Non-commutative *k***-spaces**

Gábor Lukács joint work with Rashid El Harti

lukacs@mathstat.dal.ca

Dalhousie University Halifax, Nova Scotia, Canada

Financial support of the Killam Trust is gratefully acknowledged

International Category Theory Conference CT, June 25 - July 1, 2006, White Point, Nova Scotia, Canada - p.0/14

Ethical issues

This research (including this presentation) was prepared

This research (including this presentation) was prepared

without animal experiments;

This research (including this presentation) was prepared

- without animal experiments;
- without child labour;

This research (including this presentation) was prepared

- without animal experiments;
- without child labour;
- without using Microsoft products.

C^* -seminorms

Let A be a \ast -algebra over \mathbb{C} .

C^* -seminorms

Let A be a \ast -algebra over \mathbb{C} .

•
$$(ab)^* = b^*a^*$$
 for all $a, b \in A$;

 $(a + \lambda b)^* = a^* + \overline{\lambda}b^* \text{ for all } a, b \in A \text{ and } \lambda \in \mathbb{C}.$

C^* -seminorms

Let A be a *-algebra over \mathbb{C} . C*-seminorm: $p(ab) \leq p(a)p(b)$ and $p(a^*a) = (p(a))^2$. Let A be a topological *-algebra over \mathbb{C} .

 $*: A \to A, -: A \to A, +: A \times A \to A, \\ :: A \times A \to A, :: \mathbb{C} \times A \to A \text{ are continuous.}$

• C^* -seminorm: $p(ab) \le p(a)p(b) \text{ and } p(a^*a) = (p(a))^2.$

Let A be a topological *-algebra over C.
C*-seminorm: p(ab) ≤ p(a)p(b) and p(a*a) = (p(a))².
𝒩(A) = continuous C*-seminorms on A. Let A be a topological *-algebra over C.
C*-seminorm: p(ab) ≤ p(a)p(b) and p(a*a) = (p(a))².
N(A) = continuous C*-seminorms on A.
A_p = completion of A/ ker p. (p ∈ N(A).) Let A be a topological *-algebra over C.
C*-seminorm: p(ab) ≤ p(a)p(b) and p(a*a) = (p(a))².
N(A) = continuous C*-seminorms on A.
A_p = completion of A/ ker p. (p ∈ N(A).)
p is a C*-norm on A_p;
A_p is a C*-algebra. Let A be a topological *-algebra over C.
C*-seminorm: p(ab) ≤ p(a)p(b) and p(a*a) = (p(a))².
N(A) = continuous C*-seminorms on A.
A_p = completion of A/ ker p. (p ∈ N(A).)
A_p is a C*-algebra.
T_A = *-algebra topology induced by N(A).

International Category Theory Conference CT, June 25 - July 1, 2006, White Point, Nova Scotia, Canada - p.1/14

Let A be a topological *-algebra over \mathbb{C} . $\square C^*$ -seminorm: $p(ab) \le p(a)p(b)$ and $p(a^*a) = (p(a))^2$. $\checkmark \mathcal{N}(A) =$ continuous C^* -seminorms on A. $\blacksquare A_p =$ completion of $A / \ker p$. $(p \in \mathcal{N}(A))$. • A_p is a C^* -algebra. $\mathbf{I}_{A} = *-\text{algebra topology induced by } \mathcal{N}(\overline{A}).$ • \mathcal{T}_A is initial w.r.t. $A \longrightarrow \prod A_p$ (product top.). $p \in \mathcal{N}(A)$

Let A be a topological *-algebra over \mathbb{C} . C*-seminorm: $p(ab) \le p(a)p(b)$ and $p(a^*a) = (p(a))^2$. $\checkmark \mathcal{N}(A) =$ continuous C^* -seminorms on A. $\blacksquare A_p =$ completion of $A / \ker p$. $(p \in \mathcal{N}(A))$. $\blacksquare A_p$ is a C^* -algebra. $\mathbf{I}_{A} = *$ -algebra topology induced by $\mathcal{N}(A)$. **T**_A is initial w.r.t. $A \longrightarrow \prod A_p$ (product top.). $p \in \mathcal{N}(A)$ $\blacksquare A$ is a pro-C^{*}-algebra if it is Hausdorff, complete,

and its topology coincides with \mathcal{T}_A .

T = topological *-algebras and their continuous *-homomorphisms.

