Quasi-categories vs Segal spaces

André Joyal and Myles Tierney

Université du Québec à Montréal

June 21, 2006

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Two Model Structures on \mathbf{S}

If $i: A \to B$ and $f: X \to Y$, $i \pitchfork f$ means every commutative

has a diagonal filler $d: B \to X$.

1)(Quillen) $h_n^k : \Lambda^k[n] \to \Delta[n], f : X \to Y$ is a Kan fibration if $h_n^k \pitchfork f, 0 \le k \le n, n \ge 1$. \mathcal{F}_0 = Kan fibrations.

 $\mathbf{S}^{\pi_0}(X,Y) = \pi_0(Y^X). \ u: A \to B$ is a weak homotopy equivalence if

$$\mathbf{S}^{\pi_0}(u,X):\mathbf{S}^{\pi_0}(B,X)\to\mathbf{S}^{\pi_0}(A,X)$$

is a bijection for each Kan complex X. W_0 = weak homotopy equivalences. C_0 = monomorphisms.

 $(\mathcal{F}_0,\mathcal{C}_0,\mathcal{W}_0)$ is the classical model structure on \mathbf{S}_0 , is the second structure of \mathbf{S}_0 , the second structure of \mathbf{S}_0 ,

2)(Joyal) $\tau_1(X)$ is the fundamental category of X. $\tau_0(X) =$ isomorphism classes of objects in $\tau_1(X)$. $X \in \mathbf{S}$ is a quasi-category if $h_n^k \pitchfork X$, 0 < k < n.

 $\mathbf{S}^{\tau_0}(X,Y)=\tau_0(Y^X).\ u:A\to B$ is a weak categorical equivalence if

$$\mathbf{S}^{\tau_0}(u,X):\mathbf{S}^{\tau_0}(B,X)\to\mathbf{S}^{\tau_0}(A,X)$$

is a bijection for each quasi-category X. \mathcal{W}_1 = weak categorical equivalences. \mathcal{C}_1 = monomorphisms. $\mathcal{F}_1 = (\mathcal{C}_1 \bigcap \mathcal{W}_1)^{\pitchfork}$ the *quasi-fibrations*.

(日) (同) (三) (三) (三) (○) (○)

 $(\mathcal{F}_1, \mathcal{C}_1, \mathcal{W}_1)$ is the quasi-category model structure on **S**. The fibrant objects are the quasi-categories.

Note: $C_0 = C_1$ and $W_1 \subseteq W_0$ so $C_1 \cap W_1 \subseteq C_0 \cap W_0$ and $\mathcal{F}_0 \subseteq \mathcal{F}_1$

Bisimplicial Sets

 $A, B \in \mathbf{S}, A \Box B \in \mathbf{S}^{(2)} (A \Box B)_{mn} = A_m \times B_n.$ The left division functor: $\Delta[n] \to A \setminus X = A \Box \Delta[n] \to X.$ The right division functor: $\Delta[m] \to X/B = \Delta[m] \Box B \to X.$ Example: $\Delta[m] \setminus X = X_{m*}, X/\Delta[n] = X_{*n}.$

 $B \backslash Y \longrightarrow A \backslash Y$

Extension to arrows: $u: A \to B, v: C \to D$ in **S**

gives $\langle u \setminus f \rangle : B \setminus X \to B \setminus Y \times_{A \setminus Y} A \setminus X.$

$$\begin{array}{c} X/D \longrightarrow X/C \\ \downarrow \qquad \qquad \downarrow \\ Y/D \longrightarrow Y/C \end{array}$$

gives $\langle f/v \rangle : X/D \to Y/D \times_{Y/C} X/C.$

 $(u \Box' v) \pitchfork f \text{ iff } v \pitchfork < u \backslash f > \text{iff } u \pitchfork < f/v >.$

$$i_2 : \Delta \to \Delta \times \Delta \text{ is } i_2([n])) = ([0], [n])$$
$$i_2^*(X) = X_0 = \Delta[0] \backslash X, \text{ and}$$

$$Hom_2(X,Y) = i_2^*(Y^X)$$

is an enrichment of $\mathbf{S}^{(2)}$ over \mathbf{S} . There are tensor and cotensor products.

