Introduction	I Preliminaries	II Definition	III The category J- iso	IV Study of standard projective objects

The functor category \mathcal{F}_{quad} associated to quadratic spaces over \mathbb{F}_2

Christine VESPA

University Paris 13

June 26, 2006

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Motivation : The category \mathcal{F}

Definition

 $\mathcal{F} = \operatorname{Funct}(\mathcal{E}^f, \mathcal{E})$

 \mathcal{E} : category of \mathbb{F}_2 -vector spaces

 \mathcal{E}^{f} : category of finite dimensional $\mathbb{F}_2\text{-vector spaces}$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Motivation : The category \mathcal{F}

Definition

 $\mathcal{F} = \operatorname{Funct}(\mathcal{E}^f, \mathcal{E})$

 \mathcal{E} : category of \mathbb{F}_2 -vector spaces \mathcal{E}^f : category of finite dimensional \mathbb{F}_2 -vector spaces

The category $\mathcal F$ is closely related to general linear groups over $\mathbb F_2$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Motivation : The category \mathcal{F}

Definition

 $\mathcal{F} = \operatorname{Funct}(\mathcal{E}^f, \mathcal{E})$

 \mathcal{E} : category of \mathbb{F}_2 -vector spaces \mathcal{E}^f : category of finite dimensional \mathbb{F}_2 -vector spaces

The category ${\mathcal F}$ is closely related to general linear groups over ${\mathbb F}_2$

Example : Evaluation functors

$$\mathcal{F} \xrightarrow{E_n} \mathbb{F}_2[GL_n] - \mathrm{mod}$$

$$F \longmapsto F(\mathbb{F}_2^n)$$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects

${\mathcal F}$ and the stable cohomology of general linear groups

Let *P* and *Q* be two objects of $\mathcal{F} = \operatorname{Fonct}(\mathcal{E}^f, \mathcal{E})$

$$\begin{array}{rcl} \operatorname{Ext}_{\mathcal{F}}^{*}(P,Q) \xrightarrow{E_{n}^{*}} & \operatorname{Ext}_{\mathbb{F}_{2}[GL_{n}]-\mathrm{mod}}^{*}(P(\mathbb{F}_{2}^{n}),Q(\mathbb{F}_{2}^{n})) \\ & = H^{*}(GL_{n},\operatorname{Hom}(P(\mathbb{F}_{2}^{n}),Q(\mathbb{F}_{2}^{n}))) \end{array}$$

Introduction I Preliminaries II Definition III The category \mathcal{F}_{iso} IV Study of standard projective objects \mathcal{F} and the stable cohomology of general linear groups

Let *P* and *Q* be two objects of $\mathcal{F} = \text{Fonct}(\mathcal{E}^f, \mathcal{E})$

$$\begin{array}{rcl} \operatorname{Ext}_{\mathcal{F}}^{*}(P,Q) \xrightarrow{E_{n}^{*}} & \operatorname{Ext}_{\mathbb{F}_{2}[GL_{n}]-\mathrm{mod}}^{*}(P(\mathbb{F}_{2}^{n}),Q(\mathbb{F}_{2}^{n})) \\ & = H^{*}(GL_{n},\operatorname{Hom}(P(\mathbb{F}_{2}^{n}),Q(\mathbb{F}_{2}^{n}))) \end{array}$$

Theorem (Dwyer)

If P and Q are finite (i.e. admit finite composition series),

 $\ldots \rightarrow H^*(GL_n, \operatorname{Hom}(P(\mathbb{F}_2^n), Q(\mathbb{F}_2^n)))$

 $\rightarrow H^*(\mathit{GL}_{n+1}, \operatorname{Hom}(\mathit{P}({\mathbb{F}_2}^{n+1}), \mathit{Q}({\mathbb{F}_2}^{n+1}))) \rightarrow \dots$

stabilizes. We denote by $H^*(GL, Hom(P, Q))$ the stable value.

II Définition III The category \mathcal{F}_{iso} Introduction \mathcal{F} and the stable cohomology of general linear groups

Let P and Q be two objects of $\mathcal{F} = \text{Fonct}(\mathcal{E}^f, \mathcal{E})$

$$\begin{array}{rcl} \operatorname{Ext}_{\mathcal{F}}^{*}(P,Q) \xrightarrow{E_{n}^{*}} & \operatorname{Ext}_{\mathbb{F}_{2}[GL_{n}]-\mathrm{mod}}^{*}(P(\mathbb{F}_{2}^{n}),Q(\mathbb{F}_{2}^{n})) \\ & = H^{*}(GL_{n},\operatorname{Hom}(P(\mathbb{F}_{2}^{n}),Q(\mathbb{F}_{2}^{n}))) \end{array}$$

Theorem (Dwyer)

If P and Q are finite (i.e. admit finite composition series),

 $\ldots \to H^*(GL_n, \operatorname{Hom}(P(\mathbb{F}_2^n), Q(\mathbb{F}_2^n)))$

 $\rightarrow H^*(GL_{n+1}, \operatorname{Hom}(P(\mathbb{F}_2^{n+1}), Q(\mathbb{F}_2^{n+1}))) \rightarrow \ldots$

stabilizes. We denote by $H^*(GL, Hom(P, Q))$ the stable value.

