The functor category $\mathcal{F}_{\text {quad }}$ associated to quadratic spaces over \mathbb{F}_{2}

Christine VESPA
University Paris 13
June 26, 2006

Motivation : The category \mathcal{F}

Definition

$$
\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)
$$

$\mathcal{E}:$ category of \mathbb{F}_{2}-vector spaces
\mathcal{E}^{f} : category of finite dimensional \mathbb{F}_{2}-vector spaces

Motivation : The category \mathcal{F}

Definition

$$
\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)
$$

\mathcal{E} : category of \mathbb{F}_{2}-vector spaces
\mathcal{E}^{f} : category of finite dimensional \mathbb{F}_{2}-vector spaces

The category \mathcal{F} is closely related to general linear groups over \mathbb{F}_{2}

Motivation : The category \mathcal{F}

Definition

$$
\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)
$$

\mathcal{E} : category of \mathbb{F}_{2}-vector spaces
\mathcal{E}^{f} : category of finite dimensional \mathbb{F}_{2}-vector spaces

The category \mathcal{F} is closely related to general linear groups over \mathbb{F}_{2}
Example: Evaluation functors

$$
\begin{aligned}
& \mathcal{F} \xrightarrow{E_{n}} \mathbb{F}_{2}\left[G L_{n}\right]-\bmod \\
& F \longmapsto
\end{aligned}{ }^{\longrightarrow}\left(\mathbb{F}_{2}^{n}\right)
$$

\mathcal{F} and the stable cohomology of general linear groups

Let P and Q be two objects of $\mathcal{F}=\operatorname{Fonct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{F}}^{*}(P, Q) \xrightarrow{E_{n}^{*}} & \operatorname{Ext}_{\mathbb{F}_{2}\left[G L_{n}\right]-\bmod }^{*}\left(P\left(\mathbb{F}_{2}^{n}\right), Q\left(\mathbb{F}_{2}^{n}\right)\right) \\
& =H^{*}\left(G L_{n}, \operatorname{Hom}\left(P\left(\mathbb{F}_{2}^{n}\right), Q\left(\mathbb{F}_{2}^{n}\right)\right)\right)
\end{aligned}
$$

\mathcal{F} and the stable cohomology of general linear groups

Let P and Q be two objects of $\mathcal{F}=\operatorname{Fonct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{F}}^{*}(P, Q) \xrightarrow{E_{n}^{*}} & \operatorname{Ext}_{\mathbb{F}_{2}\left[G L_{n}\right]-\bmod }^{*}\left(P\left(\mathbb{F}_{2}{ }^{n}\right), Q\left(\mathbb{F}_{2}{ }^{n}\right)\right) \\
& =H^{*}\left(G L_{n}, \operatorname{Hom}\left(P\left(\mathbb{F}_{2}^{n}\right), Q\left(\mathbb{F}_{2}^{n}\right)\right)\right)
\end{aligned}
$$

Theorem (Dwyer)

If P and Q are finite (i.e. admit finite composition series),

$$
\begin{aligned}
\cdots \rightarrow & H^{*}\left(G L_{n}, \operatorname{Hom}\left(P\left(\mathbb{F}_{2}^{n}\right), Q\left(\mathbb{F}_{2}^{n}\right)\right)\right) \\
& \rightarrow H^{*}\left(G L_{n+1}, \operatorname{Hom}\left(P\left(\mathbb{F}_{2}^{n+1}\right), Q\left(\mathbb{F}_{2}^{n+1}\right)\right)\right) \rightarrow \ldots
\end{aligned}
$$

stabilizes. We denote by $H^{*}(G L, \operatorname{Hom}(P, Q))$ the stable value.

\mathcal{F} and the stable cohomology of general linear groups

Let P and Q be two objects of $\mathcal{F}=\operatorname{Fonct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{F}}^{*}(P, Q) \xrightarrow{E_{n}^{*}} & \operatorname{Ext}_{\mathbb{F}_{2}\left[G L_{n}\right]-\bmod }^{*}\left(P\left(\mathbb{F}_{2}{ }^{n}\right), Q\left(\mathbb{F}_{2}{ }^{n}\right)\right) \\
& =H^{*}\left(G L_{n}, \operatorname{Hom}\left(P\left(\mathbb{F}_{2}^{n}\right), Q\left(\mathbb{F}_{2}^{n}\right)\right)\right)
\end{aligned}
$$

Theorem (Dwyer)

If P and Q are finite (i.e. admit finite composition series),

$$
\begin{aligned}
\ldots \rightarrow H^{*} & \left(G L_{n}, \operatorname{Hom}\left(P\left(\mathbb{F}_{2}^{n}\right), Q\left(\mathbb{F}_{2}^{n}\right)\right)\right) \\
& \rightarrow H^{*}\left(G L_{n+1}, \operatorname{Hom}\left(P\left(\mathbb{F}_{2}^{n+1}\right), Q\left(\mathbb{F}_{2}^{n+1}\right)\right)\right) \rightarrow \ldots
\end{aligned}
$$

stabilizes. We denote by $H^{*}(G L, \operatorname{Hom}(P, Q))$ the stable value.