 T = topological *-algebras and their continuous *-homomorphisms.

The following are equivalent:

• A is a pro- C^* -algebra;

 T = topological *-algebras and their continuous *-homomorphisms.

The following are equivalent:

• A is a pro- C^* -algebra;

• A is the limit of C^* -algebras in T;

 T = topological *-algebras and their continuous *-homomorphisms.

The following are equivalent:

- A is a pro- C^* -algebra;
- A is the limit of C^* -algebras in T;
- A is the limit of the C^* -algebras A_p in T.

 T = topological *-algebras and their continuous *-homomorphisms.

The following are equivalent:

• A is a pro- C^* -algebra;

- A is the limit of C^* -algebras in T;
- A is the limit of the C^* -algebras A_p in T.

 $\overline{P} = \text{pro-}C^*\text{-algebras} \text{ (full subcategory of T).}$

 T = topological *-algebras and their continuous *-homomorphisms.

The following are equivalent:

- A is a pro- C^* -algebra;
- A is the limit of C^* -algebras in T;
- A is the limit of the C^* -algebras A_p in T.
- \$\bar{P}\$ = pro-C*-algebras (full subcategory of T).
 \$\bar{P}\$ is reflective in T.

 T = topological *-algebras and their continuous *-homomorphisms.

The following are equivalent:

- A is a pro- C^* -algebra;
- A is the limit of C^* -algebras in T;
- A is the limit of the C^* -algebras A_p in T.
- $\overline{P} = \text{pro-}C^*\text{-algebras} \text{ (full subcategory of T).}$
- $\blacksquare \overline{\mathsf{P}}$ is reflective in T .
- Related notion: Locally convex approach *-algebra.

 $\prod_{n=1}^{\infty} \mathbb{M}_n(\mathbb{C});$

 $\prod_{n=1}^{\infty} \mathbb{M}_n(\mathbb{C});$

 $C_{\omega}([0,1])$, continuous maps on [0,1] with the topology of uniform convergence on compact countable subsets;

 $\prod_{n=1}^{\infty} \mathbb{M}_n(\mathbb{C});$

- $C_{\omega}([0,1])$, continuous maps on [0,1] with the topology of uniform convergence on compact countable subsets;
- The tangent algebra of a C*-algebra introduced by Arveson:

 $\prod_{n=1}^{\infty} \mathbb{M}_n(\mathbb{C});$

- $C_{\omega}([0,1])$, continuous maps on [0,1] with the topology of uniform convergence on compact countable subsets;
- The tangent algebra of a C*-algebra introduced by Arveson:
 - Universal factorizer of derivations into C*-algebras;

 $\prod_{n=1}^{\infty} \mathbb{M}_n(\mathbb{C});$

- $C_{\omega}([0,1])$, continuous maps on [0,1] with the topology of uniform convergence on compact countable subsets;
- The tangent algebra of a C*-algebra introduced by Arveson:
 - Universal factorizer of derivations into C*-algebras;
 - Fails to be C^* -algebra, but it is a metrizable pro- C^* -algebra.

For $a \in A$, a_p is its projection into A_p .

For $a \in A$, a_p is its projection into A_p .

Spectrum: $\operatorname{sp}_A(a) = \bigcup_{p \in \mathcal{N}(A)} \operatorname{sp}_{A_p}(a_p).$

For $a \in A$, a_p is its projection into A_p .

Spectrum: $\operatorname{sp}_A(a) = \bigcup_{p \in \mathcal{N}(A)} \operatorname{sp}_{A_p}(a_p).$

Functional calculus: $f(a) = (f(a_p))_{p \in \mathcal{N}(A)}$.

For $a \in A$, a_p is its projection into A_p .

Spectrum: $\operatorname{sp}_A(a) = \bigcup_{p \in \mathcal{N}(A)} \operatorname{sp}_{A_p}(a_p).$

Functional calculus: $f(a) = (f(a_p))_{p \in \mathcal{N}(A)}$.

No automatic continuity:

For $a \in A$, a_p is its projection into A_p .

- Spectrum: $\operatorname{sp}_A(a) = \bigcup_{p \in \mathcal{N}(A)} \operatorname{sp}_{A_p}(a_p).$
- Functional calculus: $f(a) = (f(a_p))_{p \in \mathcal{N}(A)}$.

