Fundamenta Informaticae X111 (1990) 171-210
IOS Press 171

TOWARDS A NEW ALGEBRAIC FOUNDATION
OF FLOWCHART SCHEME THEORY

Virgil Emil CAZANESCU

Faculty of Mathematics, University of Bucharest, Str. Academiei 14,
70109 Bucharest, Romania

and

Gheorghe STEFANESCU

Department of Mathematics, T) he National Institute for Scientific and Technical Creation,
Bd. Pdcii 220, 79622 Bucharest, Romania

Abstract. We develope a formalism for the algebraic study of flowchart
schemes and their behaviours, based on a new axiomatic looping operation,
called feedback.

This formalism is based on certain flownomial expressions. Such an
expression is built up from two types of atomic schemes (i.e., elements in a
double-ranked set X considered as unknown computation processes, and
elements in a "theory" T considered as known computation processes) by using
three operations: sum, composition, and feedback. Flownomial expressions are
subject to certain rules of identification. A

The axiomatization of flowchart schemes is based on the fact that a
flowchart scheme may be identified with a class of isomorphic flownomial
expressions in normal form. The corresponding algebra for flowchart schemes
is called biflow. .

This axiomatization is extended to certain types of behaviour. We present
axiomatizations for accessible flowchart schemes, reduced flowchart schemes,
minimal flowchart schemes with respect to the input behaviour, minimal
flowchart schemes with respect to the input-output behaviour etc. Some
results are new, others are simple translations in terms of feedback of
previous results obtained by using Elgot's iteration or Kleene's repetition.

The paper also contains some historical comments.

INTRODUCTION

In the study of flowchart schemes we use a new operation called feedback (Figure 4.c)
instead of the iteration to model the loops. As an identification of the return points with
the inputs appears implicitly in the definition of the iteration, the use of iteration implies
the use of tupling (Figure 11), therefore the algebraic theories have had a main place in
the study of flowchart schemes. The use of feedback permits to leave out the tupling. Our
conviction is that the symmetric strict monoidal categories (defined in [28] are the most
adequate algebraic structures to study acyclic flowchart schemes. To study flowchart
schemes we use a symmetric strict monoidal category endowed with an adequate
axiomatized feedback.

The aim of this paper is just to provide motivation. Proofs will be given elsewhere.

]

V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

‘ START ’ < START >

Z{Read m,n)7 X4

172

Write ;~ i n - (n+m)*xm
y

(stop) n:=m GTOP) | =s

y
m := i Xg
4 y
FIGURE 1 FIGURE 2
A usual abstract flowchart scheme.

A concrete flowchart.

‘ START >

' S

‘ STOP ’
FIGURE 3

The normal form of a flowchart scheme.

V.E. Ciizdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 173

1. A FORMAL REPRESENTATION OF FLOWCHART SCHEMES

1.1. A representation by pairs

The usual computation processes may be represented by flowchart pictures as in
Figure 1. The meaning of the picture is the usual one: start the computation beginning
with the input vertex (START) and execute the statements in the order given by arrows
until an output vertex is reached; in the case a statement has more than one output arrow
(exit) its execution gives at the same time the information regarding the output arrow on
which the execution is continued.

The (abstract) flowchart schemes will be obtained by a double abstraction of these

concrete flowchart pictures: an abstraction of statements and an abstraction of

connections.
The first abstraction is easier to understand. It consists of replacing the concrete

statements used to label the vertices in flowchart pictures by abstract symbols

(variables). Since the statements we use may have more than one entry and one exit, the

set of variables is a double-indexed set {X(m,n)} . An element x€ X(m,n) is
m,nE N

considered as an_unknown computation process with m entries and n_exits (a still

unspecified computation process). Denote by X the disjoint union of this family of
variables. Two functions i0: X—> N specify the numbers of entries and of exits
respectively, corresponding to a variable, i.e. x€ X(m,n) iff i(x) = m and o(x) = n.