Theorem (Suslin)

 $\operatorname{Ext}_{\mathcal{F}}^{*}(P,Q) \xrightarrow{\simeq} H^{*}(GL,\operatorname{Hom}(P,Q))$

for P and Q finite

 $H: \mathbb{F}_2\text{-vector space equipped with a non-degenerate quadratic form$

 $O(H) \subset GL_{\dim(H)}$

 $H: \mathbb{F}_2$ -vector space equipped with a non-degenerate quadratic form

$$O(H) \subset GL_{\dim(H)}$$

Aim : Construct a "good" category $\mathcal{F}_{\textit{quad}}$ related to orthogonal groups over \mathbb{F}_2

$$\mathcal{F}_{quad} \xrightarrow{E_H} \mathbb{F}_2[O(H)] - \mathrm{mod}$$

$$F \longmapsto F(H)$$

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
Prelimi	naries			

V : finite \mathbb{F}_2 -vector space

Definition

A quadratic form over V is a function $q: V o \mathbb{F}_2$ such that

$$B(x, y) = q(x + y) + q(x) + q(y)$$

defines a bilinear form

Remark

The bilinear form B does not determine the quadratic form q

Definition

A quadratic space (V, q_V) is non-degenerate if the associated bilinear form is non singular

Introduction I Preliminaries II Definition III The category \mathcal{F}_{iso} IV Study of standard projective objects Properties of quadratic forms over \mathbb{F}_2

Lemma

The bilinear form associated to a quadratic form is alternating

I Preliminaries II E

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Properties of quadratic forms over \mathbb{F}_2

Lemma

The bilinear form associated to a quadratic form is alternating

Classification of non-singular alternating bilinear forms

A space V equipped with a non-singular alternating bilinear form admits a symplectic base i.e. $\{a_1, b_1, \ldots, a_n, b_n\}$ with $B(a_i, b_i) = \delta_{i,i}$ and $B(a_i, a_i) = B(b_i, b_i) = 0$ I Preliminaries

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Properties of quadratic forms over \mathbb{F}_2

Lemma

The bilinear form associated to a quadratic form is alternating

Classification of non-singular alternating bilinear forms

A space V equipped with a non-singular alternating bilinear form admits a symplectic base i.e. $\{a_1, b_1, \ldots, a_n, b_n\}$ with $B(a_i, b_i) = \delta_{i,i}$ and $B(a_i, a_i) = B(b_i, b_i) = 0$

Consequence :

A non-degenerate quadratic space (V, q_V) has even dimension

II Définition

III The category \mathcal{F}_{iso}

Classification of non-degenerate quadratic forms over \mathbb{F}_2

In dimension 2

There are two non-isometric quadratic spaces

q ₀ :	H_0	\rightarrow	\mathbb{F}_2	q_1 :	H_1	\rightarrow	\mathbb{F}_2	
	a_0	\mapsto	0		a_1	\mapsto	1	
	b_0	\mapsto	0		b_1	\mapsto	1	
	$a_0 + b_0$	\mapsto	1		$a_1 + b_1$	\mapsto	1	

Classification of non-degenerate quadratic forms over \mathbb{F}_2

In dimension 2

There are two non-isometric quadratic spaces

q_0 :	H_0	\rightarrow	\mathbb{F}_2	q_1 :	H_1	\rightarrow	\mathbb{F}_2	
	<i>a</i> 0	\mapsto	0		a_1	\mapsto	1	
	b_0	\mapsto	0		b_1	\mapsto	1	
	$a_0 + b_0$	\mapsto	1		$a_1 + b_1$	\mapsto	1	

Proposition

 $H_0 \perp H_0 \simeq H_1 \perp H_1$

Classification of non-degenerate quadratic forms over \mathbb{F}_{2}

In dimension 2

There are two non-isometric quadratic spaces

q_0 :	H_0	\rightarrow	\mathbb{F}_2	q_1 :	H_1	\rightarrow	\mathbb{F}_2	
	a_0	\mapsto	0		a_1	\mapsto	1	
	b_0	\mapsto	0		b_1	\mapsto	1	
	$a_0 + b_0$	\mapsto	1		$a_1 + b_1$	\mapsto	1	

Proposition

$$H_0 \perp H_0 \simeq H_1 \perp H_1$$

In dimension 2m

There are two non-isometric quadratic spaces

$$H_0^{\perp m}$$
 and $H_0^{\perp (m-1)} \perp H_1$

Definition of \mathcal{E}_q

- $\operatorname{Ob}(\mathcal{E}_q)$: non-degenerate quadratic spaces (V, q_V)
- morphisms are linear applications which preserve the quadratic form

Definition of \mathcal{E}_q

- $Ob(\mathcal{E}_q)$: non-degenerate quadratic spaces (V, q_V)
- morphisms are linear applications which preserve the quadratic form

Natural Idea

Replace
$$\mathcal{F} = \operatorname{Func}(\mathcal{E}^f, \mathcal{E})$$
 by $\operatorname{Func}(\mathcal{E}_q, \mathcal{E})$

Definition of \mathcal{E}_q

- $Ob(\mathcal{E}_q)$: non-degenerate quadratic spaces (V, q_V)
- morphisms are linear applications which preserve the quadratic form

Natural Idea

Replace
$$\mathcal{F} = \operatorname{Func}(\mathcal{E}^f, \mathcal{E})$$
 by $\operatorname{Func}(\mathcal{E}_q, \mathcal{E})$

