Arrow Categories

Michael Winter Department of Computer Science Brock University St. Catharines, Canada mwinter@brocku.ca

Content

- 1. Binary (Boolean valued), fuzzy and *L*-fuzzy relations
- 2. Dedekind categories (Boolean valued relations)
- 3. Goguen categories (Fuzzy/L-fuzzy relations)
- 4. Arrow categories

Binary (Boolean valued) relation (Category Rel)

Fuzzy relation (Category Rel([0,1]))

 $\left(\begin{array}{rrrrr} 0.1 & 0.8 & 0.0 \\ 1.0 & 0.4 & 0.9 \\ 0.0 & 0.2 & 0.1 \end{array}\right)$

L-fuzzy relation (*L* a complete distributive lattice, Category Rel(*L*))

Dedekind categories

Definition: A Dedekind category \mathcal{R} is a category satisfying the following:

- For all objects *A* and *B* the collection *R*[*A*,*B*] is a complete distributive lattice (complete Heyting algebra). Meet, join, the induced ordering, the least and the greatest element are denoted by ⊓, ⊔, ⊑, ⊥_{AB}, ⊤_{AB}, respectively.
- 2. There is a monotone operation \sim (called converse) such that for all relations $Q: A \rightarrow B$ and $R: B \rightarrow C$ the following holds

$$(Q;R)^{\smile} = R^{\smile}; Q^{\smile}, \quad (Q^{\smile})^{\smile} = Q.$$

3. For all relations $Q: A \rightarrow B, R: B \rightarrow C$ and $S: A \rightarrow C$ the

modular law holds:

$$Q; R \sqcap S \sqsubseteq Q; (R \sqcap Q^{\smile}; S).$$

4. For all relations $R : B \to C$ and $S : A \to C$ there is a relation $S/R : A \to B$ (called the left residual of *S* and *R*) such that for all $Q : A \to B$ the following holds

$$Q; R \sqsubseteq S \iff Q \sqsubseteq S/R.$$

Definition (Matrix category)

Let \mathcal{R} be a Dedekind category. The category \mathcal{R}^+ of matrices with coefficients from \mathcal{R} is defined by:

- 1. The class of objects of \mathcal{R}^+ is the collection of all functions from an arbitrary set *I* into the class of objects $Obj_{\mathcal{R}}$ of \mathcal{R} .
- 2. For every pair $f: I \to \operatorname{Obj}_{\mathcal{R}}, g: J \to \operatorname{Obj}_{\mathcal{R}}$ of objects from \mathcal{R}^+ , a morphism $R: f \to g$ is a function from $I \times J$ into the class of all morphisms $\operatorname{Mor}_{\mathcal{R}}$ of \mathcal{R} such that $R(i, j): f(i) \to g(j)$ holds.
- 3. For $R: f \rightarrow g$ and $S: g \rightarrow h$ composition is defined by

$$(R;S)(i,k) := \bigsqcup_{j \in J} R(i,j); S(j,k).$$

4. For $R: f \rightarrow g$ conversion defined by

 $R^{\smile}(j,i) := (R(i,j))^{\smile}.$

5. For $R, S : f \rightarrow g$ join and meet are defined by

$$(R \sqcup S)(i,j) := R(i,j) \sqcup S(i,j),$$
$$(R \sqcap S)(i,j) := R(i,j) \sqcap S(i,j).$$

6. The identity, zero and universal elements are defined by

$$\begin{split} \mathbb{I}_{f}(i_{1}, i_{2}) &:= \begin{cases} \mathbb{L}_{f(i_{1})f(i_{2})} : i_{1} \neq i_{2} \\ \mathbb{I}_{f(i_{1})} &:= i_{1} = i_{2}, \end{cases} \\ \mathbb{L}_{fg}(i, j) &:= \mathbb{L}_{f(i)g(j)}, \\ \mathbb{T}_{fg}(i, j) &:= \mathbb{T}_{f(i)g(j)}. \end{split}$$

Some results

Lemma: \mathcal{R}^+ is a Dedekind category.

Corollary: Let $L = (L, \lor, \land, 0, 1)$ be a complete distributive lattice with least element 0 and greatest element 1. Then *L* is an one-object Dedekind category with identity 1 and composition \land (the residual is given by the pseudo-complement). Consequently, L^+ is a Dedekind category, called the full category of *L*-relations. **Lemma:** The collection of scalar relations on *A*, i.e., the relations $k : A \to A$ with $k \sqsubseteq \mathbb{I}_A$ and $\mathbb{T}_{AA}; k = k; \mathbb{T}_{AA}$, constitutes a complete distributive lattice.

