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Motivation : The category F

Definition

F = Funct(E f , E)

E : category of F2-vector spaces
E f : category of finite dimensional F2-vector spaces

The category F is closely related to general linear groups over F2

Example : Evaluation functors

F
En // F2[GLn]−mod

F
� // F (F2

n)
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F and the stable cohomology of general linear groups

Let P and Q be two objects of F = Fonct(E f , E)

Ext∗F (P,Q)
E∗n−−→ Ext∗F2[GLn]−mod(P(F2

n),Q(F2
n))

= H∗(GLn,Hom(P(F2
n),Q(F2

n)))

Theorem (Dwyer)

If P and Q are finite (i.e. admit finite composition series),

. . .→ H∗(GLn,Hom(P(F2
n),Q(F2

n)))

→ H∗(GLn+1,Hom(P(F2
n+1),Q(F2

n+1)))→ . . .

stabilizes. We denote by H∗(GL,Hom(P,Q)) the stable value.

Theorem (Suslin)

Ext∗F (P,Q)
'−→ H∗(GL,Hom(P,Q))

for P and Q finite
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Aim

H : F2-vector space equipped with a non-degenerate quadratic form

O(H) ⊂ GLdim(H)

Aim : Construct a “good” category Fquad related to orthogonal groups
over F2

Fquad
EH // F2[O(H)]−mod

F
� // F (H)
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Preliminaries

V : finite F2-vector space

Definition

A quadratic form over V is a function q : V → F2 such that

B(x , y) = q(x + y) + q(x) + q(y)

defines a bilinear form

Remark

The bilinear form B does not determine the quadratic form q

Definition

A quadratic space (V , qV ) is non-degenerate if the associated bilinear
form is non singular

5 / 28
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Properties of quadratic forms over F2

Lemma

The bilinear form associated to a quadratic form is alternating

Classification of non-singular alternating bilinear forms

A space V equipped with a non-singular alternating bilinear form admits
a symplectic base
i.e.{a1, b1, . . . , an, bn} with B(ai , bj) = δi,j and B(ai , aj) = B(bi , bj) = 0

Consequence :

A non-degenerate quadratic space (V , qV ) has even dimension
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Classification of non-degenerate quadratic forms over F2

In dimension 2

There are two non-isometric quadratic spaces

q0 : H0 → F2

a0 7→ 0
b0 7→ 0

a0 + b0 7→ 1

q1 : H1 → F2

a1 7→ 1
b1 7→ 1

a1 + b1 7→ 1

Proposition

H0⊥H0 ' H1⊥H1

In dimension 2m

There are two non-isometric quadratic spaces

H⊥m
0 and H

⊥(m−1)
0 ⊥H1
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Introduction I Preliminaries II Définition III The category Fiso IV Study of standard projective objects

Classification of non-degenerate quadratic forms over F2

In dimension 2

There are two non-isometric quadratic spaces

q0 : H0 → F2

a0 7→ 0
b0 7→ 0

a0 + b0 7→ 1

q1 : H1 → F2

a1 7→ 1
b1 7→ 1

a1 + b1 7→ 1

Proposition

H0⊥H0 ' H1⊥H1

In dimension 2m

There are two non-isometric quadratic spaces

H⊥m
0 and H

⊥(m−1)
0 ⊥H1

7 / 28
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The category Eq

Definition of Eq
Ob(Eq) : non-degenerate quadratic spaces (V , qV )

morphisms are linear applications which preserve the quadratic form

Natural Idea

Replace F = Func(E f , E) by Func(Eq, E)

Proposition

Any morphism of Eq is a monomorphism

Eq does not have enough morphisms : the category Func(Eq, E) does
not have good properties

we seek to add orthogonal projections formally to Eq

8 / 28
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The category coSp(D) of Bénabou

Definition

Let D be a category equipped with push-outs
The category coSp(D) is defined by :

the objects of coSp(D) are those of D

HomcoSp(D)(A,B) = {A→ D ← B}/ ∼

B

��

��0
00

00
00

00
00

00
00

A //

''PPPPPPPPPPPPPPP D1

D2

we denote by [A→ D ← B] an element of HomcoSp(D)(A,B)
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Composition in the category coSp(D)

HomcoSp(D)(A,B)×HomcoSp(D)(B,C )→ HomcoSp(D)(A,C )

([A→ D ← B], [B → E ← C ])

7→ [A→ S ← C ]

C

��
B //

��

E

��
A // D // S
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Introduction I Preliminaries II Définition III The category Fiso IV Study of standard projective objects