Proposition

Any morphism of \mathcal{E}_q is a monomorphism

- \mathcal{E}_q does not have enough morphisms : the category $\operatorname{Func}(\mathcal{E}_q, \mathcal{E})$ does not have good properties
- we seek to add orthogonal projections formally to \mathcal{E}_q

Definition

Let \mathcal{D} be a category equipped with push-outs The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

Definition

Let \mathcal{D} be a category equipped with push-outs The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

• the objects of $\mathrm{coSp}(\mathcal{D})$ are those of \mathcal{D}

Definition

Let \mathcal{D} be a category equipped with push-outs The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

• the objects of $\mathrm{coSp}(\mathcal{D})$ are those of $\mathcal D$

۲

$$\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) = \{A \to D \leftarrow B\} / \sim$$

Definition

٥

Let \mathcal{D} be a category equipped with push-outs The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

• the objects of $\mathrm{coSp}(\mathcal{D})$ are those of $\mathcal D$

 $\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) = \{A \to D \leftarrow B\} / \sim$

Definition

٥

Let \mathcal{D} be a category equipped with push-outs The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

• the objects of $\mathrm{coSp}(\mathcal{D})$ are those of $\mathcal D$

 $\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) = \{A \to D \leftarrow B\} / \sim$

Definition

٥

Let \mathcal{D} be a category equipped with push-outs The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

ullet the objects of $\mathrm{coSp}(\mathcal{D})$ are those of $\mathcal D$

 $\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) = \{A \to D \leftarrow B\} / \sim$

Definition

٥

Let \mathcal{D} be a category equipped with push-outs The category $\operatorname{coSp}(\mathcal{D})$ is defined by :

• the objects of $\mathrm{coSp}(\mathcal{D})$ are those of $\mathcal D$

 $\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) = \{A \to D \leftarrow B\} / \sim$

we denote by $[A \rightarrow D \leftarrow B]$ an element of $\operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A, B)$

Introduction I Preliminaries II Definition III The category \mathcal{F}_{iso} IV Study of standard projective objects Composition in the category $\mathrm{coSp}(\mathcal{D})$

$$\begin{split} \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B,C) \to \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,C) \\ ([A \to D \leftarrow B], [B \to E \leftarrow C]) \end{split}$$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Composition in the category $\mathrm{coSp}(\mathcal{D})$

$$\begin{split} \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B,C) \to \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,C) \\ ([A \to D \leftarrow B], [B \to E \leftarrow C]) \end{split}$$

Introduction I Preliminaries II Definition III The category \mathcal{F}_{iso} IV Study of standard projective objects Composition in the category $\mathrm{coSp}(\mathcal{D})$

$$\begin{split} \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B,C) \to \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,C) \\ ([A \to D \leftarrow B], [B \to E \leftarrow C]) \end{split}$$

Introduction I Preliminaries II Definition III The category \mathcal{F}_{iso} IV Study of standard projective objects Composition in the category $\mathrm{coSp}(\mathcal{D})$

$$\begin{split} \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B,C) \to \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,C) \\ ([A \to D \leftarrow B], [B \to E \leftarrow C]) \end{split}$$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Composition in the category $\mathrm{coSp}(\mathcal{D})$

$$\begin{split} \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,B) \times \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(B,C) &\to \operatorname{Hom}_{\operatorname{coSp}(\mathcal{D})}(A,C) \\ ([A \to D \leftarrow B], [B \to E \leftarrow C]) \mapsto [A \to S \leftarrow C] \end{split}$$

ntroduction

I Preliminaries

II Définition

III The category $\mathcal{F}_{\textit{iso}}$

IV Study of standard projective objects

Dual construction : the category $\operatorname{Sp}(\mathcal{D})$

Definition

Let \mathcal{D} be a category equipped with pullbacks The category $Sp(\mathcal{D})$ is defined by :

• the objects of $\operatorname{Sp}(\mathcal{D})$ are those of $\mathcal D$

```
ntroduction I Preliminaries II Définition
```

Dual construction : the category $\operatorname{Sp}(\mathcal{D})$

Definition

```
Let \mathcal{D} be a category equipped with pullbacks
The category Sp(\mathcal{D}) is defined by :
```

• the objects of $\operatorname{Sp}(\mathcal{D})$ are those of \mathcal{D}

```
۲
```


troduction I Preliminaries

5

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Dual construction : the category $\operatorname{Sp}(\mathcal{D})$

Definition

```
Let \mathcal{D} be a category equipped with pullbacks
The category Sp(\mathcal{D}) is defined by :
```

• the objects of $\operatorname{Sp}(\mathcal{D})$ are those of \mathcal{D}

ntroduction

I Preliminaries

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Dual construction : the category $\operatorname{Sp}(\mathcal{D})$

Definition

Let \mathcal{D} be a category equipped with pullbacks The category $Sp(\mathcal{D})$ is defined by :

• the objects of $\operatorname{Sp}(\mathcal{D})$ are those of \mathcal{D}

۲

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Pseudo push-outs in \mathcal{E}_q

Remark

The category \mathcal{E}_q has neither push-outs nor pullbacks

Introduction

II Définition

Pseudo push-outs in \mathcal{E}_q

Remark

The category \mathcal{E}_q has neither push-outs nor pullbacks

Decomposition of morphisms of \mathcal{E}_q

For $f: V \to W$, let V' be the orthogonal complement of f(V) in WThen $W = f(V) \perp V'$ so $W \simeq V \perp V'$ We will write