Theorem (Suslin)

$$
\operatorname{Ext}_{\mathcal{F}}^{*}(P, Q) \xrightarrow{\simeq} H^{*}(G L, \operatorname{Hom}(P, Q))
$$

for P and Q finite

Aim

$H: \mathbb{F}_{2}$-vector space equipped with a non-degenerate quadratic form

$$
O(H) \subset G L_{\operatorname{dim}(H)}
$$

Aim

$H: \mathbb{F}_{2}$-vector space equipped with a non-degenerate quadratic form

$$
O(H) \subset G L_{\operatorname{dim}(H)}
$$

Aim : Construct a "good" category $\mathcal{F}_{\text {quad }}$ related to orthogonal groups over \mathbb{F}_{2}

$$
\mathcal{F}_{\text {quad }} \xrightarrow{E_{H}} \mathbb{F}_{2}[O(H)]-\bmod
$$

$$
F \longmapsto F(H)
$$

Preliminaries

V : finite \mathbb{F}_{2}-vector space

Definition

A quadratic form over V is a function $q: V \rightarrow \mathbb{F}_{2}$ such that

$$
B(x, y)=q(x+y)+q(x)+q(y)
$$

defines a bilinear form

Remark

The bilinear form B does not determine the quadratic form q

Definition

A quadratic space $\left(V, q_{V}\right)$ is non-degenerate if the associated bilinear form is non singular

Properties of quadratic forms over \mathbb{F}_{2}

Lemma
 The bilinear form associated to a quadratic form is alternating

Properties of quadratic forms over \mathbb{F}_{2}

Lemma

The bilinear form associated to a quadratic form is alternating

Classification of non-singular alternating bilinear forms
A space V equipped with a non-singular alternating bilinear form admits a symplectic base
i.e. $\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right\}$ with $B\left(a_{i}, b_{j}\right)=\delta_{i, j}$ and $B\left(a_{i}, a_{j}\right)=B\left(b_{i}, b_{j}\right)=0$

Properties of quadratic forms over \mathbb{F}_{2}

Lemma

The bilinear form associated to a quadratic form is alternating

Classification of non-singular alternating bilinear forms
A space V equipped with a non-singular alternating bilinear form admits a symplectic base
i.e. $\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right\}$ with $B\left(a_{i}, b_{j}\right)=\delta_{i, j}$ and $B\left(a_{i}, a_{j}\right)=B\left(b_{i}, b_{j}\right)=0$

Consequence :

A non-degenerate quadratic space $(V, q v)$ has even dimension

Classification of non-degenerate quadratic forms over \mathbb{F}_{2}

In dimension 2

There are two non-isometric quadratic spaces

$q_{0}:$	H_{0}	\rightarrow	\mathbb{F}_{2}	$q_{1}:$	H_{1}		\rightarrow
\mathbb{F}_{2}							
a_{0}	\mapsto	0		a_{1}	\mapsto	1	
b_{0}	\mapsto	0			b_{1}	\mapsto	1
$a_{0}+b_{0}$	\mapsto	1			$a_{1}+b_{1}$	\mapsto	1

Classification of non-degenerate quadratic forms over \mathbb{F}_{2}

In dimension 2

There are two non-isometric quadratic spaces

$q_{0}:$	H_{0}	\rightarrow	\mathbb{F}_{2}	$q_{1}:$	H_{1}		\rightarrow
\mathbb{F}_{2}							
a_{0}	\mapsto	0		a_{1}	\mapsto	1	
b_{0}	\mapsto	0			b_{1}	\mapsto	1
$a_{0}+b_{0}$	\mapsto	1			$a_{1}+b_{1}$	\mapsto	1

Proposition

$$
H_{0} \perp H_{0} \simeq H_{1} \perp H_{1}
$$

Classification of non-degenerate quadratic forms over \mathbb{F}_{2}

In dimension 2

There are two non-isometric quadratic spaces

q_{0}	H_{0}	\rightarrow	\mathbb{F}_{2}	q_{1} :	H_{1}	\rightarrow	\mathbb{F}_{2}
	a_{0}	\mapsto	0		a_{1}	\mapsto	1
	b_{0}	\mapsto	0		b_{1}	\mapsto	1
	$a_{0}+b_{0}$	\mapsto	1		$a_{1}+b_{1}$	\mapsto	1

Proposition

$$
H_{0} \perp H_{0} \simeq H_{1} \perp H_{1}
$$

In dimension $2 m$

There are two non-isometric quadratic spaces

$$
H_{0}^{\perp m} \quad \text { and } \quad H_{0}^{\perp(m-1)} \perp H_{1}
$$

The category \mathcal{E}_{q}

Definition of \mathcal{E}_{q}

- $\mathrm{Ob}\left(\mathcal{E}_{q}\right)$: non-degenerate quadratic spaces $\left(V, q_{v}\right)$
- morphisms are linear applications which preserve the quadratic form

The category \mathcal{E}_{q}

Definition of \mathcal{E}_{q}

- $\mathrm{Ob}\left(\mathcal{E}_{q}\right)$: non-degenerate quadratic spaces $\left(V, q_{v}\right)$
- morphisms are linear applications which preserve the quadratic form

Natural Idea

$$
\text { Replace } \mathcal{F}=\operatorname{Func}\left(\mathcal{E}^{f}, \mathcal{E}\right) \text { by } \operatorname{Func}\left(\mathcal{E}_{q}, \mathcal{E}\right)
$$

The category \mathcal{E}_{q}

Definition of \mathcal{E}_{q}

- $\mathrm{Ob}\left(\mathcal{E}_{q}\right)$: non-degenerate quadratic spaces $\left(V, q_{v}\right)$
- morphisms are linear applications which preserve the quadratic form

Natural Idea

Replace $\mathcal{F}=\operatorname{Func}\left(\mathcal{E}^{f}, \mathcal{E}\right)$ by $\operatorname{Func}\left(\mathcal{E}_{q}, \mathcal{E}\right)$

Proposition

Any morphism of \mathcal{E}_{q} is a monomorphism

- \mathcal{E}_{q} does not have enough morphisms : the category $\operatorname{Func}\left(\mathcal{E}_{q}, \mathcal{E}\right)$ does not have good properties
- we seek to add orthogonal projections formally to \mathcal{E}_{q}

