Arrow Categories

Michael Winter
Department of Computer Science
Brock University
St. Catharines, Canada
mwinter@brocku.ca

Content

1. Binary (Boolean valued), fuzzy and L-fuzzy relations
2. Dedekind categories (Boolean valued relations)
3. Goguen categories (Fuzzy/L-fuzzy relations)
4. Arrow categories

Binary (Boolean valued) relation (Category Rel)

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Fuzzy relation (Category $\operatorname{Rel}([0,1]))$

$$
\left(\begin{array}{lll}
0.1 & 0.8 & 0.0 \\
1.0 & 0.4 & 0.9 \\
0.0 & 0.2 & 0.1
\end{array}\right)
$$

L-fuzzy relation (L a complete distributive lattice, Category $\operatorname{Rel}(L)$)

Dedekind categories

Definition: A Dedekind category \mathcal{R} is a category satisfying the following:

1. For all objects A and B the collection $\mathcal{R}[A, B]$ is a complete distributive lattice (complete Heyting algebra). Meet, join, the induced ordering, the least and the greatest element are denoted by $\sqcap, \sqcup, \sqsubseteq, \Perp_{A B}, \pi_{A B}$, respectively.
2. There is a monotone operation ${ }^{\smile}$ (called converse) such that for all relations $Q: A \rightarrow B$ and $R: B \rightarrow C$ the following holds

$$
(Q ; R)^{\smile}=R^{\smile} ; Q^{\smile}, \quad\left(Q^{\smile}\right)^{\smile}=Q .
$$

3. For all relations $Q: A \rightarrow B, R: B \rightarrow C$ and $S: A \rightarrow C$ the
modular law holds:

$$
Q ; R \sqcap S \sqsubseteq Q ;\left(R \sqcap Q^{\smile} ; S\right)
$$

4. For all relations $R: B \rightarrow C$ and $S: A \rightarrow C$ there is a relation $S / R: A \rightarrow B$ (called the left residual of S and R) such that for all $Q: A \rightarrow B$ the following holds

$$
Q ; R \sqsubseteq S \quad \Longleftrightarrow \quad Q \sqsubseteq S / R .
$$

Definition (Matrix category)

Let \mathcal{R} be a Dedekind category. The category \mathcal{R}^{+}of matrices with coefficients from \mathcal{R} is defined by:

1. The class of objects of \mathcal{R}^{+}is the collection of all functions from an arbitrary set I into the class of objects $\mathrm{Obj}_{\mathcal{R}}$ of \mathcal{R}.
2. For every pair $f: I \rightarrow \mathrm{Obj}_{\mathcal{R}}, g: J \rightarrow \mathrm{Obj}_{\mathcal{R}}$ of objects from \mathcal{R}^{+}, a morphism $R: f \rightarrow g$ is a function from $I \times J$ into the class of all morphisms Mor $_{\mathcal{R}}$ of \mathcal{R} such that $R(i, j): f(i) \rightarrow g(j)$ holds.
3. For $R: f \rightarrow g$ and $S: g \rightarrow h$ composition is defined by

$$
(R ; S)(i, k):=\bigsqcup_{j \in J} R(i, j) ; S(j, k) .
$$

4. For $R: f \rightarrow g$ conversion defined by

$$
R^{\smile}(j, i):=(R(i, j))^{\smile} .
$$

5. For $R, S: f \rightarrow g$ join and meet are defined by

$$
\begin{aligned}
(R \sqcup S)(i, j) & :=R(i, j) \sqcup S(i, j), \\
(R \sqcap S)(i, j) & :=R(i, j) \sqcap S(i, j) .
\end{aligned}
$$

6. The identity, zero and universal elements are defined by

$$
\begin{aligned}
& \mathbb{I}_{f}\left(i_{1}, i_{2}\right):= \begin{cases}\Perp_{f\left(i_{1}\right) f\left(i_{2}\right)} & : i_{1} \neq i_{2} \\
\mathbb{I}_{f\left(i_{1}\right)} & : i_{1}=i_{2},\end{cases} \\
& \Perp_{f g}(i, j)
\end{aligned}:=\Perp_{f(i) g(j)}, ~=\mathbb{\pi}_{f(i) g(j)} .
$$

Some results

Lemma: \mathcal{R}^{+}is a Dedekind category.