 $f:V\to V\bot V'$

Introduction

Pseudo push-outs in \mathcal{E}_q

Remark

The category \mathcal{E}_q has neither push-outs nor pullbacks

v

Decomposition of morphisms of \mathcal{E}_q

For $f: V \to W$, let V' be the orthogonal complement of f(V) in WThen $W = f(V) \perp V'$ so $W \simeq V \perp V'$ We will write

 $f:V\to V\bot V'$

Definition of the pseudo push-out

$$V \longrightarrow V \perp V'$$

$$\downarrow$$

$$\Gamma \perp V''$$

Pseudo push-outs in \mathcal{E}_q

Remark

The category \mathcal{E}_q has neither push-outs nor pullbacks

Decomposition of morphisms of \mathcal{E}_q

For $f: V \to W$, let V' be the orthogonal complement of f(V) in WThen $W = f(V) \perp V'$ so $W \simeq V \perp V'$ We will write

 $f: V \to V \perp V'$

Definition of the pseudo push-out

$$V \longrightarrow V \perp V'$$

$$\downarrow \qquad \qquad \downarrow$$

$$V \perp V'' \longrightarrow V \perp V' \perp V$$

Definition of the category \mathcal{T}_q

• the objects of \mathcal{T}_q are those of \mathcal{E}_q

Definition of the category T_q

- the objects of \mathcal{T}_q are those of \mathcal{E}_q
- $\operatorname{Hom}_{\mathcal{I}_q}(V, W) = \{V \to X \leftarrow W\} / \sim$

Definition of the category \mathcal{T}_q

- the objects of \mathcal{T}_q are those of \mathcal{E}_q
- $\operatorname{Hom}_{\mathcal{T}_q}(V, W) = \{V \to X \leftarrow W\} / \sim$

W

Definition of the category T_q

- the objects of \mathcal{T}_q are those of \mathcal{E}_q
- $\operatorname{Hom}_{\mathcal{T}_q}(V, W) = \{V \to X \leftarrow W\} / \sim$

Definition of the category T_q

- the objects of \mathcal{T}_q are those of \mathcal{E}_q
- $\operatorname{Hom}_{\mathcal{I}_q}(V, W) = \{V \to X \leftarrow W\} / \sim$

 \sim : equivalence relation generated by this relation

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Composition in the category \mathcal{T}_q

$$\begin{split} &\operatorname{Hom}_{\mathcal{I}_q}(V,W)\times\operatorname{Hom}_{\mathcal{I}_q}(W,Y)\to\operatorname{Hom}_{\mathcal{I}_q}(V,Y)\\ ([V\to W\bot W'\leftarrow W],[W\to W\bot W''\leftarrow Y])\mapsto [V\to W\bot W'\bot W''\leftarrow Y] \end{split}$$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Composition in the category \mathcal{T}_q

$$\begin{split} &\operatorname{Hom}_{\mathcal{I}_q}(V,W)\times\operatorname{Hom}_{\mathcal{I}_q}(W,Y)\to\operatorname{Hom}_{\mathcal{I}_q}(V,Y)\\ ([V\to W\bot W'\leftarrow W],[W\to W\bot W''\leftarrow Y])\mapsto [V\to W\bot W'\bot W''\leftarrow Y] \end{split}$$

Introduction	I Preliminaries	II Définition	III The category $\mathcal{F}_{\textit{iso}}$	IV Study of standard projective objects
Retract	tions in \mathcal{T}_q			

Proposition

For $f: V \to W$ a morphism of \mathcal{E}_q , we have :

$$[W \xrightarrow{\mathrm{Id}} W \xleftarrow{f} V] \circ [V \xrightarrow{f} W \xleftarrow{\mathrm{Id}} W] = \mathrm{Id}_V$$

that is $[W \xrightarrow{\mathrm{Id}} W \xleftarrow{f} V]$ is a retraction of $[V \xrightarrow{f} W \xleftarrow{\mathrm{Id}} W]$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projectiv II Definition and properties of the category \mathcal{F}_{quad}

Definition

$$\mathcal{F}_{quad} = \operatorname{Funct}(\mathcal{T}_q, \mathcal{E})$$

oduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV St

V Study of standard projective objects

II Definition and properties of the category \mathcal{F}_{quad}

Definition

$$\mathcal{F}_{quad} = \operatorname{Funct}(\mathcal{T}_q, \mathcal{E})$$

Theorem

The category \mathcal{F}_{quad} is abelian, equipped with a tensor product and has enough projective and injective objects.

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of II Definition and properties of the category \mathcal{F}_{auad}

Definition

$$\mathcal{F}_{quad} = \operatorname{Funct}(\mathcal{T}_q, \mathcal{E})$$

Theorem

The category \mathcal{F}_{quad} is abelian, equipped with a tensor product and has enough projective and injective objects.