No automatic continuity:

C(ω_1) and C($\omega_1 + 1$) are pro-C*-algebras in the topology of uniform convergence on compacta;

For $a \in A$, a_p is its projection into A_p .

- Spectrum: $\operatorname{sp}_A(a) = \bigcup_{p \in \mathcal{N}(A)} \operatorname{sp}_{A_p}(a_p).$
- Functional calculus: $f(a) = (f(a_p))_{p \in \mathcal{N}(A)}$.

No automatic continuity:

C(ω₁) and C(ω₁ + 1) are pro-C*-algebras in the topology of uniform convergence on compacta;
 C(ω₁) → C(ω₁ + 1) given by setting

 $f(\omega_1) = \lim_{x \to \omega_1} f(x)$ fails to be continuous.

Commutative case

International Category Theory Conference CT, June 25 - July 1, 2006, White Point, Nova Scotia, Canada – p.5/14

Gelfand duality

A is a commutative unital C^* -algebra.

Gelfand duality

A is a commutative unital C^* -algebra.

 $\Delta(A) =$ multiplicative functionals $\rho \colon A \to \mathbb{C}.$

Gelfand duality

A is a commutative unital C^* -algebra.

Δ(A) = multiplicative functionals ρ: A → C.
 Δ(A) is equipped with the w*-topology – compact.

Gelfand duality

A is a commutative unital C^* -algebra.

Δ(A) = multiplicative functionals ρ: A → C.
Δ(A) is equipped with the w*-topology – compact.
Gelfand duality states:

$$A\longmapsto \Delta(A)$$
$$C(X)\longleftrightarrow X$$

is an equivalence of categories between commutative unital C^* -algebras and CompHaus^{op}.

A is a commutative unital pro- C^* -algebra.

A is a commutative unital pro- C^* -algebra.

 $\blacksquare \Delta(A) =$ multiplicative functionals $\rho \colon A \to \mathbb{C}.$

A is a commutative unital pro- C^* -algebra.

 $\Delta(A) = \text{multiplicative functionals } \rho \colon A \to \mathbb{C}.$ $\Delta(A) \text{ is equipped with the } w^*\text{-topology:}$

A is a commutative unital pro- C^* -algebra.

Δ(A) = multiplicative functionals ρ: A → C.
Δ(A) is equipped with the w*-topology:
Δ(A) is a Tychonoff space;

A is a commutative unital pro- C^* -algebra.

Δ(A) = multiplicative functionals ρ: A → C.
Δ(A) is equipped with the w*-topology:
Δ(A) is a Tychonoff space;
Δ(A_p) → Δ(A) is an embedding;

A is a commutative unital pro- C^* -algebra.

Δ(A) = multiplicative functionals ρ: A → C.
Δ(A) is equipped with the w*-topology:
Δ(A) is a Tychonoff space;
Δ(A_p) → Δ(A) is an embedding;
Δ(A) = ⋃_{p∈N(A)} Δ(A_p);

A is a commutative unital pro- C^* -algebra.

Δ(A) = multiplicative functionals ρ: A → C.
Δ(A) is equipped with the w*-topology:
Δ(A) is a Tychonoff space;
Δ(A_p) → Δ(A) is an embedding;
Δ(A) = ⋃_{p \in N(A)} Δ(A_p);

for $f: \Delta(A) \to \mathbb{R}$, if $f_{|\Delta(A_p)}$ is continuous for every $p \in \mathcal{N}(A)$, then so is f.

Let X be a (Hausdorff) space.

Let X be a (Hausdorff) space.

 $\mathbf{K}(X) =$ compact subsets of X.

Let X be a (Hausdorff) space.

K(X) = compact subsets of X.
For F ⊆ K(X), f: X → Y is F-continuous if f_{|F} is continuous for every F ∈ F.

Let X be a (Hausdorff) space.

K(X) = compact subsets of X.
For F ⊆ K(X), f: X → Y is F-continuous if f_{|F} is continuous for every F ∈ F.
C_F(X) = F-continuous maps X → C, with C*-seminorms p_F(f) = sup |f(x)|, F ∈ F.

Let X be a (Hausdorff) space.

K(X) = compact subsets of X.
For F ⊆ K(X), f: X → Y is F-continuous if f_{|F} is continuous for every F ∈ F.
C_F(X) = F-continuous maps X → C, with C*-seminorms p_F(f) = sup |f(x)|, F ∈ F.