The vertical model structure on $\mathbf{S}^{(2)}$

 $f: X \to Y$ in $\mathbf{S}^{(2)}$ is a vertical weak homotopy equivalence if $f_m: X_m \to Y_m$ is a weak homotopy equivalence $m \ge 0$. $\mathcal{W}'_0 =$ class of all such. $s_m: \partial \Delta[m] \to \Delta[m]$ is the inclusion. $f: X \to Y$ is a vertical fibration or v-fibration if $\langle s_m \setminus f \rangle$ is a Kan fibration $m \ge 0$. X is v-fibrant if $X \to 1$ is a v-fibration. $\mathcal{F}'_0 =$ class of v-fibrations. $\mathcal{C}'_0 =$ monomorphisms.

Theorem

 $(\mathcal{F}'_0, \mathcal{C}'_0, \mathcal{W}'_0)$ is a simplicial model structure on $\mathbf{S}^{(2)}$ which is proper and cartesian closed.

This is the *Reedy model structure* associated to the classical model structure $(\mathcal{F}_0, \mathcal{C}_0, \mathcal{W}_0)$ on **S**. We call it the *vertical model structure* on $\mathbf{S}^{(2)}$. There is also a horizontal model structure on $\mathbf{S}^{(2)}$ associated to the quasi-category model structure $(\mathcal{F}_1, \mathcal{C}_1, \mathcal{W}_1)$ on **S**.

Note: $f: X \to Y$ in $\mathbf{S}^{(2)}$ is a vertical weak homotopy equivalence iff $Hom_2(f, Z): Hom_2(Y, Z) \to Hom_2(X, Z)$ is a weak homotopy equivalence for each v-fibrant Z in $\mathbf{S}^{(2)}_{\mathbb{C}^2,\mathbb{C}^2}$.

Complete Segal Spaces

The $n - chain \ I_n = \bigcup_{i=0}^{n-1} (i, i+1). \ i_n : I_n \to \Delta[n]$ is the inclusion. $I_0 = 0. \ X \in \mathbf{S}^{(2)}$ satisfies the *Segal condition* if

 $i_n \setminus X : \Delta[n] \setminus X \to I_n \setminus X$

is a weak homotopy equivalence for $n \ge 2$. $I_n \setminus X = X_1 \times_{X_0} X_1 \times \ldots \times_{X_0} X_1$. So X satisfies the Segal condition iff the map

$$X_n \to X_1 \times_{X_0} X_1 \times \ldots \times_{X_0} X_1$$

is a weak homotopy equivalence for $n \geq 2$. Example: the nerve of a simplicial category - exactly. The name is from Graham Segal's Δ -spaces - the above with $X_0 = pt$. A Segal space is a v-fibrant simplicial space that satisfies the Segal condition. Introduced by Charles Rezk in his paper "A model for the homotopy theory of homotopy theory". J is the nerve of the groupoid with one isomorphism $0 \to 1$. A Segal space X is *complete* if the map

$$1 \setminus X \to J \setminus X$$

is a weak homotopy equivalence. $f:X\to Y$ in ${\bf S^{(2)}}$ is a Rezk weak equivalence if

$$Hom_2(f, Z) : Hom_2(Y, Z) \to Hom_2(X, Z)$$

is a weak homotopy equivalence for each complete Segal space Z. \mathcal{W}_R = Rezk weak equivalences. \mathcal{C}_R = monomorphisms. $\mathcal{F}_R = (\mathcal{C}_R \bigcap \mathcal{W}_R)^{\pitchfork}$. Then Rezk proved

Theorem

 $(\mathcal{F}_R, \mathcal{C}_R, \mathcal{W}_R)$ is a simplicial model structure on $\mathbf{S}^{(2)}$ which is left proper and cartesian closed. The fibrant objects are the complete Segal spaces.

 $(\mathcal{F}_R, \mathcal{C}_R, \mathcal{W}_R)$ is the *Rezk model structure* or the *model structure* for complete Segal spaces.

Note: $\mathcal{C}'_0 = \mathcal{C}_R$ and $\mathcal{W}'_0 \subseteq \mathcal{W}_R$, so $\mathcal{F}_R \subseteq \mathcal{F}'_0$.

 $i_1: \Delta \to \Delta \times \Delta$ is $i_1([n])) = ([n], [0])$. $p_1: \Delta \times \Delta \to \Delta$ is the first projection. $p_1 \dashv i_1$, so $p_1^*: \mathbf{S} \longleftrightarrow \mathbf{S}^{(2)}: i_1^*$. $i_1^*(X) = X_{*0}$ the first row of X, so $p_1^*(A) = A \Box 1$. Our main theorem is then

Theorem

 $p_1^*: \mathbf{S} \longleftrightarrow \mathbf{S}^{(2)}: i_1^* \text{ is a Quillen equivalence between the model category for quasi-categories and the model category for complete Segal spaces.$

Thus, all the homotopy theoretic information in a complete Segal space is contained in its first row.