The result of this abstraction is the usual notion of "flowchart scheme" studied in the
seventies (Manna [29], Greibach [(25], Kotov [27]: An X -flowchart scheme is a finite,
locally ordered, oriented graph whose vertices are coherently labelled by symbols in X.
Such an abstraction of the flowchart picture in Figure 1 is given in Figure 2, where
xl,x3,xa,x5,x6€ X(1,1) and x2€, X(1,2).

The second abstraction is more complicated, and at the present stage of the
presentation only a vague definition can be given. Note that every flowchart picture can
be rearranged in a normal way by putting on a first level the statements of the scheme
and on a second level the connections of the scheme. For example, the scheme in Figure 2
can be arranged in a normal form as in Figure 3. In this way we can image the possibility
of using a "theory" for connections. (What "theory" means will be explained later.) In our

concrete case, this theory is the theory of finite functions Fn given by the family of sets
Fn{m,n) = {f | f:[m]—>In] function}, for mynE N

where [n]= {l,Z,...,n} . An element f€Fn(m,n) used as a connection indicates the

redirecting of flow of control. For the scheme in Figure 3 the connection gEFn(8,7) is

given in the following table obtained using the large rectangle in Figure 3

j|12345678
§(D|23451673.

At the abstract level we shall use for connections a "support" theory T given by a family
of sets ‘{(T(m,n)}m’n€ N’ An element f€ T(m,n) is considered as a known computation

174 V.E. Cdzdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

process with m entries and n exits.

The result of this double abstraction is the concept of representation of an
X-flowchart scheme over T. It can be defined as follows. For x in the free monoid X* we
denote by [x| the length of the word x, and for jE€ [| x|] we denote by X; the j-th letter of
X. Since the operation of concatenation is denoted additive we have

) and
I%]

o(x) = O(XI) +oeen + °(x[x)). A representation of an X-flowchart scheme over T with m

X2 X)+ X+ e b x[x| * Also we use the notation: i(x) = i(xl) + oo + i(X

entries and n exits is defined as a pair
F = (x, f)

where x = Xp+ e+ x|x| € X* specifies the vertices of the scheme, ordered in a linear
way, and fET(m + o(x), n + i(x)) specifies the connection of the scheme. The scheme in
Figure 3 may be represented as (xl Xy + Xy + X, + X+ X g), where g€ Fn(8,7) is the
function defined above.

It must be emphasized that there may be more representations which correspond to a
flowchart scheme. The difference between these representations is generated by the way
in which the statements of the scheme are linearly ordered as a string x€ X*.

We denote by FIX,T the set of representations of X-flowchart schemes over T. More

precisely,

le,T(m,n) = {(x,f)lxéx*, fET(m + olx), n + i(x))} .

e——e
g
o
-
VI
=}
)
—
ny

‘-
=]
e}
#—-h’
o]
o)
h
§

Vv P
v
(a) (b)
m
[
FIGURE 4 ,
The basic operations on flowchart F T = F
schemes: (a) "+" denotes sum; "
(b) "-" denotes composition; n+1 L
(c) "t" denotes feedback.
v

(c)

V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 175

1.2. Operations

While the above representation of schemes by pairs F = (x,f) is convenient for
theoretical purposes, for practical purposes it is inconvenient in the sense that it does not
show how the scheme F can be obtained from the components x and f of its
representation. To fill in this gap we introduce here operations on flowchart schemes .

If we look at the normal representation of schemes given in Figure 3, then we can
deduce that every scheme can be obtained from the components of its representations by
using the operations in Figure 4, called sum, composition and feedback. More precisely, a
flowchart scheme F represented by the pair (x, f)EFI X’T(m,n) can also be represented by a

formal expression

(1 XYt xlx]).f)¢i(X) ,

m

where fl(x) denotes the application of the feedback by i(x) times, and 1 € T(m,m) is the

scheme without (internal) vertices which directly connects the i-th entry on the i-th exit.

