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01. 3-fold motivation: structure-preserving relations?

Why is it that in concrete categories (over set ) almost always
“structure-preserving” functions are employed as morphisms?
Structure-preserving relations occur rather seldom, even if the
structure is given by relations. Some notable exceptions:

various partial homomorphisms between partial algebras;

in CS relations are employed, whenever determinacy and/or
termination may be in question; often in an ad hoc fashion;

order-ideals between pre-ordered sets; this is a particular
instance of the notion of profunctor;

simulations between labeled transition systems (LTSs) in CS;
usually these are regarded as a mere stepping stone towards
bisimulation equivalence and seldom viewed as morphisms in
their own right.

Could simulations be the “right” notion of morphism in “relational
algebra” and possibly beyond?
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02. 3-fold motivation: what are simulations anyway?

When trying to understand (bi)simulations, you will find

that Park’s 1981 rather operational approach (with “silent
transitions” intended to break synchronization) is favoured in
CS over Yoeli and Ginzburg’s conceptual notion of ≤ 1965;

that coalgebra, initiated by Aczel and Mendler [AM89], until
recently was focussed almost entirely on bisimulations;

that the synthetic theory of (bi)simulations via open maps, as
pioneered by Joyal, Nielsen and Winskel [JNW94], or via
Cockett and Spooner’s covering morphisms [CS97], downplays
the 2-dimensional heritage of the notion (just as coalgebra);

other sources of inspiration, like an intriguing remark by
Dusko Pavlović [AP97], Lindsay Errington’s thesis [Err99], and
a 2002 talk by Krzysztof Worytkiewicz in Ottawa [Wor03].

Sorting out the various angles from which to describe LTSs leads
to graph comprehension as our main tool to address simulations.
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03. 3-fold motivation: functors vs. profunctors

The general theory of modules

not only explains the connection between profunctors and
functors for ordinary categories (and in particular pre-ordered
sets), and addresses the compositional shortcomings of
(op)lax natural transformations (cf., joint work with Robin
Cockett, Robert Seely and Richard Wood) [CKSW03],

it also works for categories enriched over a bicategory W ,

and moreover for weaker notions than categories, e.g., taxons;

For W = rel or W = spn graph comprehension will put us in
the same “ball park” and will allow us to treat simulations and
(pro)functors on equal footing.
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04. Labeled transition systems, constrained

Traditional labeled transition systems (LTSs) over a label set X
are not allowed to have repeated labels along parallel arrows:

Q
〈!,`〉 //X (faithful graph morphism)

X oo
`

Q1
s //
t
//Q0 (jointly mono)

X oo
`

Q1
〈s,t〉 //Q0 × Q0 (jointly mono)

Q0 × X
L � ,2Q0 (textbook automaton?)Q0 × X
L //Q0P (textbook automaton!)Q0

L � ,2X × Q0 (non-obvious relation)Q0
L // (X × Q0)P (coalgebra)X

L � ,2Q0 × Q0 (obvious relation)X
L // (Q0 × Q0)P (this looks promising!)X
L // (Q0,Q0)rel

X
L // rel (graph morphism)

where Q = (Q1
s //
t
//Q0) is a graph and X = (X

! //
!
// 1) is a

single-node graph with arrow-set X .

If X
L // rel factors through set , the LTS is called deterministic.

Then the graph morphism Q
〈!,`〉 //X is a discrete opfibration.
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05. Labeled transition systems, unconstrained

Dropping the constraint that parallel arrows must have different
labels yields a similar bijective correspondence

Q
〈!,`〉 //X (graph morphism)

X oo
`

Q1
s //
t
//Q0

X oo
`

Q1
〈s,t〉 //Q0 × Q0

X
L // 〈Q0,Q0〉spn

X
L // spn (graph morphism)

Of course, the bijective correspondence between X -controlled
processes and X -controlled systems does not depend on X
having just a single node. In fact, multi-sorted control can be
useful for implementing certain features.
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06. More on graphs

Example

In order to model automata over X with initial and/or final
states, we extend the control graph with such states, e.g.,

X :
•

x

$$

x ′

��
... becomes X ( ) :

0 • 1

x

$$

x ′

��
...

(
//

)
//// //

Definition

We denote the (bi)categories of small, respectively, locally small
graphs and graph morphisms by grph and by Grph . These
have non-full sub(bi)categories cat and Cat , respectively.

