of n or more elements. Hint: let τ_n be a first-order sentence indicating that the structure has at least n distinct elements. Consider the consistency of the set $\{\neg \sigma, \tau_1, \tau_2, \tau_3, \ldots\}$.

Problem 6. Recall that the language of directed graphs has one binary predicate symbol R(x, y), which we interpret as "there is an arrow from x to y". We say that a graph has a *cycle* if there exist elements x_1, \ldots, x_n , for some $n \ge 1$, such that there are arrows from x_1 to x_2 to x_3 to \ldots to x_n to x_1 , as shown in the picture:

A graph is called *cycle-free* if it has no cycles. Prove that the class of cycle-free graphs is first-order axiomatizable, but not finitely axiomatizable. Hint: use the result from Problem 4.