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We begin by illustrating the formulas 
in the two-valued context.



Consider an equivalence relation on a set X
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x ~ y   iff   they are in the same square
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Some subsets P of  X  are closed with respect to  ~ 



Some other subsets P of  X  are not closed
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So we have the inclusion

of closed parts in all the parts of X.

Such an inclusion has both left and right adjoints



Any subset P of X (only outline drawn)

X



Any subset P of X 

X

has a “best” inner approximation         

(its coreflection)



Any subset P of X 

X

has a “best” inner approximation

and a “best” outer one         (its reflection)



.

Note in particular that the reflection of a point 
x is the square of x:

x



x

For the coreflection we have the formula:

X

.

that is, a point is in the coreflection of P iff

its square is included in P. 



x

“Dually”, for the reflection we have the formula:

X
.

that is, a point is in the reflection of P iff

its square “meets” P (they have non void intersection)



Now let’s drop the symmetry condition:

instead of an equivalence relation, consider an 
arbitrary poset.



z.
.

y

x

.

For example, on a part X of the plane consider 
the following order: 

X

      y < x     iff     y is exactly below x_



Some subsets P of  X  are lower sets, that is 
donward closed:

X

y

x

.
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… some subsets P of  X  are upper sets, that is 
upward closed:

X



Some other subsets P of  X  are not upper nor lower sets.

X



So we have the inclusions

of lower and upper parts in all the parts of X.

Such inclusions have both left and right adjoints



Let’s consider the reflection and coreflection

 in lower sets 

(the case of upper sets is of course specular)



Any subset P of X (only outline drawn)

X



Any subset P of X (only outline drawn)

X

has a “best” inner approximation



Any subset P of X (only outline drawn)

X

has a “best” inner approximation

and a “best” outer one



.

Note in particular that the lower and upper 
reflections of a point x are:

x



X

x.

For the coreflection, we have the formula:

that is, a point is in the lower coreflection of P iff

its lower reflection is included in P.



X

.x

“Dually”, for the reflection we have the formula:

that is, a point is in the lower reflection of P iff

its upper reflection meets P.



In order to pass to the set-valued context, we need to look more 
closely to the “meets” operator       :

and let                                       be  the truth values poset.  

We have the following chain of adjoint functors               
(poset morphisms)

let X be a bounded poset (that is with top     and bottom     ) 

where                                 and         



               and         are the “non void” and “full” predicates:

is false   iff    

is true    iff

So, if X is also a meet semilattice, we have the following 
obvious definition of the “meets” predicate:



For many categories X, there are analogous adjoint functors

the “components”, the “discrete” and the “points” functors.  

Note that they are uniquely determined, since        is forced

to be the functor represented by the terminal object of X:  

Now, let’s jump from the two-valued into the  set-valued 
context, replacing posets with categories:

Which is the correspective of the meets operator?



Typically, if         is the category of (directed irreflexive) 
graphs, we have:

The components and the points of a graph are given by the 
coequalizer and the equalizer of the domain and codomain 
maps, respectively. 

In general, for any presheaf category,      and       
give the limit and the colimit respectively.



This graph has three components and two points.



If X has products, we can generalize naturally the “meets” 
operator to the set-valued setting, obtaining a “ten” functor:

that has a dual role with respect to the hom functor of X.

Note e.g. that if X is cartesian closed, then  

two-valued

set-valued



Among the graphs there are the evolutive sets, or 
endomappings, or discrete dynamic systems:

exactly an arrow out from each node



… and the “anti-evolutive” sets.



So we have the inclusions

of endomappings in all the graphs, as evolutive or 
anti-evolutive sets respectively.

Such inclusions have both left and right adjoints

  What about the formulas?



     The role of the points of the plane is now played by the        
dot graph D, whose reflections are the chain and the anti-chain:

D



Now, the formulas for the coreflection and the reflection of the parts 
of a poset in upper parts, 

the actions being given by the shift of the chain and the 

anti-chain respectively. 

iff

iff

bijection
 elements of 

bijection
 elements of 

                                          have the following correspective for those of 
graphs in endomappings:

coreflection

  reflection



Let’s see what these formulas give in two 
typical cases of non functional graphs.

no arrows out from the node 
on the right

two arrows out from 
the lower node

A

B



Its reflection is given by                          that is by the 
components of the product with the anti-chain:

The graph A has no chains, so its 
coreflection is the void endomap.