The category $\operatorname{coSp}(\mathcal{D})$ of Bénabou

Definition

Let \mathcal{D} be a category equipped with push-outs
The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

The category $\operatorname{coSp}(\mathcal{D})$ of Bénabou

Definition

Let \mathcal{D} be a category equipped with push-outs
The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{coSp}(\mathcal{D})$ are those of \mathcal{D}

The category $\operatorname{coSp}(\mathcal{D})$ of Bénabou

Definition

Let \mathcal{D} be a category equipped with push-outs
The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{coSp}(\mathcal{D})$ are those of \mathcal{D}
$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B)=\{A \rightarrow D \leftarrow B\} / \sim$

The category $\operatorname{coSp}(\mathcal{D})$ of Bénabou

Definition

Let \mathcal{D} be a category equipped with push-outs
The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{coSp}(\mathcal{D})$ are those of \mathcal{D}
$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B)=\{A \rightarrow D \leftarrow B\} / \sim$

The category $\operatorname{coSp}(\mathcal{D})$ of Bénabou

Definition

Let \mathcal{D} be a category equipped with push-outs
The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{coSp}(\mathcal{D})$ are those of \mathcal{D}
$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B)=\{A \rightarrow D \leftarrow B\} / \sim$

The category $\operatorname{coSp}(\mathcal{D})$ of Bénabou

Definition

Let \mathcal{D} be a category equipped with push-outs
The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{coSp}(\mathcal{D})$ are those of \mathcal{D}
$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B)=\{A \rightarrow D \leftarrow B\} / \sim$

The category $\operatorname{coSp}(\mathcal{D})$ of Bénabou

Definition

Let \mathcal{D} be a category equipped with push-outs
The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{coSp}(\mathcal{D})$ are those of \mathcal{D}

$$
\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B)=\{A \rightarrow D \leftarrow B\} / \sim
$$

we denote by $[A \rightarrow D \leftarrow B]$ an element of $\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B)$

Composition in the category $\operatorname{coSp}(\mathcal{D})$

$$
\begin{aligned}
& \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B, C) \rightarrow \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, C) \\
& \quad([A \rightarrow D \leftarrow B],[B \rightarrow E \leftarrow C])
\end{aligned}
$$

Composition in the category $\operatorname{coSp}(\mathcal{D})$

$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B, C) \rightarrow \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, C)$
$\quad([A \rightarrow D \leftarrow B],[B \rightarrow E \leftarrow C])$

Composition in the category $\operatorname{coSp}(\mathcal{D})$

$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B, C) \rightarrow \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, C)$ $([A \rightarrow D \leftarrow B],[B \rightarrow E \leftarrow C])$

Composition in the category $\operatorname{coSp}(\mathcal{D})$

$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B, C) \rightarrow \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, C)$ $([A \rightarrow D \leftarrow B],[B \rightarrow E \leftarrow C])$

Composition in the category $\operatorname{coSp}(\mathcal{D})$

$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B, C) \rightarrow \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, C)$ $([A \rightarrow D \leftarrow B],[B \rightarrow E \leftarrow C]) \mapsto[A \rightarrow S \leftarrow C]$

Dual construction : the category $\operatorname{Sp}(\mathcal{D})$

Definition

Let \mathcal{D} be a category equipped with pullbacks
The category $\operatorname{Sp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{Sp}(\mathcal{D})$ are those of \mathcal{D}

Dual construction : the category $\operatorname{Sp}(\mathcal{D})$

Definition

Let \mathcal{D} be a category equipped with pullbacks
The category $\operatorname{Sp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{Sp}(\mathcal{D})$ are those of \mathcal{D}

Dual construction : the category $\operatorname{Sp}(\mathcal{D})$

Definition

Let \mathcal{D} be a category equipped with pullbacks
The category $\operatorname{Sp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{Sp}(\mathcal{D})$ are those of \mathcal{D}

Dual construction : the category $\operatorname{Sp}(\mathcal{D})$

Definition

Let \mathcal{D} be a category equipped with pullbacks
The category $\operatorname{Sp}(\mathcal{D})$ is defined by :

- the objects of $\operatorname{Sp}(\mathcal{D})$ are those of \mathcal{D}

Pseudo push-outs in \mathcal{E}_{q}

Remark

The category \mathcal{E}_{q} has neither push-outs nor pullbacks

Pseudo push-outs in \mathcal{E}_{q}

Remark

The category \mathcal{E}_{q} has neither push-outs nor pullbacks

Decomposition of morphisms of \mathcal{E}_{q}

For $f: V \rightarrow W$, let V^{\prime} be the orthogonal complement of $f(V)$ in W Then $W=f(V) \perp V^{\prime}$ so $W \simeq V \perp V^{\prime}$
We will write

$$
f: V \rightarrow V \perp V^{\prime}
$$

Pseudo push-outs in \mathcal{E}_{q}

Remark

The category \mathcal{E}_{q} has neither push-outs nor pullbacks

Decomposition of morphisms of \mathcal{E}_{q}

For $f: V \rightarrow W$, let V^{\prime} be the orthogonal complement of $f(V)$ in W Then $W=f(V) \perp V^{\prime}$ so $W \simeq V \perp V^{\prime}$
We will write

$$
f: V \rightarrow V \perp V^{\prime}
$$

Definition of the pseudo push-out

$$
\begin{array}{|c}
V \\
V \\
V \perp V^{\prime \prime}
\end{array}
$$

Pseudo push-outs in \mathcal{E}_{q}

Remark

The category \mathcal{E}_{q} has neither push-outs nor pullbacks

Decomposition of morphisms of \mathcal{E}_{q}

For $f: V \rightarrow W$, let V^{\prime} be the orthogonal complement of $f(V)$ in W
Then $W=f(V) \perp V^{\prime}$ so $W \simeq V \perp V^{\prime}$
We will write

$$
f: V \rightarrow V \perp V^{\prime}
$$

Definition of the pseudo push-out

The category \mathcal{T}_{q}

In the definition of $\operatorname{coSp}(\mathcal{D})$: universality of the push-out plays no role

