Math 4680/5680, Topics in Logic and Computation, Winter 2017
 Handout 4: Problems

Problem 1. Show that the theory of dense linear order without endpoints is not categorical in the cardinality of the continuum.

Recall the definition of homomorphism and isomorphism of structures (Definition 4.3.1). The following theorem is obvious and can be proved by induction on terms and formulas:

Theorem (Isomorphism theorem). Let $h: \mathfrak{A} \rightarrow \mathfrak{B}$ be an isomorphism of structures. Then for any first-order formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and any elements $a_{1}, \ldots, a_{n} \in|\mathfrak{A}|$, we have

$$
\mathfrak{A} \models \varphi\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right) \Longleftrightarrow \mathfrak{B} \models \varphi\left(\overline{h\left(a_{1}\right)}, \ldots, \overline{h\left(a_{n}\right)}\right)
$$

Problem 2. Let h be an automorphism of the structure \mathfrak{A}, i.e, an isomorphism from \mathfrak{A} to itself. Let R be an n-ary relation on $|\mathfrak{A}|$ definable in \mathfrak{A}. Prove: for all $a_{1}, \ldots, a_{n} \in|\mathfrak{A}|$,

$$
\left(a_{1}, \ldots, a_{n}\right) \in R \Longleftrightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) \in R
$$

Hint: use the isomorphism theorem.
Problem 3. Prove that \mathbb{R} and \emptyset are the only subsets of the real line \mathbb{R} that are definable in $(\mathbb{R} ;<)$. Hint: use Problem 2.

Problem 4. Let Γ, Δ be two sets of sentences in predicate logic. We say that Γ and Δ are equivalent, written $\Gamma \equiv \Delta$, if $\Gamma \vdash \varphi \Longleftrightarrow \Delta \vdash \varphi$ for all sentences φ.

Prove: If $\Gamma \equiv \Delta$ are equivalent, and Δ is finite, then there exists some finite subset $\Gamma^{\prime} \subseteq \Gamma$ such that $\Gamma^{\prime} \equiv \Gamma$. Hint: let $\Delta=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, and consider $\bar{\Gamma}=\Gamma \cup\left\{\neg\left(\varphi_{1} \wedge \ldots \wedge \varphi_{n}\right)\right\}$. What can you say about the consistency of $\bar{\Gamma}$?
Note: In this problem, indicate exactly the places (if any) where you use the soundness, completeness, and/or compactness theorems.

Problem 5. Prove: If the sentence σ holds in all infinite structures, then there exists some finite number n such that σ holds in all structures of n or more elements. Hint: let τ_{n} be a first-order sentence indicating that the structure has at least n distinct elements. Consider the consistency of the set $\left\{\neg \sigma, \tau_{1}, \tau_{2}, \tau_{3}, \ldots\right\}$.

Problem 6. Recall that the language of directed graphs has one binary predicate symbol $R(x, y)$, which we interpret as "there is an arrow from x to $y "$. We say that a graph has a cycle if there exist elements x_{1}, \ldots, x_{n}, for some $n \geqslant 1$, such that there are arrows from x_{1} to x_{2} to x_{3} to \ldots to x_{n} to x_{1}, as shown in the picture:

A graph is called cycle-free if it has no cycles. Prove that the class of cycle-free graphs is first-order axiomatizable, but not finitely axiomatizable. Hint: use the result from Problem 4.