 $\Delta'[n]$ is the nerve of the groupoid freely generated by [n]. $t: \Delta \times \Delta \to \mathbf{S}$ is $t([m], [n]) = \Delta[m] \times \Delta'[n]$. $t_!: \mathbf{S}^{(2)} \to \mathbf{S}$ is the left Kan extension of t along $Yoneda: \Delta \times \Delta \to \mathbf{S}^{(2)}$. $t_!$ is the total space functor. It has a right adjoint $t^!: \mathbf{S} \to \mathbf{S}^{(2)}$

$$t^!(X)_{mn} = \mathbf{S}(\Delta[m] \times \Delta'[n], X)$$

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem

 $t_!: \mathbf{S}^{(2)} \longleftrightarrow \mathbf{S}: t^!$ is a Quillen equivalence between the model category for complete Segal spaces and the model category for quasi-categories.

Note: $t_!p_1^*: \mathbf{S} \to \mathbf{S} = id_{\mathbf{S}}$ so $i_1^*t^! = id_{\mathbf{S}}$

Segal Categories

 $X : \Delta^{op} \to \mathbf{S}$ is a *precategory* if X_0 is discrete. $\mathbf{PCat} \subseteq \mathbf{S}^{(2)}$ is the full subcategory of precategories. $X : (\Delta \times \Delta)^{op} \to \mathbf{Set}$ is in \mathbf{PCat} iff it takes every map in $[0] \times \Delta$ to a bijection, so put $\Delta^{|2} = ([0] \times \Delta)^{-1} (\Delta \times \Delta)$ and let $\pi : \Delta^2 \to \Delta^{|2}$ be the canonical map.

$$\pi^*: [(\Delta^{|2})^{op}, \mathbf{Set}] \simeq \mathbf{PCat} \subseteq \mathbf{S}^{(2)}$$

 $X \in \mathbf{PCat}$ is a *Segal category* if it satisfies the Segal condition. Segal categories were introduced by Hirshowitz and Simpson for applications to algebraic geometry. They showed

Theorem

There is a model structure on **PCat** in which the cofibrations are the monomorphisms and the weak equivalences are "weak categorical equivalences". The model structure is left proper and cartesian closed.

This is the *Hirshowitz-Simpson model structure*, or the *model* structure for Segal categories.

Julia Bergner showed

Theorem

The adjoint pair π^* : **PCat** \longleftrightarrow **S**⁽²⁾: π_* is a Quillen equivalence between the model category for Segal categories and the model category for complete Segal spaces. A map $f: X \to Y$ of precategories is a weak categorical equivalence iff $\pi^*(f)$ is a Rezk weak equivalence. $p_1: \Delta \times \Delta \longleftrightarrow \Delta: i_1 \text{ and } p_1 \text{ inverts the arrows of } [0] \times \Delta, \text{ so there is a unique } q: \Delta^{|2} \to \Delta \text{ such that } q\pi = p_1.$ $j = \pi i_1: \Delta \to \Delta^{|2} \text{ satisfies } q \dashv j. \text{ If } X \in \mathbf{PCat}, \ j^*(X) = X_{*0} \text{ -the first row of } X. \text{ If } A \in \mathbf{S}, \ q^*(A) = A \Box 1.$

Theorem

The adjoint pair $q^* : \mathbf{S} \longleftrightarrow \mathbf{PCat} : j^*$ is a Quillen equivalence between the model category for quasi-categories and the model category for for Segal categories.

Put $d = \pi \delta : \Delta \to \Delta^{|2}$, where $\delta : \Delta \to \Delta \times \Delta$ is the diagonal. If $X \in \mathbf{PCat}, d^*(X) =$ the diagonal complex of X. d^* has a left adjoint d_1 and a right adjoint d_* .

Theorem

The adjoint pair $d^* : \mathbf{PCat} \longleftrightarrow \mathbf{S} : d_*$ is a Quillen equivalence between the model category for Segal categories and the model category for quasi-categories.

 $d^*q^*: \mathbf{S} \to \mathbf{S} = id_{\mathbf{S}}$ since qd = id. Hence $j^*d_*: \mathbf{S} \to \mathbf{S} = id_{\mathbf{S}}$.