So, the reflection of A in endomappings is the chain

domains deleted

codomains added



reflection

 coreflection

domains separated

codomains collapsed

The graph B

there are four chains
in



Let’s turn to our main concern:  

              

We have the inclusions of full subcategories

of discrete fibrations and discrete op-fibrations in all 
categories over X.

categories over a base category X.



So we have the ten functor

Also in this case we have functors

Given a category                            over X, its

 points are the sections of p, while its components 
 

are those of the “total category” P.



One can easily prove that, modulo these equivalences, the 
ten functor extends the usual tensor product of set functors 
(hence the name):

It is well known that there are equivalences of categories



     The role of the points of the plane in the poset case is now 
played by the objects of X:
any object x of X, considered as a category over X

We are looking for left and right adjoints

of the inclusion of df’s and dof’s.

has reflections                             and

the categories of objects over and under x, which under the 
above equivelence correspond to the representable functors 



Proof: the Yoneda Lemma.

Both represent the objects over x of the 
df A, that is the elements of Ax .



Now, the formulas for the coreflection and the reflection of the 
parts of a poset in upper parts, 

which give the elements of the discrete fiber over x.

iff

iff

bijection

bijection

 coreflection

 reflection

                                              have the following correspective 
for those of categories over a base in discrete opfibrations.



Observing that

which is the well known formula (Paré, Lawvere, …), 
expressing the reflection in dof’s with the components of  P/x.

we find



The proof that these formulas give indeed the desired right 
and left adjoints are staightforward and in a sense “dual”.
As far as I know, there are no published works about 
coreflexivity in df’s. 

   Another question is why the formulas have that form.

So for a while we get back to posets.

Perhaps surprisingly, the almost obvious proofs for the 
two-valued context (posets) fairly generalize to the 
present set-valued context, not only for the coreflection 
but also for the reflection.



As is well-known, right adjoints are easily analized with 
figures, and so their form is often readly determined.

Remarkably, there is an analogous deduction for 
the reflection formula:

*

**

for any  lower set A

and any upper set D
* **



Though these are easily checked, we need to be explicit 
to have a proof valid in the set-valued context as well:

We only have to justify the marked step: 

*

 



X

The classical complement (in         ) of a lower set



X

The classical complement (in         ) of a lower set

is an upper set (and vice versa).           

 



The derivation of the coreflection formula in the 
two-valued context

 coreflection

                                straightforwardly extends to the 
set-valued context (e.g. categories over a base and 
df’s, but also graphs and evolutive sets).



   reflection

*

*

*

*

**

and the proof of the two marked steps is the “same” 
as the two-vaued one:  

More interestingly, also the derivation of the 
reflection formula extends to  the set-valued 
context: 



**

*



The functor

deserves to be called the negation or complement of D.

It is classical, that is the strong contraposition law holds:

If D is a dof, its complement is valued in df’s, 
and conversely.

A and B both df’s 
or both dof’s

which is right adjoint to 

 



The meets operator allows a natural definition of atom 
in any (bounded) poset X:

for any y in X

That is, x is an element “so small” that it is 
included in any element that it meets.

But also“big enough” to meet any element in 
which it is included (the bottom is included in 
any element, but doesn’t meet them).



In the set-valued context, given a category X with components

E.g., in the category of graphs, the dot graph is an atom.

Indeed, for any other graph y, both sets represent the 
nodes of y (multiplying by the dot graph has the effect 
of deleting arrows). 

an object x is 
an atom iff

natural in y



In the case of categories over a base 

are the set of objects and of components of the fiber 
Px over x, respectively.

But these coincide if the fiber is discrete. 

and



So the objects x of the base category X are atoms in the 
weaker sense that the bijection

holds for discrete fibrations (or opfibrations) P.

Are there other atoms?

Yes: any idempotent arrow in X is an atom!



considered as a category over X

and these coincide for idempotent mappings:

Indeed, given any idempotent arrow in X

and any df A over X

=   fixed points of the endomap Ae

=   components of the endomap Ae



So the reflections of idempotents generate the 
Chaucy completion of X.

What are the reflections of an idempotent                        ?

such that

is the set of arrows

 If e splits,         is isomorphic to  the representable          

In general,         is a retract of the representable    
which splits the idempotent

in



Given two idempotents                       and 

That is, the Cauchy completion of X is 
equivalent to the Karoubi envelope of X.

such that and

elements of                fixed by



All this, and much more, can be found in 
the preprint:

Bipolar spaces 

 available in arXiv

where we try capture the scope of the above formalism.