 $\square C_{\mathcal{F}}(X)$ is a pro- C^* -algebra.

Let X be a (Hausdorff) space.

- K(X) = compact subsets of X.
 For F ⊆ K(X), f: X → Y is F-continuous if f_{|F} is continuous for every F ∈ F.
- $C_{\mathcal{F}}(X) = \mathcal{F}$ -continuous maps $X \to \mathbb{C}$, with C^* -seminorms $p_F(f) = \sup_{x \in F} |f(x)|, F \in \mathcal{F}$.
- $\square C_{\mathcal{F}}(X)$ is a pro- C^* -algebra.
- X is strongly functionally generated by \mathcal{F} if every map in $C_{\mathcal{F}}(X)$ is continuous.

Generalized Gelfand duality

(GL and El Harti, 2005/6) Let A be a commutative unital pro- C^* -algebra.

Generalized Gelfand duality

(GL and El Harti, 2005/6) Let A be a commutative unital pro- C^* -algebra.

 $\Delta(A) \text{ is s. f. g. by } \Phi(A) = \{\Delta(A_p) \mid p \in \mathcal{N}(A_p)\}.$

Generalized Gelfand duality

(GL and El Harti, 2005/6) Let A be a commutative unital pro- C^* -algebra.

 $\Delta(A) \text{ is s. f. g. by } \Phi(A) = \{ \Delta(A_p) \mid p \in \mathcal{N}(A_p) \}.$ $A \cong C_{\Phi(A)}(\Delta(A)).$

(GL and El Harti, 2005/6) Let A be a commutative unital pro- C^* -algebra.

 $\Delta(A) \text{ is s. f. g. by } \Phi(A) = \{\Delta(A_p) \mid p \in \mathcal{N}(A_p)\}.$ $A \cong C_{\Phi(A)}(\Delta(A)).$

(GL and El Harti, 2005/6) The pair of functors

 $A \longmapsto (\Delta(A), \Phi(A))$ $C_{\mathcal{F}}(X) \longleftrightarrow (X, \mathcal{F})$

form an equivalence of categories between commutative unital pro-C*-algebras and the opposite of a suitable category of s. f. g. Tychonoff spaces. International Category Theory Conference CT, June 25 - July 1, 2006, White Point, Nova Scotia, Canada – p.9/14

kHaus is a coreflective subcategory of Haus.

kHaus is a coreflective subcategory of Haus.
k-spaces are colimits of compacta in Haus.

kHaus is a coreflective subcategory of Haus. *k*-spaces are colimits of compacta in Haus.
(Brown, 1964) kHaus is ccc.

- T_2 k-space: Every $\mathcal{K}(X)$ -continuous map is continuous.
 - kHaus is a coreflective subcategory of Haus.
 - k-spaces are colimits of compacta in Haus.
 - **B**rown, 1964) kHaus is ccc.
 - (Dubuc and Porta, 1971) K-algebras = *-algebra objects in kHaus (+ and \cdot are k-continuous).

k-spaces

- T_2 k-space: Every $\mathcal{K}(X)$ -continuous map is continuous.
 - kHaus is a coreflective subcategory of Haus.
 - k-spaces are colimits of compacta in Haus.
 - **Brown**, 1964) kHaus is ccc.
 - (Dubuc and Porta, 1971) K-algebras = *-algebra objects in kHaus (+ and \cdot are k-continuous).
 - Dubuc and Porta used k-ified compact-open topology for $\Delta(A)$. We use the w^* -topology (pointwise).

$T_2 k_R$ -space: Space that is s. f. g. by its compacta.

 $\Delta(A)$ is a Tychonoff k_R -space.

$T_2 k_R$ -space: Space that is s. f. g. by its compacta.

• $\Delta(A)$ is a Tychonoff k_R -space.

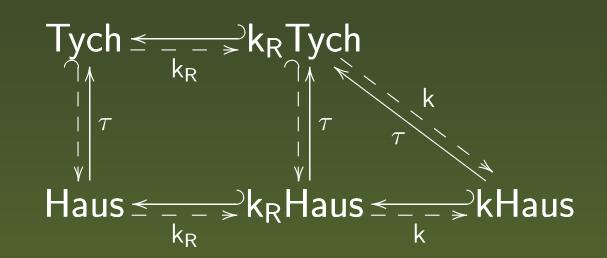
k_RTych spaces are colimits of compacta in Tych.