1.2.1. The elements of T are considered as particular schemes having only connections
between entries and exits (i.e., without internal vertices). Therefore, if the operations
above have sense in Fl X,T ’ then they must be defined in T, too. The usual flowchart
schemes have as support theory a subtheory of the theory of finite relations Rel defined

by the family of sets
Rel(m,n) = {rl r< [ml1x(n] relation}, for m,nE N.
Here the operations in Figure 4 have the following meaning.

The operations in Rel. For r& (m]X[n] and r'c [pIX[q] the sum
r + 'S [m + p)X[n + gl is defined by

e+r=cy{m+pne DIGNE]

For r< [m]x[n] and r'S [n]1X[p] the composite r - ' [m]XIp] is the usual one defined by
r - ' = {(j,j")] there exists u€ [n] such that G,w€r and (w,iNEr}.

For r<[m + 11X[n + 1] the feedback rf & [m]X[n] is defined by
4 = {,1€ [mIX[n]| (€ ¥ or [Gn + DEF and (m + LI)E i1}

The meaning of | €Rel(m m) is clear: 1_ = {(j,j)l j€ [m]}. In the sequel we shall use
some distinguished morphnsms of the support theory T, namely

m«snET(m + n, n + m), mVmET(m + m, m), Om€ T(0,m),
_L €T(n,0) and mMAmE T(m, m + m),

whose meaning in Rel is: mesns= {(),n + DL€ (mlj U {(m + j,l)€(n]} 0.,.=9
mvm = {G,p)] j€LmI} U {(m + §,i)I i€ [m]}; mAm = {G.)] i€ [m1} U {G,m + D] i€ImI};
L =0

n

176 V.E. Cazanescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

i

X

o (x)

i(x)

FIGURE 5
A concise picture of a schme in normal form.

m P
m P
¢ ‘ X x'
o(x)p(x"')
. m . I T
oo | | Tow || s
£ f E f :-
i(x) i(x") ; §
H H
N []
. A .
i (x*)
n q
v v
n q
Y Y
(a) (b)

FIGURE 6
The normal form of the sum of two schemes in normal form.

V.E. Cdzdnescu, G. Stefinescu / Algebraic Theory of Flowchart Schemes 177

Note. The subtheory of partial, finite functions in Rel, denoted by Pfn and defined by

the family of sets
Pfn(m,n) = {fl f : [m] = [n] partially defined function}, for m,nEN

is closed under the aforementioned operations. The theory Fn defined in ©§l.1 is not
closed under feedback, hence it is inconvenient to use Fn as a support theory for
deterministic flowchart schemes (since Fn(1,0) = @, so that for the unique function
fEFn(2,1) we have £4 £ Fn(1,0)). The use of Pfn as support theory in the deterministic case
is equivalent to the extension of the concept of usual flowchart scheme to the concept of
partial flowchart scheme. A partial flowchart scheme is obtained from a usual flowchart
scheme by deleting some arrows, and one interprets such an absence of arrow as a
connection to an endless loop. For the sake of contrast, sometimes the usual flowchart

schemes (over Fn) will be called complete flowchart schemes.

1.2.2. Conversely, in the following section we shall see that it is easy to extend the

operations in Figure &4 from T to le T supposing T "contains" bijective, finite functions.
L

We collect these facts as the following slogan:

In order to define algebra Fly , we have to specify:
?
- a double indexed set X;
- a support theory T which contains finite bijections and

is equipped with operations acting as in Figure 4.

1.3. The algebra of representations (Fl,)
£}

In order to extend our operations from T to le T T has to contain some distinguished
?
elements mes nET(m + n, n + m) representing the "block transpositions" where m,nEN,

i.e. an . In the theory Rel the morphisms mesn were defined in gl.2.1.
n/\m

The flowchart scheme in the normal form corresponding to a representation of an
X-flowchart over T, namely F =(x,f) is illustrated in Figure 5. The operations on
flowchart scheme representations can be obtained by applying first the operations in
Figure 4 on the pictures corresponding to the given representations, then by rearranging
the obtained result in an adequate, normal form, and finally by writing the representation
associated to the final picture.

