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Context
In 1992, Yves Diers published his inspirational book
“Categories of Commutative Algebras”. As he
himself says in the Introduction to “Categories of
Commutative Algebras” his work stands in a line of
advances on the problem of classifying categories. He
specifically wants to understand categories which can
are very similar to the category of commutative rings
with identity.
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Z. Luo
Was one of those who were inspired. In his work,
available at www.geometry.net/cg, Z. Luo built upon
Diers work in the dual situation. He argued that this
side was the geometric, , and Diers was the algebraic.
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Smoothness
Smoothness, I think, is traditionally understood as a
geometric property
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So, In Spite of the Title of My
Talk
I’d like to talk about Smoothness as a geometric
property and, so, for the most part, use Luo’s
language.
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Equivalence
Dier’s Zariski category is roughly dual to Luo’s left
coherent ’analytic geometry’.
Among other properties, it’s possessed of a strict
initial object
a category in which limits commute with finite sums
locally disjunctable, reducible, and perfect.
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Grothendieck
Firmly established the importance of nilpotents when
he defined three related types of morphisms:

• Net - or unramified

• Lisse - or smooth
• Etale - or étale (slack....)
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Grothendieck’s Definition
Consider the commutative diagram

X

f

W

w

S

W ′

w′

jg

with j a strong unipotent mono.
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If there exists
X

f

W

w

h

S

W ′

w′

j
g

• at most one such h, then f is net

• at least one such h, then f is smooth
• exactly one such h, then f is étale
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Definition
A strong unipotent (Luo’s definition) mono is
approximately the equivalent of a closed morphism in
algebraic geometry induced by a morphism with
unipotent kernel. Luo defines a unipotent morphism
to be one which has no non-zero pullback isomorphic
to zero. Geometrically, its image is not disjoint with
anything.
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Clearly
Sticking with Grothendieck’s definition, if a category
were to have no proper strong monic unipotents, every
arrow would be étale.
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Dier’s Problem:
These three types of morphisms play an exceptionally
important role in algebraic geometry. However,
so-called reduced categories - that is categories
without nilpotents satisfy the axioms for a Zariski
category.
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Subtext
Can we develop a more widely meaningful definition
of these concepts, so that perhaps this axiomatic and
categorical approach provide us with fresh insight into
these concepts?
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Dier’s Solution - for net and
étale

(In Luo’s language)
• A morphism f : X → S is net if the

corresponding diagonal

∆ : X → X ×S X

is a local isomorphism.

• f : X → S is étale if it is net and coflat.
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This is a very nice approach. However,
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The definition of Smooth is miss-
ing
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Problems with finding a defini-
tion

• One approach would be to find some sort of map
which approximates the sort of super-denseness
which unipotent maps possess.

• We could try to adapt the work of Anders Kock
• We could try to understand what ’locally linear’

means given Diers and Luo’s frame work.
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Philosophy
In Calculus we teach students that to say that a
function is differentiable is to say that in a sufficiently
small neighborhood, the function is linear.
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This has several difficulties
• In most cases of interest (i.e ’integral objects’),

no neighborhoods are really small

• It wasn’t clear to me how to define ’linear’ in
categorical terms
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However we define ’smooth’ it ought to be
• Local

• Linked to Dier’s definitions of net and étale
• Geometrically consistent with how we

understand differentiability in more familiar
settings, like Calculus

• As in algebraic geometry we want S[T ] → S to
be smooth
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My Proposal
An arrow f : X → S will be called smooth if it is
coflat and if there exists a unipotent analytic cover
{Ui}i∈I of X so that for all i ∈ I there exists r > 0 so
that

Ui
ui

X

f

∏
r S ′

φ
S

commutes where
∏

r S ′ is the product of r

cogenerators and the arrow Ui →
∏

r S ′ is étale.
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Unfortunately,
It turns out it was also Grothendieck’s idea first. In
fact, in Grothendieck’s Universe, the two are
equivalent as long as f is finitely presented
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Some Preliminary Results:
• Compositions of smooth are smooth

• The pullback of smooth by a monic is again
smooth

• Net plus smooth is étale

Smoothness In Zariski Categories – p. 24/29



Some Preliminary Results:
• Compositions of smooth are smooth
• The pullback of smooth by a monic is again

smooth

• Net plus smooth is étale

Smoothness In Zariski Categories – p. 24/29



Some Preliminary Results:
• Compositions of smooth are smooth
• The pullback of smooth by a monic is again

smooth
• Net plus smooth is étale

Smoothness In Zariski Categories – p. 24/29



Some Preliminary Results:
• Lisse is a local property

• Lisse is not reflected by pullbacks

• Étale implies lisse
• Lisse doesn’t imply étale

• S → S is lisse where S is a cogenerator
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Questions
• Is Grothendieck’s E.G.A definition is equivalent

to mine in a Zariski category?

• Develop a nice, useful definition of perfect field.
Regularity vs. Smoothness...

• Develop classification of maps which are not
smooth and catalog the effect that blow-ups have
on such.
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A Hopeful Sign
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LWSR
Suppose V → W is a map of varieties. Then there
exists blow-ups Ṽ → V and W̃ → W so that the
diagram

Ṽ V

W̃ W

commutes and the canonical map Ṽ → W̃ is flat.
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A proof of LSWR would complete the proof of
desingularization of 3 dimensional varieties and give a
big leg up on the desingularization of those in higher
dimension.
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