Smoothness In Zariski Categories *A Proposed Definition and a Few Easy Results.*

John Iskra

jiskra@ehc.edu

Department of Mathematics & Computer Science Emory and Henry College Emory, Virginia 24327 USA

• Context

- Context
- Philosophy

- Context
- Philosophy
- Definition

- Context
- Philosophy
- Definition
- A Few Easy Results

Context

In 1992, Yves Diers published his inspirational book "Categories of Commutative Algebras". As he himself says in the Introduction to "Categories of Commutative Algebras" his work stands in a line of advances on the problem of classifying categories. He specifically wants to understand categories which can are very similar to the category of commutative rings with identity.

Z. Luo

Was one of those who were inspired. In his work, available at www.geometry.net/cg, Z. Luo built upon Diers work in the dual situation. He argued that this side was the geometric, , and Diers was the algebraic.

Smoothness

Smoothness, I think, is traditionally understood as a geometric property

So, In Spite of the Title of My Talk

I'd like to talk about Smoothness as a geometric property and, so, for the most part, use Luo's language.

Equivalence

Dier's Zariski category is roughly dual to Luo's left coherent 'analytic geometry'. Among other properties, it's possessed of a strict initial object a category in which limits commute with finite sums

locally disjunctable, reducible, and perfect.

Grothendieck

Firmly established the importance of nilpotents when he defined three related types of morphisms:

• Net - or unramified

Grothendieck

Firmly established the importance of nilpotents when he defined three related types of morphisms:

- Net or unramified
- Lisse or smooth

Grothendieck

Firmly established the importance of nilpotents when he defined three related types of morphisms:

- Net or unramified
- Lisse or smooth
- Etale or étale (slack....)

Grothendieck's Definition

Consider the commutative diagram

with j a strong unipotent mono.

If there exists

• at most one such h, then f is net

If there exists

- at most one such h, then f is net
- at least one such h, then f is smooth

If there exists

- at most one such h, then f is net
- at least one such h, then f is smooth
- exactly one such h, then f is étale

Definition

A strong unipotent (Luo's definition) mono is approximately the equivalent of a closed morphism in algebraic geometry induced by a morphism with unipotent kernel. Luo defines a unipotent morphism to be one which has no non-zero pullback isomorphic to zero. Geometrically, its image is not disjoint with anything.

Clearly

Sticking with Grothendieck's definition, if a category were to have no proper strong monic unipotents, every arrow would be étale.

Dier's Problem:

These three types of morphisms play an exceptionally important role in algebraic geometry. However, so-called reduced categories - that is categories without nilpotents satisfy the axioms for a Zariski category.

Subtext

Can we develop a more widely meaningful definition of these concepts, so that perhaps this axiomatic and categorical approach provide us with fresh insight into these concepts?

Dier's Solution - for net and étale

(In Luo's language) • A morphism $f: X \to S$ is net if the corresponding diagonal

 $\Delta: X \to X \times_S X$

is a local isomorphism.

Dier's Solution - for net and étale

(In Luo's language) • A morphism $f: X \to S$ is net if the corresponding diagonal

 $\Delta: X \to X \times_S X$

is a local isomorphism.

• $f: X \to S$ is étale if it is net and coflat.

This is a very nice approach. However,

ing

Problems with finding a definition

• One approach would be to find some sort of map which approximates the sort of super-denseness which unipotent maps possess.

Problems with finding a definition

- One approach would be to find some sort of map which approximates the sort of super-denseness which unipotent maps possess.
- We could try to adapt the work of Anders Kock

Problems with finding a definition

- One approach would be to find some sort of map which approximates the sort of super-denseness which unipotent maps possess.
- We could try to adapt the work of Anders Kock
- We could try to understand what 'locally linear' means given Diers and Luo's frame work.

Philosophy

In Calculus we teach students that to say that a function is differentiable is to say that in a sufficiently small neighborhood, the function is linear.

This has several difficulties

• In most cases of interest (i.e 'integral objects'), no neighborhoods are really small

This has several difficulties

- In most cases of interest (i.e 'integral objects'), no neighborhoods are really small
- It wasn't clear to me how to define 'linear' in categorical terms

However we define 'smooth' it ought to beLocal

However we define 'smooth' it ought to be

- Local
- Linked to Dier's definitions of net and étale

However we define 'smooth' it ought to be

- Local
- Linked to Dier's definitions of net and étale
- Geometrically consistent with how we understand differentiability in more familiar settings, like Calculus

However we define 'smooth' it ought to be

- Local
- Linked to Dier's definitions of net and étale
- Geometrically consistent with how we understand differentiability in more familiar settings, like Calculus
- As in algebraic geometry we want $S[T] \to S$ to be smooth

My Proposal

An arrow $f: X \to S$ will be called **smooth** if it is coflat and if there exists a unipotent analytic cover $\{U_i\}_{i \in I}$ of X so that for all $i \in I$ there exists r > 0 so that

commutes where $\prod_r S'$ is the product of rcogenerators and the arrow $U_i \to \prod_r S'$ is étale.

Unfortunately,

It turns out it was also Grothendieck's idea first. In fact, in Grothendieck's Universe, the two are equivalent as long as f is finitely presented

• Compositions of smooth are smooth

- Compositions of smooth are smooth
- The pullback of smooth by a monic is again smooth

- Compositions of smooth are smooth
- The pullback of smooth by a monic is again smooth
- Net plus smooth is étale

• Lisse is a local property

- Lisse is a local property
- Lisse is not reflected by pullbacks

- Lisse is a local property
- Lisse is not reflected by pullbacks
- Étale implies lisse

- Lisse is a local property
- Lisse is not reflected by pullbacks
- Étale implies lisse
- Lisse doesn't imply étale

- Lisse is a local property
- Lisse is not reflected by pullbacks
- Étale implies lisse
- Lisse doesn't imply étale
- $\overline{S} \to S$ is lisse where \overline{S} is a cogenerator

Questions

• Is Grothendieck's E.G.A definition is equivalent to mine in a Zariski category?

Questions

- Is Grothendieck's E.G.A definition is equivalent to mine in a Zariski category?
- Develop a nice, useful definition of perfect field. Regularity vs. Smoothness...

Questions

- Is Grothendieck's E.G.A definition is equivalent to mine in a Zariski category?
- Develop a nice, useful definition of perfect field. Regularity vs. Smoothness...
- Develop classification of maps which are not smooth and catalog the effect that blow-ups have on such.

A Hopeful Sign

LWSR

Suppose $V \to W$ is a map of varieties. Then there exists blow-ups $\tilde{V} \to V$ and $\tilde{W} \to W$ so that the diagram

commutes and the canonical map $\tilde{V} \to \tilde{W}$ is flat.

A proof of LSWR would complete the proof of desingularization of 3 dimensional varieties and give a big leg up on the desingularization of those in higher dimension.