 $T_2 k_R$ -space: Space that is s. f. g. by its compacta.

△(A) is a Tychonoff k_R-space.
k_RTych spaces are colimits of compacta in Tych.
(GL, 2002/3) k_RTych is ccc.

 $T_2 k_R$ -space: Space that is s. f. g. by its compacta.

△(A) is a Tychonoff k_R-space.
k_RTych spaces are colimits of compacta in Tych.
(GL, 2002/3) k_RTych is ccc.



(The dashed arrows are right adjoints.)

- $\square \Delta(A)$ is a Tychonoff k_R -space.
- \mathbf{k}_{R} Tych spaces are colimits of compacta in Tych.
- **(GL**, 2002/3) k_RTych is ccc.
- k_R -ification preserves the Tychonoff property.

- $\square \Delta(A)$ is a Tychonoff k_R -space.
- \mathbf{k}_{R} Tych spaces are colimits of compacta in Tych.
- GL, 2002/3) k_RTych is ccc.
- k_R -ification preserves the Tychonoff property.
- **The Tychonoff functor preserves** k_R -spaces.

- $\square \Delta(A)$ is a Tychonoff k_R -space.
- k_RTych spaces are colimits of compacta in Tych.
 (GL, 2002/3) k_RTych is ccc.
- k_R -ification preserves the Tychonoff property.
- **The Tychonoff functor preserves** k_R -spaces.
- **Pro-** C^* -algebras are non-commutative k_RTych spaces.

Generalized Stone-Čech-compactification

International Category Theory Conference CT, June 25 - July 1, 2006, White Point, Nova Scotia, Canada - p.12/14

The algebra of bounded elements

For a Tychonoff space X, $\beta X = \Delta(C_b(X))$.

For a Tychonoff space X, $\beta X = \Delta(C_b(X))$.

• $C_b(X)$ = bounded continuous maps on X.

International Category Theory Conference CT, June 25 - July 1, 2006, White Point, Nova Scotia, Canada - p.13/14

For a Tychonoff space X, $\beta X = \Delta(C_b(X))$.

■ $C_b(X)$ = bounded continuous maps on X. ■ Norm: $||f||_{\infty} = \sup_{x \in X} |f(x)|$.

For a Tychonoff space X, $\beta X = \Delta(C_b(X))$.

■ $C_b(X)$ = bounded continuous maps on X. ■ Norm: $||f||_{\infty} = \sup_{x \in X} |f(x)|$.

If $X \in k_R$ Tych, then:

For a Tychonoff space X, $\beta X = \Delta(C_b(X))$.

■ $C_b(X)$ = bounded continuous maps on X. ■ Norm: $||f||_{\infty} = \sup_{x \in X} |f(x)|$.

If $X \in k_R$ Tych, then:

• $C_{\mathcal{K}(X)}(X) = C(X)$ (as algebras);

For a Tychonoff space X, $\beta X = \Delta(C_b(X))$.

■ $C_b(X)$ = bounded continuous maps on X. ■ Norm: $||f||_{\infty} = \sup_{x \in X} |f(x)|$.

If $X \in k_R$ Tych, then:

• $C_{\mathcal{K}(X)}(X) = C(X)$ (as algebras); • $\|f\|_{\infty} = \sup_{K \in \mathcal{K}(X)} p_K(f).$

For a Tychonoff space X, $\beta X = \Delta(C_b(X))$.

- $C_b(X)$ = bounded continuous maps on X. ■ Norm: $||f||_{\infty} = \sup_{x \in X} |f(x)|$.
- If $X \in k_R$ Tych, then:

 $C_{\mathcal{K}(X)}(X) = C(X) \text{ (as algebras);}$ $\|f\|_{\infty} = \sup_{K \in \mathcal{K}(X)} p_K(f).$ $C_b(X) = \{f \in C_{\mathcal{K}(X)}(X) \mid \|f\|_{\infty} < \infty\}.$

If $X \in k_R$ Tych, then:

*C*_{K(X)}(*X*) = *C*(*X*) (as algebras);
||*f*||_∞ = sup p_K(*f*). _{K∈K(X)} *C*_b(*X*) = {*f* ∈ *C*_{K(X)}(*X*) | ||*f*||_∞ < ∞}.
Let *A* be a pro-*C*^{*}-algebra, and let *a* ∈ *A*.