We call a Grph -morphism fiber-small, if each object in the
codomain has at most a set of pre-images.
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07. Graph comprehension

Theorem (generalizing an observation of Pavlović [AP97])

Every (locally) small graph X induces an essentially bijective
correspondence between (fiber-)small X -controlled processes and
X -controlled systems X // spn .

If X is a (locally) small category, extending a (fiber-)small
process Q //X to a functor Q? //X corresponds to saturating
a system X

L // spn to a lax functor X
L̂ // spn .

Proof.

An inverse image construction turns processes into systems, while
disjoint unions work in the opposite direction.

It now suffices to settle on morphisms (and possibly 2-cells) for
either processes or systems, whatever is more convenient.
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Every (locally) small graph X induces an essentially bijective
correspondence between (fiber-)small X -controlled processes and
X -controlled systems X // spn .

If X is a (locally) small category, extending a (fiber-)small
process Q //X to a functor Q? //X corresponds to saturating
a system X

L // spn to a lax functor X
L̂ // spn .

Proof.

An inverse image construction turns processes into systems, while
disjoint unions work in the opposite direction.

It now suffices to settle on morphisms (and possibly 2-cells) for
either processes or systems, whatever is more convenient.

Jürgen Koslowski Simulations categorically



08. Graph comprehension in context

Remarks

For a category X , Pavlović observed an equivalence between
the categories (Cat/X )fs of fiber-small functors into X and
commutative triangles as morphisms, and bX , spncfolx of lax
functors X // spn with functional oplax transformations.

For discrete X , systems trivially factor through set : we
recover the correspondence (Set/X )fs

∼= [X , set ] between
fiber-small functions into X and X - indexed sets.

If X = 1 , we recover the correspondences between small
graphs and endo-spans on sets, respectively, between small
categories and monads in spn .

The Conduché correspondence and the Grothendieck
construction can also be obtained by restricting the
equivalence above.
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09. Which functorial processes do we want?

For processes Q
` //X one is usually interested in arrows of the

free category Q?, and hence in uniformly extending ` functorially.

(0) Allowing all graphs as control forces us to form Q? `?
//X ?,

i.e., only free categories arise as controls of functorial
processes, which then, in particular, reflect identities.

(1) But a meaningful interpretation of “silent transitions” in Q
would seem to require identities in X , hence X should be a
category. Restricting the controls to categories from the
outset, allows extensions of the form Q? `− //X . This keeps
all categories available as controls for functorial processes and
fits in well with the saturation of the corresponding systems.

(2) In [BF00] Bunge and Fiore proposed UniqueFactorizationLifting-functors
to obtain more functorial processes with the good properties
of (0). Since these also reflect identities, they would seem to
be incompatible with the notion of silent transition, though.
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10. Process- vs. system-view

Commutative triangles in the process-view, i.e., graph
morphisms over X , do not produce simulations.

But for lax functors into any bicategory W , the notion of
(op)lax natural transformation is already well-established.

Let’s try to weaken this for graph morphisms into W :

Definition

For graph morphisms into a bicategory X
M //
L
//W, a lax,

respectively, oplax transform M
τ +3 L maps X -objects x to

1-cells xM
xτ // xL in W and X -arrows x

a // y to 2-cells in W

yM yL

xM xL
yyyyx� aτ

xτ � ,2

aM_��
aL_��

yτ
� ,2

respectively
yM yL

xM xL

yyyy
8@aτ

xτ � ,2

aM_��
aL_��

yτ
� ,2
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11. System-view: weak homomorphisms

As early as 1963 Abraham Ginzburg and Michael Yoeli proposed a
definition for ordinary one-sorted LTSs over rel [GY63], which
then appeared in a joint paper [GY65], and in Ginzburg’s book
Algebraic Automata Theory [Gin68] (referenced by Milner [Mil71]
and Park [Par81]):

Definition (Ginzburg/Yoeli, 1963)

For LTSs X
L // 〈Q,Q〉rel and X

M // 〈R,R〉rel a relation
Q

S � ,2R is called a weak homomorphism from L to M , provided

Q R

Q R
�rl S

op

aL_��
aM_���rl

Sop

⊆ for all a ∈ X

Weak homomorphimsms L +3M are just lax transforms M +3 L.
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12. Weak homomorphisms vs. simulations

Milner and Park were more interested in process algebra than in
automata theory, and Milner coined the more suggestive names
“simulation” and “bisimulation” (instead of Park’s “mimicry”).