The sum of two normal flowchart schemes illustrated in Figure 6.a can be rearranged
in the normal form given in Figure 6.b. Hence, we can formally define the sum of two

representations (x,f)€ Fly T(m,n) and (x',f)€ Fly T(p,q) by
b ’

(x,f) + (x,f) = (x + X', (lm + p<rolx) + lo(x'))(f + f')(ln + i(x)<+q + li(x'))).

The composite of two normal flowchart schemes illustrated in Figure 7.a can be

178 V.E. Céazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

0 (x)

th

wa

==

)

]

1

1

L}

.
1)

h

i(x)

fl

o(x"')

fl

i(x')

v crrccncrsnnccccne
]
1

(a) +vF (b)

FIGURE 7
The normal form of the composite of two schemes in normal form.

m
m
l‘
< X
1
(ot LR CELELE R St L) L
: : A G SN
: ' ' :
]] [} ,
' X " " '
: : : -
: 0 . O(X) : E :
' ' ' '
! £ ! : '
] ' ' '
: i(x)} ! ' '
[] 1
S S PO J ; |
1 (T AU N J
i(x)
n n
Y (a) Y (b)

FIGURE 8
The normal form of the feedback of a scheme in normal form.

V.E. Cazinescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 179

rearranged in the normal form given in Figure 7.b. Hence, we can formally define the

composite of two representations (x,f)€ Fl X T(m,n) and (x',f)EF1 X T(n,p) by
(x,£) * (x',f) = (x + x', (f 4 1°(x,)x1 o+ 100 obIXE' + 1i(x))(1P + i(x)=i(x))).

The feedback of a normal flowchart scheme illustrated in Figure 8.a can be rearranged

in the normal form given in Figure 8.b. Hence, we can formally definé the feedback of a

representation (x,f)€le T(m + I,n + 1) by
0D = (x, [(1_ + o)< DE(L + 1+-iGMT) .

Let us mention that the embeddings of X and T into le T are given by the following
’

applications:

ET(f) = (&,f) for £€ T(m,n), where €€ X" is the empty word;
Ex(x) = (x,m<+n) for x€ X(m,n) .

(The last equality can be extended to embed X* into Fly 1 Ey(x) = (x,i(x)«>o(x)) for
?
x€Xx*.)

We do not insist on the algebraic rules satisfied by the flowchart scheme repre-
sentations since this study is interesting only from a technical viewpoint. We only men-
tion that an algebraic structure, called flow [10], has been singled out, which is preserved
by passing from T to le ™ and that le T satisfies a universal property partially similar |
to that satisfied by polynomlals (those interpretations of X and T in a flow that satisfy a

certain supplementary condition can be naturally extended in a unique way to le T)
’

1.4. Flownomials, flow-calculus

As we pointed out in §1.2 a flowchart scheme represented by a picture in a normal
form may also be represented by a formal expression of the particular form

(1 Xt X) £)} ifx)+' “(xk). The final form of the calculus is obtained by

allowmg arbitrary formal expressions written with "+", """ and ",

Flownomial expressions. Let X and T be as above. Define the sets EXPX T(m,n) of
’
flownomial X-expressions over T of type m-—»n as follows:
(i) atomic elements x€ X(m,n) and f€ T(m,n) are flownomial expressions of the type

m—>n; R

(ii) compound expressions: if Fim+ l+n+ 1, Flim —n, F2:p—)—q and F3:n..>q are
flownomial expressions of the indicated type then Fl + F2 tm+p —=> n+q,
Fl - F3 : m—>qand Ft : m—n are flownomial expressions of the indicated type.

(iii) all flownomial expressions are obtained by using rules (i) and (ii).

A flownomial expression of the particular form ((lm X bt xk) -H)t r’ where
r= i(xl) + e i(xk) is said to be in a normal form; in the sequel we shall use the following

ceccemema cmeccenacany

o caemesecvoncnscosmaag

.
’

(c)

il NN

V.E. Cdzdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

Y
Y
,

RS,

Lecececncmconadecaa.
\

brecvecemeemmea conmwaad bocccocecenansnccemann

[=== ~ccecccceccaan. -

b

cTeececacsmweoenecsca s

FIGURE 9
its complete minimization (b)

inistic minimization (c).