Definition of the category \mathcal{T}_{q}

- the objects of \mathcal{T}_{q} are those of \mathcal{E}_{q}

The category \mathcal{T}_{q}

In the definition of $\operatorname{coSp}(\mathcal{D})$: universality of the push-out plays no role

Definition of the category \mathcal{T}_{q}

- the objects of \mathcal{T}_{q} are those of \mathcal{E}_{q}
- $\operatorname{Hom}_{\mathcal{T}_{q}}(V, W)=\{V \rightarrow X \leftarrow W\} / \sim$

The category \mathcal{T}_{q}

In the definition of $\operatorname{coSp}(\mathcal{D})$: universality of the push-out plays no role

Definition of the category \mathcal{T}_{q}

- the objects of \mathcal{T}_{q} are those of \mathcal{E}_{q}
- $\operatorname{Hom}_{\mathcal{T}_{q}}(V, W)=\{V \rightarrow X \leftarrow W\} / \sim$

The category \mathcal{T}_{q}

In the definition of $\operatorname{coSp}(\mathcal{D})$: universality of the push-out plays no role

Definition of the category \mathcal{T}_{q}

- the objects of \mathcal{T}_{q} are those of \mathcal{E}_{q}
- $\operatorname{Hom}_{\tau_{q}}(V, W)=\{V \rightarrow X \leftarrow W\} / \sim$

The category \mathcal{T}_{q}

In the definition of $\operatorname{coSp}(\mathcal{D})$: universality of the push-out plays no role

Definition of the category \mathcal{I}_{q}

- the objects of \mathcal{T}_{q} are those of \mathcal{E}_{q}
- $\operatorname{Hom}_{\tau_{q}}(V, W)=\{V \rightarrow X \leftarrow W\} / \sim$

\sim : equivalence relation generated by this relation

Composition in the category \mathcal{T}_{q}

$$
\begin{gathered}
\operatorname{Hom}_{\mathcal{T}_{q}}(V, W) \times \operatorname{Hom}_{\mathcal{T}_{q}}(W, Y) \rightarrow \operatorname{Hom}_{\mathcal{T}_{q}}(V, Y) \\
\left(\left[V \rightarrow W \perp W^{\prime} \leftarrow W\right],\left[W \rightarrow W \perp W^{\prime \prime} \leftarrow Y\right]\right) \mapsto\left[V \rightarrow W \perp W^{\prime} \perp W^{\prime \prime} \leftarrow Y\right]
\end{gathered}
$$

Composition in the category \mathcal{T}_{q}

$$
\begin{gathered}
\operatorname{Hom}_{\mathcal{T}_{q}}(V, W) \times \operatorname{Hom}_{\mathcal{T}_{q}}(W, Y) \rightarrow \operatorname{Hom}_{\mathcal{T}_{q}}(V, Y) \\
\left(\left[V \rightarrow W \perp W^{\prime} \leftarrow W\right],\left[W \rightarrow W \perp W^{\prime \prime} \leftarrow Y\right]\right) \mapsto\left[V \rightarrow W \perp W^{\prime} \perp W^{\prime \prime} \leftarrow Y\right]
\end{gathered}
$$

Retractions in \mathcal{T}_{q}

Proposition

For $f: V \rightarrow W$ a morphism of \mathcal{E}_{q}, we have :

$$
[W \xrightarrow{\mathrm{Id}} W \stackrel{f}{\leftarrow} V] \circ[V \xrightarrow{f} W \stackrel{\text { Id }}{\leftrightarrows} W]=\operatorname{Id} V
$$

that is $[W \xrightarrow{\mathrm{Id}} W \stackrel{f}{\leftarrow} V]$ is a retraction of $[V \xrightarrow{f} W \stackrel{\text { Id }}{\leftrightarrows} W]$

II Definition and properties of the category $\mathcal{F}_{\text {quad }}$

Definition

$$
\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)
$$

II Definition and properties of the category $\mathcal{F}_{\text {quad }}$

Definition

$$
\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)
$$

Theorem

The category $\mathcal{F}_{\text {quad }}$ is abelian, equipped with a tensor product and has enough projective and injective objects.

II Definition and properties of the category $\mathcal{F}_{\text {quad }}$

Definition

$$
\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)
$$

Theorem

The category $\mathcal{F}_{\text {quad }}$ is abelian, equipped with a tensor product and has enough projective and injective objects.

Question

Classification of the simple objects of $\mathcal{F}_{\text {quad }}$

Reminder : A functor S is simple if it is not the zero functor and if its only subfunctors are 0 and S

The forgetful functor

Definition of the forgetful functor ϵ

$$
\epsilon: \mathcal{T}_{q} \rightarrow \mathcal{E}^{f}
$$

The forgetful functor

Definition of the forgetful functor ϵ

$$
\epsilon: \mathcal{T}_{q} \rightarrow \mathcal{E}^{f}
$$

- On objects :

$$
\epsilon(V, q v)=V
$$

The forgetful functor

Definition of the forgetful functor ϵ

$$
\epsilon: \mathcal{T}_{q} \rightarrow \mathcal{E}^{f}
$$

- On objects :

$$
\epsilon\left(V, q_{V}\right)=V
$$

- On morphisms :

$$
\epsilon\left(\left[V \xrightarrow{f} W \perp W^{\prime} \stackrel{g}{\leftarrow} W\right]\right)=p_{g} \circ f
$$

where p_{g} is the orthogonal projection associated to g

Relating $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$ and $\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)$

$$
\mathcal{T}_{q} \xrightarrow{\epsilon} \mathcal{E}^{f}
$$

Relating $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$ and $\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)$

$$
\mathcal{T}_{q} \xrightarrow{\epsilon} \mathcal{E}^{f} \xrightarrow{F} \mathcal{E}
$$

for \mathcal{F} an object of $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$