Park introduced simulations in a more operational form that still
prevails in most CS accounts of the subject. The less than catchy
“weak homomorphisms” were largely forgotten, but rediscovered at
various times by categorically-minded researchers...

Among many other things, “weak homomorphism” refers to a
subalgebra of a binary cartesian product, cf., Lambek [Lam58]. Of
course, LTSs X

L // 〈Q,Q〉rel and X
M // 〈R,R〉rel as relational

algebras also have a product wrt. function-based homomorphisms:

X 〈Q × R,Q × R〉rel

X × X 〈Q,Q〉rel × 〈R,R〉rel

V //

X∆
��

L×M
//

OO

OO
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13. Taking simulations apart (also works over spn )

Weak homomorphisms/simulations, are precisely those “weak sub-
structures”, where the existence of outgoing transitions with label
a ∈ X is equivalent to the existence of such transitions in the first
component. Then the Australian Mate Calculus becomes applicable:

Q R

Q R
�rl Sop

aL
_��

aM
_���rl

Sop

⊆ iff

Q S R

Q S Roo Qπ �rl Rπop

oo
Qπ

�rl
Ropπ

aL
_��

aU
_��

aM
_��

= ⊆ iff

Q S R

Q S Roo Qπ Rπ //

oo
Qπ Rπ

//

aL
_��

aU
_��

aM
_��

= ⊆

Sub-structures, or bisimulations, have an equality in the rightmost square.
Oplax transforms, or “op-simulations” take care of incoming transitions:

Q R

Q R
S � ,2

aL
_��

aM
_��

S

� ,2

⊆ iff

Q S R

Q S R
Qπop

� ,2 Rπ //

Qπop

� ,2
Rπ
//

aL
_��

aV
_��

aM
_��

= ⊆ iff

Q S R

Q S R
Qπop

� ,2 �rl Rπop

Qπop

� ,2 �rl
Rπop

aL
_��

aV
_��

aM
_��

=
⊆
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14. Graph comprehension revisited

Contrast a lax transform L +3M with the rightmost diagram for
simulations, translated into the world of X -controlled processes:

X

spn

____ksL
��

M
��

vs.
S

Q R

X

where Qπ is
(1

0 // 2) -injective

Rπ
''OOOO

U
��

`
''OO

OO

m
wwooo

o

Qπ
wwoooo

There are three other such correspondences. Pavlović was aware of
one of these, restricted to lax functors into spn /functors into X .

For systems the precedent of W-enriched categories suggestes the
feasibility of change-of-control (seldom considered for processes)

X Y

W

qqqqt|
σ

M~~L   

H
� '.

or
X Y

W

qqqq
4<κ

M~~L   

H
� '.

The precise nature of H (graph morphism, (pro)functor, or even a
span of those?) remains to be determined.
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15. A change of paradigm!

Worytkiewizc interprets certain functors X //W into a bicategory
of spans as W-controlled processes. The motivation goes back to
Burstall’s treatment of flow charts [Bur72]. Some advantages are:

A “universal control” eliminates the need to change control;

as a bicategory, W provides new types of control (rewriting?).

A good criterion for judging the suitability of different choices for
H would seem to be the existence of saturations for σ and κ .

Proposition (for small X and W with local coproducts)

The saturation X
Lˆ //W of X

L //W leaves the objects
invariant and maps x

a // y in X to the coproduct of all
a0L; a1L; . . . ; an−1L , where a0; a1; . . . ; an−1 = a in X .

Saturation for W = rel is idempotent; not so for W = spn .
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16. The universal property of saturation

Theorem

Saturation |X ,W|olx
// bX ,Wcolx ( |X ,W|lax // bX ,Wclax ) is

left (right) adjoint with (co)units based on coprojections.

X Y

W

qqqqt|
σ

M~~L   

H ++

or
X Y

W

qqqq
4<κ

M~~L   

H ++
saturate, if σ is lax,

respectively, κ is oplax

Z

X Y

W

____ +3σ ____ +3κ

H0

��
H1

��
U
��

L
--

M
qq

saturates,
if σ is lax and κ is oplax

Z

X Y

W

____ks
σ

H0

��
H1

��

L
--

M
qq

saturates,
if σ is lax and H0 is UFL, or
if σ is oplax and H1 is UFL.
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18. Conclusion

Simulations and bisimulations form a valuable contribution of
theoretical computer science to general mathematics.

They are too good to be left to computer scientists!
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