Y

Y

180

Y

Y

Y
pomcponfocccnnnlacy
Y
L,
Lrececemocccacteed

\V
rocqdeccfecndriccteccncncncnvacnsocnwnn

Cemecafoncdencabecches cow e med
\' 4
h 4
X
cechocdeccencdcccnrscrccncncenedd

RN ZS

Y

and its determ

A scheme (a);

(a)

V.E. Cazanescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 181

o oy . _ e L ,)
standard notation: x “Zj_{kxj’ i(x) 'Zj_{kl(xj)’ olx) =y jEko(xj), x'=y i<k etc. When T is
closed with respect to +, - and 4 and contains the block transpositions m<sn, every
flownomial expression over T can be brought to a normal form by using the following

rules:

(R1) replace subexpressions involving only elements in T by the corresponding value
computed in T;

(R2) the normal form of fE€T(m,n) is (lm . f)To and of x€X(m,n) is
(1 +x) - men?}™

n i(x) i(x')

(R3) the normal form of (1 +x) -4 ((lP ox) - TR s

\ . . i(x+x')

((l"”p +x+ X0+ perolx) + 10(5,))(f + 10+ i(x)+>q + 11(5'))])f x+x'),
yiee)

(R%) the normal formof ((1_ +x)- f)Ti(’—(-) -+ x')- f is

Uy #2400+ 1)1+ (GD40lONE + L X1 + i)+ =i DHEE);
(R5) the normal formof ((1_ , +x)+ D} iy s

«lm + _X_)[(lm + 0(5)9[)“1" + 101(5)):”)11(}_) .

Using these rules every flownomial expression can be brought to a unique normal form,
hence flownomial expressions in normal form give a complete and independent system of
representations for the congruence relation R generated by the rules (R1 - 5) in the
algebra of expressions EXPX,T' In addition, it can be proved that the algebra of
representations FlX,T is isomorphic to the quotient algebra EXPX,T/R' Consequently, in

this enlarged frame we have the following identification:

representations by pairs = flownomial expressions in normal form.

The examples we shall give in this paper are related to the flowchart scheme in Figure
9.a. They use the variables x€ X(1,3), y€ X(1,1) and zE X(2,1). The support theory T is the
theory of finite partial functions, i.e., T = Pfn. An element £€ Pfn(m,n) is represented by
the sequence of its values, i.e., (f(l),f(Z),...,f(m))n, where £(i) = "if f(i) = undefined then 4
else £(i)", for i€[m]. For instance, the function £€ Pin(4,4) given by (1) = 1, £(2) = f(4) = 3,
£(3) = 2 is represented by (1,3,2,3)4; (l,__L)3 represents the function 1€ PIn(2,3) given by
£(1) = 1 and £(2) = undefined. (This representation of finite partial functions is not elegant,

and is similar to the representation of natural numbers by bars, i.e., 7 = |11 etc.)

Here we prove that the following identity holds in flow-calculus:
[V L= XKL, + 0 =[] + % + 005,1,2,6,3,4,5) 112
2 - l LIt Rt e Rt AL 6 ’

i.e., the normal form of the left-hand-side expression is the right-hand-side expression.

Note that the left-hand-side expression represents the top of the Figure 9.b.

182 V.E. Cdzdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

Proof.