Question

Classification of the simple objects of \mathcal{F}_{quad}

Reminder : A functor S is simple if it is not the zero functor and if its only subfunctors are 0 and S

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Stu

IV Study of standard projective objects

The forgetful functor

Definition of the forgetful functor ϵ

$$\epsilon: \mathcal{T}_q \to \mathcal{E}^f$$

Introduction

iminaries

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

The forgetful functor

Definition of the forgetful functor ϵ

$$\epsilon: \mathcal{T}_q \to \mathcal{E}^f$$

• On objects :

$$\epsilon(V,q_V)=V$$

Introduction

The forgetful functor

Definition of the forgetful functor ϵ

$$\epsilon: \mathcal{T}_q \to \mathcal{E}^f$$

• On objects :

$$\epsilon(V,q_V)=V$$

• On morphisms :

$$\epsilon([V \xrightarrow{f} W \bot W' \xleftarrow{g} W]) = p_g \circ f$$

where p_g is the orthogonal projection associated to g

 $\mathcal{T}_q \xrightarrow{\epsilon} \mathcal{E}^f$

$$\mathcal{T}_{q} \xrightarrow{\epsilon} \mathcal{E}^{f} \xrightarrow{F} \mathcal{E}$$

for F an object of $\mathcal{F} = \operatorname{Funct}(\mathcal{E}^f, \mathcal{E})$

$$\mathcal{T}_q \xrightarrow{\epsilon} \mathcal{E}^f \xrightarrow{F} \mathcal{E}$$

for
$$F$$
 an object of $\mathcal{F} = \operatorname{Funct}(\mathcal{E}^f, \mathcal{E})$

The functor $\iota : \mathcal{F} \to \mathcal{F}_{quad}$ defined by $\iota(F) = F \circ \epsilon$

$$\mathcal{T}_q \xrightarrow{\epsilon} \mathcal{E}^f \xrightarrow{F} \mathcal{E}$$

for
$$F$$
 an object of $\mathcal{F} = \operatorname{Funct}(\mathcal{E}^f, \mathcal{E})$

The functor $\iota : \mathcal{F} \to \mathcal{F}_{quad}$ defined by $\iota(F) = F \circ \epsilon$

is exact and fully faithful

$$\mathcal{T}_q \xrightarrow{\epsilon} \mathcal{E}^f \xrightarrow{F} \mathcal{E}$$

for
$$F$$
 an object of $\mathcal{F} = \operatorname{Funct}(\mathcal{E}^f, \mathcal{E})$

The functor $\iota : \mathcal{F} \to \mathcal{F}_{quad}$ defined by $\iota(F) = F \circ \epsilon$

- is exact and fully faithful
- $\iota(\mathcal{F})$ is a thick sub-category of \mathcal{F}_{quad}

$$\mathcal{T}_{q} \xrightarrow{\epsilon} \mathcal{E}^{f} \xrightarrow{F} \mathcal{E}$$

for
$$F$$
 an object of $\mathcal{F} = \operatorname{Funct}(\mathcal{E}^f, \mathcal{E})$

The functor $\iota : \mathcal{F} \to \mathcal{F}_{quad}$ defined by $\iota(F) = F \circ \epsilon$

- is exact and fully faithful
- $\iota(\mathcal{F})$ is a thick sub-category of \mathcal{F}_{quad}
- If S is a simple object of \mathcal{F} , $\iota(S)$ is a simple object of \mathcal{F}_{quad}

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
III The	category \mathcal{F}	Fiso		

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
III The	category \mathcal{I}	Г _{iso}		
Defin	ition of $\mathcal{E}_a^{\mathrm{deg}}$			

• $\operatorname{Ob}(\mathcal{E}_q^{\operatorname{deg}}): \mathbb{F}_2$ -quadratic spaces (V, q_V) (possibly degenerate)

Introduction	I Preliminaries	II Définition	III The category $\mathcal{F}_{\textit{iso}}$	IV Study of standard projective objects
III The	category ${\mathcal F}$	Fiso		

Definition of $\mathcal{E}_q^{\mathrm{deg}}$

- $\operatorname{Ob}(\mathcal{E}_q^{\operatorname{deg}})$: \mathbb{F}_2 -quadratic spaces (V, q_V) (possibly degenerate)
- morphisms : linear monomorphisms which preserve the quadratic form

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects III The category \mathcal{F}_{iso}

Definition of $\mathcal{E}_q^{\mathrm{deg}}$

- $\operatorname{Ob}(\mathcal{E}_q^{\operatorname{deg}})$: \mathbb{F}_2 -quadratic spaces (V, q_V) (possibly degenerate)
- morphisms : linear monomorphisms which preserve the quadratic form

 $\mathcal{E}_q^{\mathrm{deg}}$ contains objects of odd dimension

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
III The	category $\mathcal F$	Fiso		

Definition of $\mathcal{E}_{q}^{\mathrm{deg}}$

- $\operatorname{Ob}(\mathcal{E}_q^{\operatorname{deg}})$: \mathbb{F}_2 -quadratic spaces (V, q_V) (possibly degenerate)
- morphisms : linear monomorphisms which preserve the quadratic form

 $\mathcal{E}_q^{\mathrm{deg}}$ contains objects of odd dimension

Proposition

 $\mathcal{E}_q^{\mathrm{deg}}$ has pullbacks

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
III The	category $\mathcal I$	Fiso		

Definition of $\mathcal{E}_{q}^{\mathrm{deg}}$

- $\operatorname{Ob}(\mathcal{E}_q^{\operatorname{deg}})$: \mathbb{F}_2 -quadratic spaces (V, q_V) (possibly degenerate)
- morphisms : linear monomorphisms which preserve the quadratic form