Corollary: Let $L=(L, \vee, \wedge, 0,1)$ be a complete distributive lattice with least element 0 and greatest element 1 . Then L is an one-object Dedekind category with identity 1 and composition \wedge (the residual is given by the pseudo-complement). Consequently, L^{+}is a Dedekind category, called the full category of L-relations.

Lemma: The collection of scalar relations on A, i.e., the relations $k: A \rightarrow A$ with $k \sqsubseteq \mathbb{I}_{A}$ and $\mathbb{T}_{A A} ; k=k ; \mathbb{T}_{A A}$, constitutes a complete distributive lattice.

Example:

$$
\left(\begin{array}{ccc}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right)
$$

Theorem: There is no formula φ in the language of Dedekind categories such that for all lattices L and L-relations $R: A \rightarrow B$ we have

$$
L^{+} \models \varphi[R] \Longleftrightarrow R \text { is } 0-1 \text { crisp. }
$$

Goguen categories

Definition: A Goguen category \mathcal{G} is a Dedekind category with $\Perp_{A B} \neq \pi_{A B}$ for all objects A and B together with two operations and ${ }^{\downarrow}$ satisfying the following:

1. $R^{\uparrow}, R^{\downarrow}: A \rightarrow B$ for all $R: A \rightarrow B$.
2. $\left(\begin{array}{l}\uparrow \\ \\ \\ \downarrow\end{array}\right)$ is a Galois correspondence, i.e., $R^{\uparrow} \sqsubseteq S \Longleftrightarrow R \sqsubseteq S^{\downarrow}$ for all $R, S: A \rightarrow B$.
3. $\left(R^{\smile} ; S^{\downarrow}\right)^{\uparrow}=R^{\uparrow} ; S^{\downarrow}$ for all $R: B \rightarrow A$ and $S: B \rightarrow C$.
4. If $\alpha \neq \Perp_{A A}$ is a nonzero scalar then $\alpha^{\uparrow}=\mathbb{I}_{A}$.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & k & l \\
0 & k & m \\
0 & 1 & l
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & k & l \\
0 & k & m \\
0 & 1 & l
\end{array}\right)^{\uparrow}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & k & l \\
0 & k & m \\
0 & 1 & l
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

4. For all functions f so that $f(\sqcup M)=\prod_{\alpha \in M} f(\alpha)$ for all sets of scalars and $f(\alpha)^{\uparrow}=f(\alpha)$ for all scalars the following equivalence holds

$$
\begin{gathered}
R \sqsubseteq \underset{\substack{\alpha: A \rightarrow A \\
\alpha: \text { scalar }}}{\bigsqcup} \alpha ; f(\alpha) \Longleftrightarrow(\alpha \backslash R)^{\downarrow} \sqsubseteq f(\alpha) \text { for all scalars } \alpha . \\
\left(\left(\begin{array}{ccc}
l & 0 & 0 \\
0 & l & 0 \\
0 & 0 & l
\end{array}\right) \backslash\left(\begin{array}{ccc}
1 & k & l \\
0 & k & m \\
0 & 1 & l
\end{array}\right)\right)^{\downarrow}=\left(\begin{array}{ccc}
1 & k & 1 \\
0 & k & m \\
0 & 1 & 1
\end{array}\right)^{\downarrow}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

Some results

Theorem: Let L be a complete distributive lattice. Then L^{+} together with the operations

$$
\begin{aligned}
R^{\uparrow}(x, y) & :=\left\{\begin{array}{l}
1 \text { iff } R(x, y) \neq 0 \\
0 \text { iff } R(x, y)=0
\end{array},\right. \\
R^{\downarrow}(x, y) & :=\left\{\begin{array}{l}
1 \text { iff } R(x, y)=1 \\
0 \text { iff } R(x, y) \neq 1
\end{array},\right.
\end{aligned}
$$

is a Goguen category. Furthermore, for a relation R in L^{+}we have $R^{\uparrow}=R$ iff $R 0-1$ crisp.