X = [(ll +x)1e3]4 = [(ll + x)(Q,l,Z,B)u]‘f“;

IVi1-x=[1,- (1,1)1]1‘0' [, + x)(t4,1,2,3),‘]Tl =
= {0, + 00,0 + 10+ 003X(,1,2,3), + 1015 + 1>0) } 1041
= [(1, + x)(4,4,1,2,3), 14 ;
Ly+x =l ,2,11% + 101 + 4, 1,2,9, 14 =
=105+ XMLy + 100+ 11,2, + (4,1,2,3,X1, + 003+ 1)1]404 =
=[5+ xX1,2,6,3,4,5) 11 ;
LV 1e 5Ky + %) =1, + xN4,4,1,2,3), 14 L. [+ x)(1,2,6,3,t+,5)6]fl =
= {05+ x + 0,4,1,2,3), + 1,015+ 1+ 3)(1,2,6,3,4,5)¢ + 1 X1 5+ 1»1]1}17
=[5 + x + xX6,6,1,2,7,3,4,5),11 % '
[V LNy +)14 = (1« x + x)(6,6,l,2,7,3,l4,5)7]1‘2’f =
= {(1l +x + 1)+ 651)(6,6,1,2,7,3,4,5),(1, + 13211} 2=

=01+ x + (5,1,2,6,3,4,5) 2.

2. SEMANTIC MODELS

The basic mode! for the study of semantics of deterministic flowchart schemes has
been introduced by C.C. Elgot [15]. It consists in the following: Let S be the set of value-
vectors denoting the states of memory in a computing device (the value-vectors in the
registers of memory). A deterministic flowchart scheme F with m entries and n exits is
interpreted via an interpretation 1 as a partial function F| :[m] XS - [n) XS with the
meaning that "Fl(j,s) is defined and equal to (j',s')" iff "if the execution of the program
obtained by interpreting F via I begins at entry j of the program with initial state of
memory s, then the execution halts at exit j' of the program, the resulting state of
memory being s'."

If we denote by
Pfn(S}m,n) = {fl f : [m]XS—>[n] XS partial function} , for m,nEN

we obtain a "theory", in a vague sense, Pfn(S) which is the basic semantic model in the
deterministic case.

Note that in the particular case when S has exactly one element, Pfn(S) can be
identified with Pfn defined above (§1.2.1). In this case the stress is laid on flow of control,

whereas the memory state remains unchanged.
In a similar way the basic semantic model has been introduced in the nondeterministic

case. A nondeterministic flowchart scheme F with m entries and n exits is interpreted, via

V.E. Cézdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 183

an interpretation I, as a relation FIQ([m])(S))((In]XS) with the meaning that
"((j,s),(j‘,s‘))GFI" iff "if the execution of the program obtained by interpreting F via I
begins at entry j of the program with initial state of memory s, then the execution may

halt, on one variant, at exit j'of the program, the resulted state of memory being s'." If we

denote by
Rel(SXm,n) = {r]r<& m]}xS)X({n] XS)} , for m,nEN

then we obtain a theory Rel(S) which is the basic semantic model in the nondeterministic

case.
As above, in the particular case when S has exactly one element, Rel(S) can be

identified with Rel defined in §1.2.1.

In Rel(S) many operations and algebraic structures may be considered. The operations
that interest us (sum, composition and feedback) have the following definitions.
For r€ Rel(SXm,n) and r'€ Rel(SXp,q) the sum r + r'€ Rel(S)(m + p,n + q) is defined by

ea =1 Y{m + 5,8+ 1] G (hsDE RS

For r€ Rel(S)m,n) and r'€ Rel(SXn,p) the composite r - '€ Rel(S)m,p) is the usual one,
defined by

- o= {GGsN] 3G s JEMIXS with ()65 NE r and (o,5)(sNE XS -

In order to define the feedback let us note that every relation rERel(S)(m,n) is given
by a family of relations r]CSXS for i€[m], j€[n], where r {(s s (G,s),(,s'))€r}
Denote by r*¥ the reflexive-transitive closure of a relation rCS XS, i.e., r* = ISU rr ..,
where Ig = {(s,s)] s€ S} . Using these facts, for rERel(S)m + 1, n+ 1) the feedback
rf ERel(S)(m,n) is defined by

() 5= 6 U6 Ly T nel * Tmet, b for 1€ImD G€I]

We finish this section by defining the natural embedding of Rel in Rel(S), given by the
application
e > {,s G, G)Er, sEST.