 $\mathcal{E}_q^{\mathrm{deg}}$ contains objects of odd dimension

Proposition

 $\mathcal{E}_q^{\mathrm{deg}}$ has pullbacks

Consequence

 $\operatorname{Sp}(\mathcal{E}_q^{\operatorname{deg}})$ is defined

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
The ca	tegory \mathcal{F}_{iso}			

$$\mathcal{F}_{\textit{iso}} = \operatorname{Funct}(\operatorname{Sp}(\mathcal{E}_{q}^{\operatorname{deg}}), \mathcal{E})$$

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
The ca	tegory \mathcal{F}_{iso}			

$$\mathcal{F}_{\textit{iso}} = \operatorname{Funct}(\operatorname{Sp}(\mathcal{E}_{q}^{\operatorname{deg}}), \mathcal{E})$$

Theorem

There exists a functor

$$\kappa: \mathcal{F}_{iso} \to \mathcal{F}_{quad}$$

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
The ca	tegory \mathcal{F}_{iso}			

$$\mathcal{F}_{\textit{iso}} = \operatorname{Funct}(\operatorname{Sp}(\mathcal{E}_{q}^{\operatorname{deg}}), \mathcal{E})$$

Theorem

There exists a functor

$$\kappa: \mathcal{F}_{iso} \to \mathcal{F}_{quad}$$

• κ is exact and fully faithful

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
The cat	tegory \mathcal{F}_{iso}			

$$\mathcal{F}_{\textit{iso}} = \operatorname{Funct}(\operatorname{Sp}(\mathcal{E}_{q}^{\operatorname{deg}}), \mathcal{E})$$

Theorem

There exists a functor

$$\kappa: \mathcal{F}_{iso} \to \mathcal{F}_{quad}$$

- κ is exact and fully faithful
- If S is a simple object of \mathcal{F} , $\iota(S)$ is a simple object of \mathcal{F}_{quad}

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects The category \mathcal{F}_{iso}

Definition

$$\mathcal{F}_{\textit{iso}} = \operatorname{Funct}(\operatorname{Sp}(\mathcal{E}_{q}^{\operatorname{deg}}), \mathcal{E})$$

Theorem

There exists a functor

$$\kappa: \mathcal{F}_{iso} \to \mathcal{F}_{quad}$$

- κ is exact and fully faithful
- If S is a simple object of \mathcal{F} , $\iota(S)$ is a simple object of \mathcal{F}_{quad}

$$\mathcal{T}_q \to \operatorname{Sp}(\mathcal{E}_q^{\operatorname{deg}})$$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects The category \mathcal{F}_{iso}

Definition

$$\mathcal{F}_{\textit{iso}} = \operatorname{Funct}(\operatorname{Sp}(\mathcal{E}_{q}^{\operatorname{deg}}), \mathcal{E})$$

Theorem

There exists a functor

$$\kappa: \mathcal{F}_{iso} \to \mathcal{F}_{quad}$$

- κ is exact and fully faithful
- If S is a simple object of \mathcal{F} , $\iota(S)$ is a simple object of \mathcal{F}_{quad}

$$\mathcal{T}_q \to \operatorname{Sp}(\mathcal{E}_q^{\operatorname{deg}}) \xrightarrow{\mathsf{F}} \mathcal{E}$$

for F an object of \mathcal{F}_{iso}

There is a natural equivalence of categories

$$\mathcal{F}_{iso} \simeq \prod_{V \in \mathcal{S}} \mathbb{F}_2[O(V)] - mod$$

where S is a set of representatives of isometry classes of quadratic spaces (possibly degenerate)

Theorem

There is a natural equivalence of categories

$$\mathcal{F}_{iso} \simeq \prod_{V \in \mathcal{S}} \mathbb{F}_2[O(V)] - mod$$

where S is a set of representatives of isometry classes of quadratic spaces (possibly degenerate)

Definition

Iso_V is the functor of \mathcal{F}_{iso} corresponding to $\mathbb{F}_2[O(V)]$ by this equivalence

Introduction I Preliminaries II Definition III The category \mathcal{F}_{iso} IV Study of standard projective objects Do we have all the simple objects of \mathcal{F}_{quad} ?

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Do we have all the simple objects of \mathcal{F}_{auad} ?

• there exist simple objects of \mathcal{F}_{quad} which are not in the image of the functors ι and κ

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects Do we have all the simple objects of \mathcal{F}_{auad} ?

- there exist simple objects of \mathcal{F}_{quad} which are not in the image of the functors ι and κ
- standard way to obtain a classification of the simple objects of a category : decompose the projective generators

IV Study of standard projective objects

Proposition (Yoneda lemma)

• For V an object of \mathcal{T}_q , the functor defined by

 $P_V(W) = \mathbb{F}_2[\operatorname{Hom}_{\mathcal{T}_q}(V, W)]$

is a projective object of $\mathcal{F}_{\textit{quad}}$

{P_V | V ∈ S} : set of projective generators of F_{quad}
 S : set of representative of isometry classes of Ob(T_q)

IV Study of standard projective objects

Proposition (Yoneda lemma)

• For V an object of \mathcal{T}_q , the functor defined by

 $P_V(W) = \mathbb{F}_2[\operatorname{Hom}_{\mathcal{T}_q}(V, W)]$

is a projective object of $\mathcal{F}_{\textit{quad}}$

{P_V | V ∈ S} : set of projective generators of F_{quad}
 S : set of representative of isometry classes of Ob(T_q)