Relating $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$ and $\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)$

$$
\mathcal{T}_{q} \xrightarrow{\epsilon} \mathcal{E}^{f} \xrightarrow{F} \mathcal{E}
$$

for F an object of $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$

Theorem

The functor $\iota: \mathcal{F} \rightarrow \mathcal{F}_{\text {quad }}$ defined by $\iota(F)=F \circ \epsilon$

Relating $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$ and $\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)$

$$
\mathcal{T}_{q} \xrightarrow{\epsilon} \mathcal{E}^{f} \xrightarrow{F} \mathcal{E}
$$

for F an object of $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$

Theorem

The functor $\iota: \mathcal{F} \rightarrow \mathcal{F}_{\text {quad }}$ defined by $\iota(F)=F \circ \epsilon$

- is exact and fully faithful

Relating $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$ and $\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)$

$$
\mathcal{T}_{q} \xrightarrow{\epsilon} \mathcal{E}^{f} \xrightarrow{F} \mathcal{E}
$$

for F an object of $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$

Theorem

The functor $\iota: \mathcal{F} \rightarrow \mathcal{F}_{\text {quad }}$ defined by $\iota(F)=F \circ \epsilon$

- is exact and fully faithful
- $\iota(\mathcal{F})$ is a thick sub-category of $\mathcal{F}_{\text {quad }}$

Relating $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$ and $\mathcal{F}_{\text {quad }}=\operatorname{Funct}\left(\mathcal{T}_{q}, \mathcal{E}\right)$

$$
\mathcal{T}_{q} \xrightarrow{\epsilon} \mathcal{E}^{f} \xrightarrow{F} \mathcal{E}
$$

for F an object of $\mathcal{F}=\operatorname{Funct}\left(\mathcal{E}^{f}, \mathcal{E}\right)$

Theorem

The functor $\iota: \mathcal{F} \rightarrow \mathcal{F}_{\text {quad }}$ defined by $\iota(F)=F \circ \epsilon$

- is exact and fully faithful
- $\iota(\mathcal{F})$ is a thick sub-category of $\mathcal{F}_{\text {quad }}$
- If S is a simple object of $\mathcal{F}, \iota(S)$ is a simple object of $\mathcal{F}_{\text {quad }}$

III The category $\mathcal{F}_{\text {iso }}$

III The category $\mathcal{F}_{\text {iso }}$

Definition of $\mathcal{E}_{q}^{\text {deg }}$

- $\mathrm{Ob}\left(\mathcal{E}_{q}^{\text {deg }}\right): \mathbb{F}_{2}$-quadratic spaces $\left(V, q_{v}\right)$ (possibly degenerate)

III The category $\mathcal{F}_{\text {iso }}$

Definition of $\mathcal{E}_{q}^{\mathrm{deg}}$

- $\mathrm{Ob}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right): \mathbb{F}_{2}$-quadratic spaces $\left(V, q_{v}\right)$ (possibly degenerate)
- morphisms : linear monomorphisms which preserve the quadratic form

III The category $\mathcal{F}_{\text {iso }}$

Definition of $\mathcal{E}_{q}^{\mathrm{deg}}$

- $\mathrm{Ob}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right): \mathbb{F}_{2}$-quadratic spaces $\left(V, q_{v}\right)$ (possibly degenerate)
- morphisms : linear monomorphisms which preserve the quadratic form
$\mathcal{E}_{q}^{\text {deg }}$ contains objects of odd dimension

III The category $\mathcal{F}_{\text {iso }}$

Definition of $\mathcal{E}_{q}^{\text {deg }}$

- $\mathrm{Ob}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right): \mathbb{F}_{2}$-quadratic spaces $\left(V, q_{v}\right)$ (possibly degenerate)
- morphisms : linear monomorphisms which preserve the quadratic form
$\mathcal{E}_{q}^{\text {deg }}$ contains objects of odd dimension
Proposition
$\mathcal{E}_{q}^{\text {deg }}$ has pullbacks

III The category $\mathcal{F}_{\text {iso }}$

Definition of $\mathcal{E}_{q}^{\text {deg }}$

- $\operatorname{Ob}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right): \mathbb{F}_{2}$-quadratic spaces $\left(V, q_{v}\right)$ (possibly degenerate)
- morphisms : linear monomorphisms which preserve the quadratic form
$\mathcal{E}_{q}^{\text {deg }}$ contains objects of odd dimension
Proposition

$$
\mathcal{E}_{q}^{\text {deg }} \text { has pullbacks }
$$

Consequence

$$
\operatorname{Sp}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right) \text { is defined }
$$

The category $\mathcal{F}_{\text {iso }}$

Definition

$$
\mathcal{F}_{i s o}=\operatorname{Funct}\left(\operatorname{Sp}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right), \mathcal{E}\right)
$$

The category $\mathcal{F}_{\text {iso }}$

Definition

$$
\mathcal{F}_{\text {iso }}=\operatorname{Funct}\left(\operatorname{Sp}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right), \mathcal{E}\right)
$$

Theorem

There exists a functor

$$
\kappa: \mathcal{F}_{\text {iso }} \rightarrow \mathcal{F}_{\text {quad }}
$$

The category $\mathcal{F}_{\text {iso }}$

Definition

$$
\mathcal{F}_{\text {iso }}=\operatorname{Funct}\left(\operatorname{Sp}\left(\mathcal{E}_{q}^{\operatorname{deg}}\right), \mathcal{E}\right)
$$