Particularly, this application shows how various classes of finite relations in Rel (bijective

functions, injective functions, etc.) can be thought of as being elements in an arbitrary

Rel(S).

3. SYNTACTIC MODELS

In order to formalize some aspects regarding the study of flowchart schemes:
isomorphism, accessibility, reduction, minimization with respect to the input (step-by-
-step) behaviour, coaccessibility, minimization with respect to the input-output (step-

184 V.E. Cdzdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

-by-step) behaviour, the flow-calculus, introduced in 81.4 has to be augmented with some
rules of identification for flownomials. It is an important test for this calculus whether
the identifications corresponding to the natural aforementioned properties can be (easily)
defined. This task can be done. The most interesting fact is that for the above properties
there is a unique rule of identification (i.e., the equivalence relation generated by

simulation) that has as particular cases the identification rules necessary for each

property.

3.1. The simulation relation. Suppose we are given two flownomial expressions in
normal form F = ((lm Xt xk) -)47 and F' = @+ X| 4+ X)) Oyl having the
same type m-—n, and u€Rel(k,k') (think of u as a relation between the statements
X peees Xy of F and the statements x' ...,x'k. of F'). We say that F and F' are in simulation

l’
via u (in symbols F -, F") if:
(i) (j,jY€E u implies X; = x}, ;

(ii) the natural "block" extensions of u to the inputs of the statements, denoted i(u),

and to the outputs of the statements, denoted o(u), fulfill
f- (ln + i{u)) = (lm +ou))f .

(this equality makes sense when T is closed under composition and the relations i{u), ou)
are "embedded" in T).

Let us explain in more details what we mean by "block" extensions and by
"embedding". Suppose we are given the sequences X [peeesX) and x'l,...,x'k, and the relation
u€Rel(k,k') satisfying (i). Define the block extension of u to the inputs of the statements
i(u) €Rel(Zj$k1(xj), Xj'f_k'l(xj')) as follows: An se[ZjSkl(xj)] can be written in' a unique
way as s =Zj<o((s)l(xj) + B(s), where «(s)€[k] and B(s)€E[i(x s(s)] (read this: s is the
input that has the number B(s) of the statement that has the number &(s) in the sequence
xl,...,xk). Similarly, every s' €[§_'j,_<—k.i(x}.)] can be written as s' =Zj,< o('(s')i(x'j') + F'(s').
Now the relation i(u) is defined by

i(u) = {(s,s’)] (ol (s), k'(s")) € u and pis) = p'(s')} .
The block extension of u to outputs o(u)QRel(ZjSko(xj), ZjSk'o(x}» is defined in a similar

way.

At a first stage we can translate "embedding" by "inclusion”. Later on we shall give a
more general meaning to "embedding" that contains, as a particular case, the embedding
of Rel in Rel(S) defined in Section 2.

The meaning of F—-—>u F' depends on the type of u and will be given below for each
particular class of relations used for u. We only mention here that this notion of
simulation is the result of a historical process aiming to formalize some flowchart

scheme properties. Initially we had found that isomorphism and reduction can be captured

V.E. Cazanescu, G. Stefanescu / Algebraic Theory of Flowchart Schemes 185

using simulations via bijective and surjective function, respectively. Later on we found
that accessibility could also be modelled by simulation, namely by simulation via injective
functions, and the input (step-by-step) behaviour could be captured using simulations via
functions. Coaccessibility can be modelled by simulation via converses of injective
functions, and the input-output (step-by-step) behaviour, in the deterministic case, can be

captured using simulations via partially defined functions.

3.2. Equivalences generated by simulations. For a subset A of Rel let us denote by
~*a the simulation via A-relations, namely "F —->AF' iff there exists u in A such that
F -, F' ", and by =p the equivalence relation generated by —>ac By the above comments
it follows that the most interesting subsets A of Rel are: Bi (bijective functions), In
(injective functions), Sur (surjective functions), Fn, ln"l (converses of injective functions),
Pfn, SI.I'~1 {converses of surjective functions), and Rel.