Composition in the category coSp(D)

HomcoSp(D)(A,B)×HomcoSp(D)(B,C )→ HomcoSp(D)(A,C )

([A→ D ← B], [B → E ← C ])

7→ [A→ S ← C ]

C

��
B //

��

E

A // D

S

10 / 28
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Dual construction : the category Sp(D)

Definition

Let D be a category equipped with pullbacks
The category Sp(D) is defined by :

the objects of Sp(D) are those of D

C

��
B //

��

E

��
A // D // S
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Pseudo push-outs in Eq

Remark

The category Eq has neither push-outs nor pullbacks

Decomposition of morphisms of Eq
For f : V →W , let V ′ be the orthogonal complement of f (V ) in W
Then W = f (V )⊥V ′ so W ' V⊥V ′

We will write
f : V → V⊥V ′

Definition of the pseudo push-out

V //

��

V⊥V ′

V⊥V ′′

V⊥V ′⊥V ′′

12 / 28



Introduction I Preliminaries II Définition III The category Fiso IV Study of standard projective objects

Pseudo push-outs in Eq

Remark

The category Eq has neither push-outs nor pullbacks

Decomposition of morphisms of Eq
For f : V →W , let V ′ be the orthogonal complement of f (V ) in W
Then W = f (V )⊥V ′ so W ' V⊥V ′

We will write
f : V → V⊥V ′

Definition of the pseudo push-out

V //

��

V⊥V ′

V⊥V ′′

V⊥V ′⊥V ′′

12 / 28
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The category Tq

In the definition of coSp(D) : universality of the push-out plays no role

Definition of the category Tq
the objects of Tq are those of Eq

HomTq (V ,W ) = {V → X ←W }/ ∼

B

��

��0
00

00
00

00
00

00
00

A //

''PPPPPPPPPPPPPPP D1

D2

∼ : equivalence relation generated by this relation

13 / 28
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Composition in the category Tq

HomTq (V ,W )×HomTq (W ,Y )→ HomTq (V ,Y )

([V →W⊥W ′ ←W ], [W →W⊥W ′′ ← Y ]) 7→ [V →W⊥W ′⊥W ′′ ← Y ]

Y

��
W //

��

W⊥W ′′

V // W⊥W ′

W⊥W ′⊥W ′′

14 / 28
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Retractions in Tq

Proposition

For f : V →W a morphism of Eq, we have :

[W
Id−→W

f←− V ] ◦ [V
f−→W

Id←−W ] = IdV

that is [W
Id−→W

f←− V ] is a retraction of [V
f−→W

Id←−W ]

15 / 28
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II Definition and properties of the category Fquad

Definition

Fquad = Funct(Tq, E)

Theorem

The category Fquad is abelian, equipped with a tensor product and has
enough projective and injective objects.

Question

Classification of the simple objects of Fquad

Reminder : A functor S is simple if it is not the zero functor and if its
only subfunctors are 0 and S

16 / 28
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The forgetful functor

Definition of the forgetful functor ε

ε : Tq → E f

On objects :
ε(V , qV ) = V

On morphisms :

ε([V
f−→W⊥W ′ g←−W ]) = pg ◦ f

where pg is the orthogonal projection associated to g

17 / 28
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Relating F = Funct(E f , E) and Fquad = Funct(Tq, E)

Tq
ε−→ E f

F−→ E

for F an object of F = Funct(E f , E)

Theorem

The functor ι : F → Fquad defined by ι(F ) = F ◦ ε

is exact and fully faithful

ι(F) is a thick sub-category of Fquad

If S is a simple object of F , ι(S) is a simple object of Fquad
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III The category Fiso

Definition of Edeg
q

Ob(Edeg
q ) : F2-quadratic spaces (V , qV ) (possibly degenerate)

morphisms : linear monomorphisms which preserve the quadratic
form

Edeg
q contains objects of odd dimension

Proposition

Edeg
q has pullbacks

Consequence

Sp(Edeg
q ) is defined
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The category Fiso

Definition

Fiso = Funct(Sp(Edeg
q ), E)

Theorem

There exists a functor
κ : Fiso → Fquad

κ is exact and fully faithful

If S is a simple object of F , ι(S) is a simple object of Fquad

Tq → Sp(Edeg
q )

F−→ E

for F an object of Fiso
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The category Fiso

Theorem

There is a natural equivalence of categories

Fiso '
∏
V∈S

F2[O(V )]−mod

where S is a set of representatives of isometry classes of quadratic spaces
(possibly degenerate)

Definition

IsoV is the functor of Fiso corresponding to F2[O(V )] by this equivalence
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Do we have all the simple objects of Fquad ?