Theorem

There exists a functor

$$
\kappa: \mathcal{F}_{\text {iso }} \rightarrow \mathcal{F}_{\text {quad }}
$$

- κ is exact and fully faithful

The category $\mathcal{F}_{\text {iso }}$

Definition

$$
\mathcal{F}_{\text {iso }}=\operatorname{Funct}\left(\operatorname{Sp}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right), \mathcal{E}\right)
$$

Theorem

There exists a functor

$$
\kappa: \mathcal{F}_{\text {iso }} \rightarrow \mathcal{F}_{\text {quad }}
$$

- κ is exact and fully faithful
- If S is a simple object of $\mathcal{F}, \iota(S)$ is a simple object of $\mathcal{F}_{\text {quad }}$

The category $\mathcal{F}_{\text {iso }}$

Definition

$$
\mathcal{F}_{\text {iso }}=\operatorname{Funct}\left(\operatorname{Sp}\left(\mathcal{E}_{q}^{\text {deg }}\right), \mathcal{E}\right)
$$

Theorem

There exists a functor

$$
\kappa: \mathcal{F}_{\text {iso }} \rightarrow \mathcal{F}_{\text {quad }}
$$

- κ is exact and fully faithful
- If S is a simple object of $\mathcal{F}, \iota(S)$ is a simple object of $\mathcal{F}_{\text {quad }}$

$$
\mathcal{T}_{q} \rightarrow \operatorname{Sp}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right)
$$

The category $\mathcal{F}_{\text {iso }}$

Definition

$$
\mathcal{F}_{i s o}=\operatorname{Funct}\left(\operatorname{Sp}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right), \mathcal{E}\right)
$$

Theorem

There exists a functor

$$
\kappa: \mathcal{F}_{\text {iso }} \rightarrow \mathcal{F}_{\text {quad }}
$$

- κ is exact and fully faithful
- If S is a simple object of $\mathcal{F}, \iota(S)$ is a simple object of $\mathcal{F}_{\text {quad }}$

$$
\begin{aligned}
& \mathcal{T}_{q} \rightarrow \operatorname{Sp}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right) \xrightarrow{F} \mathcal{E} \\
& \text { for } F \text { an object of } \mathcal{F}_{\text {iso }}
\end{aligned}
$$

The category $\mathcal{F}_{\text {iso }}$

Theorem

There is a natural equivalence of categories

$$
\mathcal{F}_{\text {iso }} \simeq \prod_{V \in \mathcal{S}} \mathbb{F}_{2}[O(V)]-\bmod
$$

where \mathcal{S} is a set of representatives of isometry classes of quadratic spaces (possibly degenerate)

The category $\mathcal{F}_{\text {iso }}$

Theorem

There is a natural equivalence of categories

$$
\mathcal{F}_{\text {iso }} \simeq \prod_{V \in \mathcal{S}} \mathbb{F}_{2}[O(V)]-\bmod
$$

where \mathcal{S} is a set of representatives of isometry classes of quadratic spaces (possibly degenerate)

Definition

Iso v is the functor of $\mathcal{F}_{\text {iso }}$ corresponding to $\mathbb{F}_{2}[O(V)]$ by this equivalence

Do we have all the simple objects of $\mathcal{F}_{\text {quad }}$?

Do we have all the simple objects of $\mathcal{F}_{\text {quad }}$?

- there exist simple objects of $\mathcal{F}_{\text {quad }}$ which are not in the image of the functors ι and κ

Do we have all the simple objects of $\mathcal{F}_{\text {quad }}$?

- there exist simple objects of $\mathcal{F}_{\text {quad }}$ which are not in the image of the functors ι and κ
- standard way to obtain a classification of the simple objects of a category : decompose the projective generators

IV Study of standard projective objects

Proposition (Yoneda lemma)

- For V an object of \mathcal{T}_{q}, the functor defined by

$$
P_{V}(W)=\mathbb{F}_{2}\left[\operatorname{Hom}_{\tau_{q}}(V, W)\right]
$$

is a projective object of $\mathcal{F}_{\text {quad }}$

- $\left\{P_{V} \mid V \in \mathcal{S}\right\}$: set of projective generators of $\mathcal{F}_{\text {quad }}$ \mathcal{S} : set of representative of isometry classes of $\mathrm{Ob}\left(\mathcal{T}_{q}\right)$

IV Study of standard projective objects

Proposition (Yoneda lemma)

- For V an object of \mathcal{T}_{q}, the functor defined by

$$
P_{V}(W)=\mathbb{F}_{2}\left[\operatorname{Hom}_{\tau_{q}}(V, W)\right]
$$

is a projective object of $\mathcal{F}_{\text {quad }}$

- $\left\{P_{V} \mid V \in \mathcal{S}\right\}$: set of projective generators of $\mathcal{F}_{\text {quad }}$ \mathcal{S} : set of representative of isometry classes of $\operatorname{Ob}\left(\mathcal{T}_{q}\right)$

Projective generators of \mathcal{F}

For E an object of \mathcal{E}^{f}

$$
P_{E}^{\mathcal{F}}(X)=\mathbb{F}_{2}\left[\operatorname{Hom}_{\mathcal{E}^{f}}(E, X)\right]
$$

is a projective object of \mathcal{F}

Rank of morphisms

Definition

Let $[V \xrightarrow{f} Y \stackrel{g}{\curvearrowleft} W]$ be an element of $\operatorname{Hom}_{\mathcal{T}_{q}}(V, W)$

