
(X, ∗) pointed topological space

ΩX the space of loops at ∗

m : ΩX × ΩX → ΩX only homotopy associative

e : 1→ ΩX only a homotopy unit

ΩX homotopy monoid

T algebraic theory of monoids

homotopy monoid A : T → Top

A(X1 ×X1)→ A(X1)×A(X1)

and

A(X0)→ 1

homotopy equivalences

mA : A(X1)×A(X1)→ A(X1 ×X1)→ A(X1)

morphisms preserve operations up to homotopy
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T algebraic theory

homotopy T -algebra A : T → SSet

A(X1 × · · · ×Xn)→ A(X1)× · · · ×A(Xn)

homotopy equivalences (weak equivalences)

no difference if A : T → S

Badzioch 2002, Bergner 2005

simplicial category K = category enriched over SSet

D category, D : D → K

holimsD limit of D weighted by

B(D ↓ −) : D → SSet

B(X ) the nerve of X
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SSetT simplicial model category

weak equivalences and fibrations are pointwise

A : T → SSet fibrant iff A(X) ∈ S for each X ∈ T

HAlg(T ) ⊆ SSetT

consists of simplicial functors

A : T → S

which are cofibrant and

A(X1 × · · · ×Xn)→ A(X1)× · · · ×A(Xn)

are homotopy equivalences
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holimD = Rc(holimsD)

HAlg(T ) ⊆ SSetT

closed under homotopy limits

hocolimD = Rf (hocolimsD)

closed under homotopy sifted colimits

D homotopy sifted

homotopy colimits over D homotopy commute with

finite products in S

Theorem. D homotopy sifted iff

∆ : D → D ×D

homotopy final

iff (A, B) ↓ ∆ aspherical.

A→ X ← B
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homotopy final ⇒ final

aspherical ⇒ connected

homotopy sifted ⇒ sifted

D homotopy sifted iff Dop totally aspherical

Grothendieck, Maltsiniotis

When SetD has the homotopy category equivalent

with that of Top?

filtered ⇒ homotopy sifted

with finite coproducts ⇒ homotopy sifted

coequalizers of reflexive pairs

f1, f2 : A1 → A0

sifted but not homotopy sifted

(A1, A1) ↓ ∆

connected but not 2-connected

∆op homotopy sifted

HAlg(T ) ⊆ SSetT

closed under homotopy sifted homotopy colimits
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Goal: An abstract characterization of categories

”equivalent” to HAlg(T ).

homotopy in simplicial categories

homHo(K)(K, L) = π0 homK(K, L)

homotopy equivalences in K

simplicial Ho(SSet) is not Ho(SSet)

simplicial Ho(S) is Ho(S)

K fibrant if hom(K, L) ∈ S

HAlg(T ) fibrant

F : K → L Dwyer-Kan equivalence

(a) hom(K1, K2)→ hom(FK1, FK2) homotopy (weak)

equivalence

(b) each L ∈ L is homotopy equivalent to some FK

Model category structure on small simplicial cate-

gories with D-K equivalences as weak equivalences.

Fibrant objects are fibrant simplicial categories.
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homotopy (co)limits in fibrant simplicial categories

hom(−, holimD) ' holims hom(−, D)

hom(hocolimD,−) ' holims hom(D,−)

coincides with the previous ones in Int(SSetT )

for any simplicial model categoryM

C a small category

Pre(C) = Int(SSetC
op

)

prestacks on C

Theorem. Pre(C) is a free completion of C under

homotopy colimits (among fibrant simplicial categories).

Dugger 2001

C
Y

//

F
��

>>
>>

>>
>>

Pre(C)

F∗

{{xx
xx

xx
xx

x

K
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K fibrant simplicial category

K ∈ K homotopy strongly finitely presentable

hom(K,−) preserves homotopy sifted homotopy col-

imits

K homotopy variety

(i) has homotopy colimits

(ii) has a set A of homotopy strongly finitely pre-

sentable objects such that every object is a homotopy

sifted homotopy colimit of objects from A.

HAlg(T ) homotopy variety

K homotopy variety

T the dual of the full subcategory consisting of ho-

motopy strongly finitely presentable objects

T simplicial algebraic theory

small fibrant simplicial category with finite products

any algebraic theory is a simplicial algebraic theory
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Theorem. K homotopy variety iff it is D-K equiva-

lent to HAlg(T ) for a simplicial algebraic theory T .

Pre(C) free completion under homotopy colimits for

every fibrant simplicial category C

HAlg(T ) = HSind(T op)

free completion under homotopy sifted homotopy

colimits

T algebraic theory of monoids

put ∆1 from m(m× 1) to m(1×m) in T (X3
1 , X1)

A : T → SSet strict algebra

∆1 → T (X3
1 , X1)→ SSet(A(X1)

3, A(X1))

∆1 ×A(X1)
3 → A(X1)

homotopy from mA(mA × 1) to mA(1×mA)

strong homotopy associativity (Stasheff)

homomorphisms are strict

Each homotopy algebra is weakly equivalent to a

strict algebra (in a suitable model category struc-

ture).

Badzioch, Bergner
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homotopy locally finitely presentable categories

homotopy limit theories (sketches)

homotopy accessible categories (Lurie 2003)

homotopy toposes

homotopy Giraud theorem (Lurie, Toën, Vezzosi 2002)

homotopy exactness

groupoid objects are effective

. . . X2
//
//
// X1

//
// 1 // X

ΩX //

��

1

��

1
λ

// X

characterization of loop spaces (Stasheff, Segal)
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