Example:

Theorem: There is no formula φ in the language of Dedekind categories such that for all lattices *L* and *L*-relations $R : A \rightarrow B$ we have

$$L^+ \models \varphi[R] \iff R \text{ is } 0\text{-1 crisp.}$$

Goguen categories

Definition: A Goguen category G is a Dedekind category with $\bot_{AB} \neq T_{AB}$ for all objects *A* and *B* together with two operations \uparrow and \downarrow satisfying the following:

- 1. $R^{\uparrow}, R^{\downarrow} : A \to B$ for all $R : A \to B$.
- 2. (\uparrow,\downarrow) is a Galois correspondence, i.e., $R^{\uparrow} \sqsubseteq S \iff R \sqsubseteq S^{\downarrow}$ for all $R, S : A \to B$.
- 3. $(R^{\smile}; S^{\downarrow})^{\uparrow} = R^{\uparrow}^{\smile}; S^{\downarrow}$ for all $R : B \to A$ and $S : B \to C$.
- 4. If $\alpha \neq \bot_{AA}$ is a nonzero scalar then $\alpha^{\uparrow} = \mathbb{I}_A$.

$$\begin{pmatrix} 1 & k & l \\ 0 & k & m \\ 0 & 1 & l \end{pmatrix}^{\uparrow} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & l \end{pmatrix}^{\uparrow} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & k & l \\ 0 & k & m \\ 0 & 1 & l \end{pmatrix}^{\downarrow} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

4. For all functions f so that $f(\bigsqcup M) = \prod_{\alpha \in M} f(\alpha)$ for all sets of scalars and $f(\alpha)^{\uparrow} = f(\alpha)$ for all scalars the following equivalence holds

 $R \sqsubseteq \bigsqcup_{\substack{\alpha: A \to A \\ \alpha \text{ scalar}}} \alpha; f(\alpha) \iff (\alpha \backslash R)^{\downarrow} \sqsubseteq f(\alpha) \text{ for all scalars } \alpha.$

$$\left(\left(\begin{array}{cccc} l & 0 & 0 \\ 0 & l & 0 \\ 0 & 0 & l \end{array} \right) \setminus \left(\begin{array}{cccc} 1 & k & l \\ 0 & k & m \\ 0 & 1 & l \end{array} \right) \right)^{\downarrow} = \left(\begin{array}{cccc} 1 & k & 1 \\ 0 & k & m \\ 0 & 1 & 1 \end{array} \right)^{\downarrow} = \left(\begin{array}{cccc} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right)^{\downarrow}$$

Some results

Theorem: Let *L* be a complete distributive lattice. Then L^+ together with the operations

$$R^{\uparrow}(x,y) := \begin{cases} 1 \text{ iff } R(x,y) \neq 0\\ 0 \text{ iff } R(x,y) = 0 \end{cases},$$
$$R^{\downarrow}(x,y) := \begin{cases} 1 \text{ iff } R(x,y) = 1\\ 0 \text{ iff } R(x,y) \neq 1 \end{cases},$$

is a Goguen category. Furthermore, for a relation *R* in L^+ we have $R^{\uparrow} = R$ iff *R* 0-1 crisp.

Lemma: For each pair of objects *A* and *B* the set of scalar elements on *A* resp. on *B* are isomorphic lattices.

Lemma: Let \mathcal{G} be a Goguen category and $R : A \rightarrow B$ be a relation. Then we have

1.
$$\bigsqcup_{\alpha \text{ scalar}} \alpha_A; (\alpha_A \setminus R)^{\downarrow} = R,$$

2.
$$\bigsqcup_{\substack{\alpha_A \text{ scalar} \\ \alpha_A \neq \bot \bot_{AA}}} (\alpha_A \setminus R)^{\downarrow} = R^{\uparrow}.$$

Theorem (Pseudo-representation Theorem): Every Goguen category G is isomorphic to the category of antimorphisms mapping the scalars of G to the crisp relations of G.

Corollary: A Goguen category is representable iff its subcategory of crisp relations is representable.

Further results/studies of Goguen categories

- 1. Definability of norm-based operations;
- 2. Validity of certain formulae in the subcategory of crisp relations;
- 3. Applications in computer science, e.g., fuzzy controller;
- 4. ...

Arrow categories

Definition: An arrow category \mathcal{A} is a Dedekind category with $\mathbb{T}_{AB} \neq \bot_{AB}$ for all objects *A* and *B* together with two operations \uparrow and \downarrow satisfying the following:

1.
$$R^{\uparrow}, R^{\downarrow} : A \to B$$
 for all $R : A \to B$.

2.
$$(\uparrow,\downarrow)$$
 is a Galois correspondence.

3.
$$(R^{\smile}; S^{\downarrow})^{\uparrow} = R^{\uparrow}^{\smile}; S^{\downarrow}$$
 for all $R : B \to A$ and $S : B \to C$.

4.
$$(Q \sqcap R^{\downarrow})^{\uparrow} = Q^{\uparrow} \sqcap R^{\downarrow}$$
 for all $Q, R : A \to B$.

5. If
$$\alpha_A \neq \bot_{AA}$$
 is a non-zero scalar then $\alpha_A^{\uparrow} = \mathbb{I}_A$.

Lemma: For each pair of objects *A* and *B* the set of scalar elements on *A* resp. on *B* are isomorphic lattices.

Lemma: Let \mathcal{A} be an arrow category and $R : A \to B$ be a relation. Then we have

1.
$$\bigsqcup_{\alpha \text{ scalar}} \alpha_A; (\alpha_A \setminus R)^{\downarrow} \sqsubseteq R,$$

2.
$$\bigsqcup_{\substack{\alpha_A \text{ scalar} \\ \alpha_A \neq \bot \bot_{AA}}} (\alpha_A \setminus R)^{\downarrow} \sqsubseteq R^{\uparrow}.$$

Arrow categories with cuts

Definition: An arrow category with cuts \mathcal{A} is an arrow category so that

$$R \sqsubseteq \qquad \bigsqcup_{1} \quad \alpha_{A}; (\alpha_{A} \setminus R)^{\downarrow}$$

 α scalar

for all relations $R : A \rightarrow B$ holds.

Thank you for your attention.