Rank of morphisms

Definition

Let $\left[V \stackrel{f}{\rightarrow} Y \stackrel{g}{\stackrel{g}{L}} W\right.$] be an element of $\operatorname{Hom}_{\mathcal{T}_{q}}(V, W)$

$$
\begin{aligned}
& D \longrightarrow W \quad D \in \operatorname{Ob}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right) \\
& \stackrel{\downarrow}{V} \underset{f}{ } \quad \stackrel{V^{g}}{ }
\end{aligned}
$$

Rank of morphisms

Definition

Let $\left[V \xrightarrow{f} Y \stackrel{g}{\stackrel{g}{L}} W\right.$] be an element of $\operatorname{Hom}_{\mathcal{T}_{q}}(V, W)$
the rank of $[V \xrightarrow{f} Y \stackrel{g}{\leftarrow} W]$ is the dimension of D

Rank of morphisms

Definition

Let $\left[V \xrightarrow{f} Y \stackrel{g}{\stackrel{g}{L}} W\right.$] be an element of $\operatorname{Hom}_{\mathcal{T}_{q}}(V, W)$

$$
D \longrightarrow W \quad D \in \operatorname{Ob}\left(\mathcal{E}_{q}^{\mathrm{deg}}\right)
$$

the rank of $[V \xrightarrow{f} Y \stackrel{g}{\llcorner } W]$ is the dimension of D

Notation

$\operatorname{Hom}_{\mathcal{T}_{q}}^{(i)}(V, W)$ the set of morphisms of $\operatorname{Hom}_{\mathcal{T}_{q}}(V, W)$ of rank $\leq i$

Rank filtration of the projective objects

Proposition

The functors $P_{V}^{(i)}$ for $i=0, \ldots, \operatorname{dim}(V)$:

$$
P_{V}^{(i)}(W)=\mathbb{F}_{2}\left[\operatorname{Hom}_{\mathcal{T}_{q}}^{(i)}(V, W)\right]
$$

define an increasing filtration of the functor P_{V}

$$
0 \subset P_{V}^{(0)} \subset P_{V}^{(1)} \subset \ldots \subset P_{V}^{(\operatorname{dim}(V)-1)} \subset P_{V}^{(\operatorname{dim}(V))}=P_{V}
$$

The extremities of the filtration

$$
0 \subset P_{V}^{(0)} \subset P_{V}^{(1)} \subset \ldots \subset P_{V}^{(\operatorname{dim}(V)-1)} \subset P_{V}^{(\operatorname{dim}(V))}=P_{V}
$$

The extremities of the filtration

$$
0 \subset P_{V}^{(0)} \subset P_{V}^{(1)} \subset \ldots \subset P_{V}^{(\operatorname{dim}(V)-1)} \subset P_{V}^{(\operatorname{dim}(V))}=P_{V}
$$

Theorem
(1) $P_{V}^{(0)} \simeq \iota\left(P_{\epsilon(V)}^{\mathcal{F}}\right)$ where $\iota: \mathcal{F} \rightarrow \mathcal{F}_{\text {quad }}$
(2) The functor $P_{V}^{(0)}$ is a direct summand of P_{V}

The extremities of the filtration

$$
0 \subset P_{V}^{(0)} \subset P_{V}^{(1)} \subset \ldots \subset P_{V}^{(\operatorname{dim}(V)-1)} \subset P_{V}^{(\operatorname{dim}(V))}=P_{V}
$$

Theorem

(1) $P_{V}^{(0)} \simeq \iota\left(P_{\epsilon(V)}^{\mathcal{F}}\right)$ where $\iota: \mathcal{F} \rightarrow \mathcal{F}_{\text {quad }}$
(2) The functor $P_{V}^{(0)}$ is a direct summand of P_{V}

Theorem

$$
P_{V} / P_{V}^{(\operatorname{dim}(V)-1)} \simeq \kappa\left(\operatorname{Iso}_{V}\right)
$$

where $\kappa: \mathcal{F}_{\text {iso }} \rightarrow \mathcal{F}_{\text {quad }}$

Decomposition of the functors $P_{H_{0}}$ and $P_{H_{1}}$

$$
0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \quad \text { for } \epsilon \in\{0,1\}
$$

Decomposition of the functors $P_{H_{0}}$ and $P_{H_{1}}$

$$
0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \quad \text { for } \epsilon \in\{0,1\}
$$

Theorem

For the functors $P_{H_{0}}$ and $P_{H_{1}}$ the rank filtration splits

$$
\begin{aligned}
& P_{H_{0}}=P_{H_{0}}^{(0)} \oplus P_{H_{0}}^{(1)} / P_{H_{0}}^{(0)} \oplus P_{H_{0}}^{(2)} / P_{H_{0}}^{(1)} \\
& P_{H_{1}}=P_{H_{1}}^{(0)} \oplus P_{H_{1}}^{(1)} / P_{H_{1}}^{(0)} \oplus P_{H_{1}}^{(2)} / P_{H_{1}}^{(1)}
\end{aligned}
$$

Decomposition of the functors $P_{H_{0}}$ and $P_{H_{1}}$

$$
0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \quad \text { for } \epsilon \in\{0,1\}
$$

Theorem

For the functors $P_{H_{0}}$ and $P_{H_{1}}$ the rank filtration splits

$$
\begin{aligned}
& P_{H_{0}}=\iota\left(P_{\mathbb{F}_{2} \oplus 2}^{\mathcal{F}}\right) \oplus P_{H_{0}}^{(1)} / P_{H_{0}}^{(0)} \oplus P_{H_{0}}^{(2)} / P_{H_{0}}^{(1)} \\
& P_{H_{1}}=\iota\left(P_{\mathbb{F}_{2} \oplus 2}^{\mathcal{F}}\right) \oplus P_{H_{1}}^{(1)} / P_{H_{1}}^{(0)} \oplus P_{H_{1}}^{(2)} / P_{H_{1}}^{(1)}
\end{aligned}
$$