Projective generators of ${\cal F}$

For E an object of \mathcal{E}^f

$$P^{\mathcal{F}}_{E}(X) = \mathbb{F}_{2}[\operatorname{Hom}_{\mathcal{E}^{f}}(E,X)]$$

is a projective object of ${\mathcal F}$

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
Rank o	f morphism			

Let
$$[V \xrightarrow{f} Y \xleftarrow{g} W]$$
 be an element of $\operatorname{Hom}_{\mathcal{T}_q}(V, W)$

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
Rank o	f morphism	s		

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
Rank o	f morphism	s		

Introduction	I Preliminaries	II Définition	III The category \mathcal{F}_{iso}	IV Study of standard projective objects
Rank o	f morphism	s		

Let
$$[V \xrightarrow{f} Y \xleftarrow{g} W]$$
 be an element of $\operatorname{Hom}_{\mathcal{T}_q}(V, W)$

the rank of $[V \xrightarrow{f} Y \xleftarrow{g} W]$ is the dimension of D

Notation

 $\operatorname{Hom}_{\mathcal{T}_q}^{(i)}(V,W)$ the set of morphisms of $\operatorname{Hom}_{\mathcal{T}_q}(V,W)$ of rank $\leq i$

I Preliminaries

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Rank filtration of the projective objects

Proposition

The functors
$$P_V^{(i)}$$
 for $i = 0, ..., \dim(V)$:

$$P_V^{(i)}(W) = \mathbb{F}_2[\operatorname{Hom}_{\mathcal{T}_q}^{(i)}(V, W)]$$

define an increasing filtration of the functor P_V

$$0 \subset P_V^{(0)} \subset P_V^{(1)} \subset \ldots \subset P_V^{(\dim(V)-1)} \subset P_V^{(\dim(V))} = P_V$$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects

The extremities of the filtration

$$0 \subset P_V^{(0)} \subset P_V^{(1)} \subset \ldots \subset P_V^{(\dim(V)-1)} \subset P_V^{(\dim(V))} = P_V$$

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects

The extremities of the filtration

$$0 \subset P_V^{(0)} \subset P_V^{(1)} \subset \ldots \subset P_V^{(\dim(V)-1)} \subset P_V^{(\dim(V))} = P_V$$

Theorem

$$P_V^{(0)} \simeq \iota(P_{\epsilon(V)}^{\mathcal{F}}) \text{ where } \iota : \mathcal{F} \to \mathcal{F}_{quad}$$

2 The functor
$$P_V^{(0)}$$
 is a direct summand of P_V

Introduction I Preliminaries II Définition III The category \mathcal{F}_{iso} IV Study of standard projective objects

The extremities of the filtration

$$0 \subset P_V^{(0)} \subset P_V^{(1)} \subset \ldots \subset P_V^{(\dim(V)-1)} \subset P_V^{(\dim(V))} = P_V$$

Theorem

•
$$P_V^{(0)} \simeq \iota(P_{\epsilon(V)}^{\mathcal{F}})$$
 where $\iota : \mathcal{F} \to \mathcal{F}_{quad}$

② The functor
$$P_V^{(0)}$$
 is a direct summand of P_V

Theorem

$$P_V/P_V^{(\dim(V)-1)} \simeq \kappa(\mathrm{Iso}_V)$$

where $\kappa: \mathcal{F}_{iso} \to \mathcal{F}_{quad}$

I Preliminaries II D

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Decomposition of the functors P_{H_0} and P_{H_1}

$$0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \qquad ext{for } \epsilon \in \{0,1\}$$

liminaries

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Decomposition of the functors P_{H_0} and P_{H_1}

$$0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \qquad ext{for } \epsilon \in \{0,1\}$$

Theorem

For the functors P_{H_0} and P_{H_1} the rank filtration splits

$$egin{aligned} & \mathcal{P}_{\mathcal{H}_0} = \mathcal{P}_{\mathcal{H}_0}^{(0)} \oplus \mathcal{P}_{\mathcal{H}_0}^{(1)} / \mathcal{P}_{\mathcal{H}_0}^{(0)} \oplus \mathcal{P}_{\mathcal{H}_0}^{(2)} / \mathcal{P}_{\mathcal{H}_0}^{(1)} \ & & \mathcal{P}_{\mathcal{H}_1} = \mathcal{P}_{\mathcal{H}_1}^{(0)} \oplus \mathcal{P}_{\mathcal{H}_1}^{(1)} / \mathcal{P}_{\mathcal{H}_1}^{(0)} \oplus \mathcal{P}_{\mathcal{H}_1}^{(2)} / \mathcal{P}_{\mathcal{H}_1}^{(1)} \end{aligned}$$

liminaries

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Decomposition of the functors P_{H_0} and P_{H_1}

$$0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \qquad ext{for } \epsilon \in \{0,1\}$$

Theorem

For the functors P_{H_0} and P_{H_1} the rank filtration splits

$$\begin{split} P_{H_0} &= \iota(P_{\mathbb{F}_2^{\oplus 2}}^{\mathcal{F}}) \oplus P_{H_0}^{(1)} / P_{H_0}^{(0)} \oplus P_{H_0}^{(2)} / P_{H_0}^{(1)} \\ P_{H_1} &= \iota(P_{\mathbb{F}_2^{\oplus 2}}^{\mathcal{F}}) \oplus P_{H_1}^{(1)} / P_{H_1}^{(0)} \oplus P_{H_1}^{(2)} / P_{H_1}^{(1)} \end{split}$$

liminaries

II Définition

III The category \mathcal{F}_{iso}

IV Study of standard projective objects

Decomposition of the functors P_{H_0} and P_{H_1}

$$0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \qquad ext{for } \epsilon \in \{0,1\}$$