F� _

ι

��
Fiso

� � κ // Fquad

there exist simple objects of Fquad which are not in the image of the
functors ι and κ

standard way to obtain a classification of the simple objects of a
category : decompose the projective generators
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Introduction I Preliminaries II Définition III The category Fiso IV Study of standard projective objects

Do we have all the simple objects of Fquad ?

F� _

ι

��
Fiso

� � κ // Fquad

there exist simple objects of Fquad which are not in the image of the
functors ι and κ

standard way to obtain a classification of the simple objects of a
category : decompose the projective generators

22 / 28
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IV Study of standard projective objects

Proposition (Yoneda lemma)

For V an object of Tq, the functor defined by

PV (W ) = F2[HomTq (V ,W )]

is a projective object of Fquad

{PV |V ∈ S} : set of projective generators of Fquad

S : set of representative of isometry classes of Ob(Tq)

Projective generators of F
For E an object of E f

PFE (X ) = F2[HomE f (E ,X )]

is a projective object of F
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Rank of morphisms

Definition

Let [V
f−→ Y

g←−W ] be an element of HomTq (V ,W )

D //

��

W

g

��
V

f
// Y

D ∈ Ob(Edeg
q )

the rank of [V
f−→ Y

g←−W ] is the dimension of D

Notation

Hom(i)
Tq

(V ,W ) the set of morphisms of HomTq (V ,W ) of rank ≤ i
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Rank filtration of the projective objects

Proposition

The functors P
(i)
V for i = 0, . . . ,dim(V ) :

P
(i)
V (W ) = F2[Hom(i)

Tq
(V ,W )]

define an increasing filtration of the functor PV

0 ⊂ P
(0)
V ⊂ P

(1)
V ⊂ . . . ⊂ P

(dim(V )−1)
V ⊂ P

(dim(V ))
V = PV
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The extremities of the filtration

0 ⊂ P
(0)
V ⊂ P

(1)
V ⊂ . . . ⊂ P

(dim(V )−1)
V ⊂ P

(dim(V ))
V = PV

Theorem

1 P
(0)
V ' ι(PFε(V )) where ι : F → Fquad

2 The functor P
(0)
V is a direct summand of PV

Theorem

PV /P
(dim(V )−1)
V ' κ(IsoV )

where κ : Fiso → Fquad
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Decomposition of the functors PH0
and PH1

0 ⊂ P
(0)
Hε
⊂ P

(1)
Hε
⊂ PHε for ε ∈ {0, 1}

Theorem

For the functors PH0 and PH1 the rank filtration splits

PH0 = P
(0)
H0
⊕ P

(1)
H0

/P
(0)
H0
⊕ P

(2)
H0

/P
(1)
H0

PH1 = P
(0)
H1
⊕ P

(1)
H1

/P
(0)
H1
⊕ P

(2)
H1

/P
(1)
H1

Mix0,1, Mix1,1 : two elements of a new family of functors called “mixed
functors”

Corollary

Classification of simple objects S of Fquad such that S(H0) 6= {0} or
S(H1) 6= {0}
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The functors Mix0,1 and Mix1,1

ε ∈ {0, 1}
(x , ε) : the degenerate quadratic space generated by x such that q(x) = ε

Proposition

Mixε,1 is isomorphic to a sub-functor of ι(PFF2
)⊗ κ(Iso(x,ε))

The composition factors of Mixε,1 are sub-quotients of

ι(Λn)⊗ κ(Iso(x,ε)) for n ≥ 0

Conjecture

Simple objects of Fquad are sub-quotients of tensor products between a
simple functor of F and a simple functor of Fiso
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Introduction I Preliminaries II Définition III The category Fiso IV Study of standard projective objects

The functors Mix0,1 and Mix1,1

ε ∈ {0, 1}
(x , ε) : the degenerate quadratic space generated by x such that q(x) = ε

Proposition

Mixε,1 is isomorphic to a sub-functor of ι(PFF2
)⊗ κ(Iso(x,ε))

The composition factors of Mixε,1 are sub-quotients of

ι(Λn)⊗ κ(Iso(x,ε)) for n ≥ 0

Conjecture

Simple objects of Fquad are sub-quotients of tensor products between a
simple functor of F and a simple functor of Fiso

28 / 28
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