International Category Theory Conference CT, June 25 - July 1, 2006, White Point, Nova Scotia, Canada - p.13/14

If $X \in k_R$ Tych, then:

• $C_{\mathcal{K}(X)}(X) = C(X)$ (as algebras); • $\|f\|_{\infty} = \sup_{K \in \mathcal{K}(X)} p_K(f).$ • $C_b(X) = \{f \in C_{\mathcal{K}(X)}(X) \mid \|f\|_{\infty} < \infty\}.$ Let A be a pro- C^* -algebra, and let $a \in A$.

 $||a||_{\infty} = \sup_{p \in \mathcal{N}(A)} p(a).$

If $X \in k_R$ Tych, then:

• $C_{\mathcal{K}(X)}(X) = C(X)$ (as algebras); • $\|f\|_{\infty} = \sup_{K \in \mathcal{K}(X)} p_K(f).$ • $C_b(X) = \{f \in C_{\mathcal{K}(X)}(X) \mid \|f\|_{\infty} < \infty\}.$ Let A be a pro- C^* -algebra, and let $a \in A$.

 $\|a\|_{\infty} = \sup_{p \in \mathcal{N}(A)} p(a).$ $A_b = \{a \in A \mid \|a\|_{\infty} < \infty\}.$

 $= (A_b, \| \cdot \|_{\infty})$ is a C^* -algebra.

(A_b, || · ||_∞) is a C*-algebra.
A_b is dense in A (in the topology of A).

• $(A_b, \|\cdot\|_{\infty})$ is a C^* -algebra.

• A_b is dense in A (in the topology of A).

• A_b depends only on the algebraic structure of A.

(A_b, || · ||_∞) is a C*-algebra.
A_b is dense in A (in the topology of A).
A_b depends only on the algebraic structure of A.
(GL and El Harti, 2005/6):

(A_b, || · ||_∞) is a C*-algebra.
A_b is dense in A (in the topology of A).
A_b depends only on the algebraic structure of A.
(GL and El Harti, 2005/6):

(A_b, || · ||_∞) is a C*-algebra.
A_b is dense in A (in the topology of A).
A_b depends only on the algebraic structure of A.
(GL and El Harti, 2005/6):

$$(-)_b \colon \mathsf{P}_{\mathsf{d}} \longrightarrow \mathsf{C} \text{ is a coreflector}$$
$$(-)_b \colon \overline{\mathsf{P}}_{\mathsf{d}} \longrightarrow \mathsf{C} \text{ is exact.}$$

(A_b, || · ||_∞) is a C*-algebra.
A_b is dense in A (in the topology of A).
A_b depends only on the algebraic structure of A.
(GL and El Harti, 2005/6):

$$(-)_b \colon \overline{\mathsf{P}}_{\mathsf{d}} \longrightarrow \mathsf{C} \text{ is a coreflector.}$$
$$(-)_b \colon \overline{\mathsf{P}}_{\mathsf{d}} \longrightarrow \mathsf{C} \text{ is exact.}$$

If *I* is a *-ideal and A/I is complete, then $(A/I)_b \cong A_b/I_b$.

(A_b, || · ||_∞) is a C*-algebra.
A_b is dense in A (in the topology of A).
A_b depends only on the algebraic structure of A.
(GL and El Harti, 2005/6):

$$(-)_b \colon \overline{\mathsf{P}}_{\mathsf{d}} \longrightarrow \mathsf{C} \text{ is a coreflector.}$$
$$(-)_b \colon \overline{\mathsf{P}}_{\mathsf{d}} \longrightarrow \mathsf{C} \text{ is exact.}$$

If *I* is a *-ideal and A/I is complete, then $(A/I)_b \cong A_b/I_b$.

If A_b is simple, then A is a C^* -algebra.

(GL and El Harti, 2005/6):

$$(-)_b: \overline{\mathsf{P}}_{\mathsf{d}} \longrightarrow \mathsf{C} \text{ is a coreflector}$$
$$(-)_b: \overline{\mathsf{P}}_{\mathsf{d}} \longrightarrow \mathsf{C} \text{ is exact.}$$

If *I* is a *-ideal and A/I is complete, then $(A/I)_b \cong A_b/I_b$.

If A_b is simple, then A is a C^* -algebra.

Further details / results: Bounded and Unitary Elements in Pro-*C**-algebras, *Appl. Categ. Structures*, **14** (2006), no. 2, 151–164.