Lemma: For each pair of objects A and B the set of scalar elements on A resp. on B are isomorphic lattices.

Lemma: Let \mathcal{G} be a Goguen category and $R: A \rightarrow B$ be a relation. Then we have

1. $\quad \sqcup \quad \alpha_{A} ;\left(\alpha_{A} \backslash R\right)^{\downarrow}=R$, α scalar
2. $\underset{\substack{\alpha_{A} \text { Scalar } \\ \alpha_{A} \neq \Perp_{A A}}}{\sqcup}\left(\alpha_{A} \backslash R\right)^{\downarrow}=R^{\uparrow}$.

Theorem (Pseudo-representation Theorem): Every Goguen category \mathcal{G} is isomorphic to the category of antimorphisms mapping the scalars of \mathcal{G} to the crisp relations of \mathcal{G}.

Corollary: A Goguen category is representable iff its subcategory of crisp relations is representable.

Further results/studies of Goguen categories

1. Definability of norm-based operations;
2. Validity of certain formulae in the subcategory of crisp relations;
3. Applications in computer science, e.g., fuzzy controller;
4. ...

Arrow categories

Definition: An arrow category $\mathcal{A i s}$ a Dedekind category with $\pi_{A B} \neq \Perp_{A B}$ for all objects A and B together with two operations ${ }^{\uparrow}$ and ${ }^{\downarrow}$ satisfying the following:

1. $R^{\uparrow}, R^{\downarrow}: A \rightarrow B$ for all $R: A \rightarrow B$.
2. $\binom{\uparrow}{}$, is a Galois correspondence.
3. $\left(R^{\smile} ; S^{\downarrow}\right)^{\uparrow}=R^{\uparrow} ; S^{\downarrow}$ for all $R: B \rightarrow A$ and $S: B \rightarrow C$.
4. $\left(Q \sqcap R^{\downarrow}\right)^{\uparrow}=Q^{\uparrow} \sqcap R^{\downarrow}$ for all $Q, R: A \rightarrow B$.
5. If $\alpha_{A} \neq \Perp_{A A}$ is a non-zero scalar then $\alpha_{A}^{\uparrow}=\mathbb{I}_{A}$.

Lemma: For each pair of objects A and B the set of scalar elements on A resp. on B are isomorphic lattices.

Lemma: Let \mathcal{A} be an arrow category and $R: A \rightarrow B$ be a relation. Then we have

1. $\bigsqcup \quad \alpha_{A} ;\left(\alpha_{A} \backslash R\right)^{\downarrow} \sqsubseteq R$, α scalar
2. $\underset{\substack{\alpha_{A} \mathrm{Scalar} \\ \alpha_{A} \neq \Perp_{A A}}}{\sqcup}\left(\alpha_{A} \backslash R\right)^{\downarrow} \sqsubseteq R^{\uparrow}$.

Example 1:

Example 2:

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & b \\
b & b
\end{array}\right) \\
\left(\begin{array}{ll}
b & a \\
b & 1
\end{array}\right) \\
\left(\begin{array}{ll}
b & 0 \\
a & b
\end{array}\right) \\
\left(\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

Arrow categories with cuts

Definition: An arrow category with cuts \mathcal{A} is an arrow category so that

$$
R \sqsubseteq \bigsqcup_{\alpha \text { scalar }} \alpha_{A} ;\left(\alpha_{A} \backslash R\right)^{\downarrow}
$$

for all relations $R: A \rightarrow B$ holds.

Example

Thank you for your attention.