Theorem

For the functors P_{H_0} and P_{H_1} the rank filtration splits

$$\begin{aligned} P_{H_0} &= \iota(P_{\mathbb{F}_2^{\oplus 2}}^{\mathcal{F}}) \oplus P_{H_0}^{(1)} / P_{H_0}^{(0)} \oplus \kappa(\mathrm{Iso}_{H_0}) \\ P_{H_1} &= \iota(P_{\mathbb{F}_2^{\oplus 2}}^{\mathcal{F}}) \oplus P_{H_1}^{(1)} / P_{H_1}^{(0)} \oplus \kappa(\mathrm{Iso}_{H_1}) \end{aligned}$$

Decomposition of the functors P_{H_0} and P_{H_1}

$$0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \qquad ext{for } \epsilon \in \{0,1\}$$

Theorem

For the functors P_{H_0} and P_{H_1} the rank filtration splits

$$\begin{split} \mathcal{P}_{\mathcal{H}_{0}} &= \iota(\mathcal{P}_{\mathbb{F}_{2}\oplus2}^{\mathcal{F}}) \oplus (\operatorname{Mix}_{0,1}^{\oplus 2} \oplus \operatorname{Mix}_{1,1}) \oplus \kappa(\operatorname{Iso}_{\mathcal{H}_{0}}) \\ \mathcal{P}_{\mathcal{H}_{1}} &= \iota(\mathcal{P}_{\mathbb{F}_{2}\oplus2}^{\mathcal{F}}) \oplus \operatorname{Mix}_{1,1}^{\oplus 3} \oplus \kappa(\operatorname{Iso}_{\mathcal{H}_{1}}) \end{split}$$

 $\operatorname{Mix}_{0,1}, \operatorname{Mix}_{1,1}$: two elements of a new family of functors called "mixed functors"

Decomposition of the functors P_{H_0} and P_{H_1}

$$0 \subset P_{H_{\epsilon}}^{(0)} \subset P_{H_{\epsilon}}^{(1)} \subset P_{H_{\epsilon}} \qquad \text{for } \epsilon \in \{0,1\}$$

Theorem

For the functors P_{H_0} and P_{H_1} the rank filtration splits

$$\begin{split} \mathcal{P}_{\mathcal{H}_0} &= \iota(\mathcal{P}_{\mathbb{F}_2 \oplus 2}^{\mathcal{F}}) \oplus (\operatorname{Mix}_{0,1}^{\oplus 2} \oplus \operatorname{Mix}_{1,1}) \oplus \kappa(\operatorname{Iso}_{\mathcal{H}_0}) \\ \mathcal{P}_{\mathcal{H}_1} &= \iota(\mathcal{P}_{\mathbb{F}_2 \oplus 2}^{\mathcal{F}}) \oplus \operatorname{Mix}_{1,1}^{\oplus 3} \oplus \kappa(\operatorname{Iso}_{\mathcal{H}_1}) \end{split}$$

 $\operatorname{Mix}_{0,1}, \operatorname{Mix}_{1,1}$: two elements of a new family of functors called "mixed functors"

Corollary

Classification of simple objects S of \mathcal{F}_{quad} such that $S(H_0)\neq\{0\}$ or $S(H_1)\neq\{0\}$

 $\epsilon \in \{0,1\}$ (x,ϵ) : the degenerate quadratic space generated by x such that $q(x) = \epsilon$

Proposition

 $\operatorname{Mix}_{\epsilon,1}$ is isomorphic to a sub-functor of $\iota(\mathcal{P}_{\mathbb{F}_2}^{\mathcal{F}}) \otimes \kappa(\operatorname{Iso}_{(x,\epsilon)})$

 $\epsilon \in \{0,1\}$ (x,ϵ) : the degenerate quadratic space generated by x such that $q(x)=\epsilon$

Proposition

 $\operatorname{Mix}_{\epsilon,1}$ is isomorphic to a sub-functor of $\iota(\mathcal{P}_{\mathbb{F}_2}^{\mathcal{F}}) \otimes \kappa(\operatorname{Iso}_{(x,\epsilon)})$

The composition factors of $Mix_{\epsilon,1}$ are sub-quotients of

 $\iota(\Lambda^n)\otimes\kappa(\mathrm{Iso}_{(x,\epsilon)}) \text{ for } n\geq 0$

 $\epsilon \in \{0,1\}$ (x,ϵ) : the degenerate quadratic space generated by x such that $q(x)=\epsilon$

Proposition

 $\operatorname{Mix}_{\epsilon,1}$ is isomorphic to a sub-functor of $\iota(\mathcal{P}_{\mathbb{F}_2}^{\mathcal{F}}) \otimes \kappa(\operatorname{Iso}_{(x,\epsilon)})$

The composition factors of $Mix_{\epsilon,1}$ are sub-quotients of

$$\iota(\Lambda^n)\otimes\kappa(\mathrm{Iso}_{(x,\epsilon)}) ext{ for } n\geq 0$$

Conjecture

Simple objects of \mathcal{F}_{quad} are sub-quotients of tensor products between a simple functor of \mathcal{F} and a simple functor of \mathcal{F}_{iso}