Decomposition of the functors $P_{H_{0}}$ and $P_{H_{1}}$

$$
0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \quad \text { for } \epsilon \in\{0,1\}
$$

Theorem

For the functors $P_{H_{0}}$ and $P_{H_{1}}$ the rank filtration splits

$$
\begin{aligned}
& P_{H_{0}}=\iota\left(P_{\mathbb{F}_{2} \oplus 2}^{\mathcal{F}}\right) \oplus P_{H_{0}}^{(1)} / P_{H_{0}}^{(0)} \oplus \kappa\left(\mathrm{Iso}_{H_{0}}\right) \\
& P_{\mathrm{H}_{1}}=\iota\left(P_{\mathbb{F}_{2} \oplus 2}^{\mathcal{T}}\right) \oplus P_{H_{1}}^{(1)} / P_{H_{1}}^{(0)} \oplus \kappa\left(\mathrm{Iso}_{H_{1}}\right)
\end{aligned}
$$

Decomposition of the functors $P_{H_{0}}$ and $P_{H_{1}}$

$$
0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \quad \text { for } \epsilon \in\{0,1\}
$$

Theorem

For the functors $P_{H_{0}}$ and $P_{H_{1}}$ the rank filtration splits

$$
\begin{gathered}
P_{H_{0}}=\iota\left(P_{\mathbb{F}_{2} \oplus 2}^{\mathcal{F}}\right) \oplus\left(\operatorname{Mix}_{0,1}{ }^{\oplus 2} \oplus \operatorname{Mix}_{1,1}\right) \oplus \kappa\left(\mathrm{IsO}_{H_{0}}\right) \\
P_{\mathrm{H}_{1}}=\iota\left(P_{\mathbb{F}_{2} \oplus 2}^{\mathcal{F}}\right) \oplus \operatorname{Mix}_{1,1} \oplus 3 \oplus \kappa\left(\mathrm{Iso}_{H_{1}}\right)
\end{gathered}
$$

Mix $_{0,1}$, Mix $_{1,1}$: two elements of a new family of functors called "mixed functors"

Decomposition of the functors $P_{H_{0}}$ and $P_{H_{1}}$

$$
0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \quad \text { for } \epsilon \in\{0,1\}
$$

Theorem

For the functors $P_{H_{0}}$ and $P_{H_{1}}$ the rank filtration splits

$$
\begin{gathered}
P_{H_{0}}=\iota\left(P_{\mathbb{F}_{2} \oplus 2}^{\mathcal{F}}\right) \oplus\left(\operatorname{Mix}_{0,1}{ }^{\oplus 2} \oplus \operatorname{Mix}_{1,1}\right) \oplus \kappa\left(\mathrm{IsO}_{0}\right) \\
P_{\mathrm{H}_{1}}=\iota\left(P_{\mathbb{F}_{2} \oplus 2}^{\mathcal{F}}\right) \oplus \operatorname{Mix}_{1,1}{ }^{\oplus 3} \oplus \kappa\left(\mathrm{Iso}_{H_{1}}\right)
\end{gathered}
$$

Mix $_{0,1}$, Mix $_{1,1}$: two elements of a new family of functors called "mixed functors"

Corollary

Classification of simple objects S of $\mathcal{F}_{\text {quad }}$ such that $S\left(H_{0}\right) \neq\{0\}$ or $S\left(H_{1}\right) \neq\{0\}$

The functors $\mathrm{Mix}_{0,1}$ and $\mathrm{Mix}_{1,1}$

$\epsilon \in\{0,1\}$
(x, ϵ) : the degenerate quadratic space generated by x such that $q(x)=\epsilon$
Proposition
$\operatorname{Mix}_{\epsilon, 1}$ is isomorphic to a sub-functor of $\iota\left(P_{\mathbb{F}_{2}}^{\mathcal{F}}\right) \otimes \kappa\left(\operatorname{IsO}_{(x, \epsilon)}\right)$

The functors $\mathrm{Mix}_{0,1}$ and $\mathrm{Mix}_{1,1}$

$\epsilon \in\{0,1\}$
(x, ϵ) : the degenerate quadratic space generated by x such that $q(x)=\epsilon$
Proposition
Mix $_{\epsilon, 1}$ is isomorphic to a sub-functor of $\iota\left(P_{\mathbb{F}_{2}}^{\mathcal{F}}\right) \otimes \kappa\left(\operatorname{Iso}_{(x, \epsilon)}\right)$

The composition factors of $\mathrm{Mix}_{\epsilon, 1}$ are sub-quotients of

$$
\iota\left(\Lambda^{n}\right) \otimes \kappa\left(\operatorname{Iso}_{(x, \epsilon)}\right) \text { for } n \geq 0
$$

The functors $\mathrm{Mix}_{0,1}$ and $\mathrm{Mix}_{1,1}$

$\epsilon \in\{0,1\}$
(x, ϵ) : the degenerate quadratic space generated by x such that $q(x)=\epsilon$

Proposition

Mix $_{\epsilon, 1}$ is isomorphic to a sub-functor of $\iota\left(P_{\mathbb{F}_{2}}^{\mathcal{F}}\right) \otimes \kappa\left(\operatorname{Iso}_{(x, \epsilon)}\right)$

The composition factors of $\mathrm{Mix}_{\epsilon, 1}$ are sub-quotients of

$$
\iota\left(\Lambda^{n}\right) \otimes \kappa\left(\operatorname{Iso}_{(x, \epsilon)}\right) \text { for } n \geq 0
$$

Conjecture

Simple objects of $\mathcal{F}_{\text {quad }}$ are sub-quotients of tensor products between a simple functor of \mathcal{F} and a simple functor of $\mathcal{F}_{\text {iso }}$