In the case when A is closed with respect to sum and composition, = A is a congruence
relation, hence the operations can be defined in the quotient structure FIX,T/= A The
resulting algebraic structures FIX,T/‘;A , for certain X,T and A, are the basic syntactic

models for flowchart scheme theory.

4. FLOWCHART SCHEMES

In section §1.1 we emphasized that more representations by pairs (or equivalently,
flownomial expressions in normal form) corresponds to a flowchart scheme, the difference
being generated by the way the statements of the scheme are linearly ordered. This
observation suggests the identification of a flowchart scheme with the class of its
representations. The mathematical formulation of the fact that two representations

represent the same flowchart-picture is captured by the simulation via bijective

functions.

&.1. The simulation via bijective functions (isomorphism). Suppose the support theory T
"contains" bijective finite functions. The meaning of the wording "contain" will be
specified later on. In the usual case T is a subtheory of Rel, hence the meaning is clear:
T2Bi.

The definition of simulation via bijective functions is obtained from the general
definition, given in § 3.1, using for u morphisms in Bi.

In the particular case when T is a subtheory of Rel the meaning of the simulation
"F > F' with u in Bi" is "F and F' represent the same flowchart scheme, the bijection u
doing the connection between the linearly ordered statements of F and of F'." Therefore,

the simulation via bijective functions can be named "isomor phism".

Now we turn back to the general setting. For the congruence relation = p., generated

by —>p; the following equivalent characterizations can be given:

186 V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

(a)

b

(c)

FIGURE 10

Simple generators for

simulation:

(a)-(e).

lL

(b)
m
m
x =
n
(d)
m
x
n
n n

£

lL

FIGURE 11
Iteration => Feedback 4 Tupling.

(e)

V.E. Cazdnescu, G. $tefdnescu / Algebraic Theory of Flowchart Schemes 187

@) =p;i = " Bi (hence —»p;isa congruence);
(ii) “Bi is the congruence relation generated by the identifications

(X)) x+x) nerq=p me>p° (x' + x), where x €X(m,n) and x' € X(p,q)

(see Figure 10.a).

4.2. The mathematical concept of flowchart schemes. The above facts show that, in
the case TS Rel, a flowchart scheme can be identified with an element in the quotient

.. Generalizing, we say

structure FIX,T/=B|

the elements in a Fl [=n. are (abstract) flowchart schemes.
X, T'"Bi

4.3. The algebra of flowchart schemes (biflow). We have selected some identities,
written in terms of "+", ™", o lm and m<+n, and satisfied by flowchart schemes, in
order to define an algebraic structure, called biflow. The identities are listed in Table I
and illustrated in Figure 12. The main point is that this set of identities is complete, i.e.
they suffice to prove that flownomial expressions over Rel, which represent the same
flowchart scheme, are equal. Consequently, the identities, listed in Table I, completely

characterizes flowchart schemes from the algebraic point of view.

In more details, a biflow B is an abstract structure given by:

a family of sets {B(m,n)}m a8 tWO types of distinguished morphisms lnG B(n,n),
, —

men€ B(m + n, n + m); three operations: composition -3 B(m,n) XB(n,p) —> B(m,p),

sum + : B(m,n) XB(p,q)—>B(m + p, n + q) and feedback $:B(m + L, n+ 1)—+B(m,n)

and satisfying the identities listed in Table I. The axioms (B1-6) show that a biflow B is a
strict monoidal category; (B7-10) show that B is a symmetric strict monoidal category,
therefore the finite bijective functions are embedded in B; (B11-15) axiomatize the

feedback.

Semantic models: Rel(S) and all of its subtheories, which contain the embedding of Bi
in Rel(S) (cf. §2), are biflows. Particularly, Bi, In, PSur (partial, surjective functions) Pin
and Rel are biflows.

Syntactic models: If T is a biflow, then Fly ~/=q: is a biflow.
X, T'"Bi

Generally, the support theory T for the flowchart schemes which interest us, has at
least a structure of biflow. Since Bi is an initial biflow (in the sense of category theory:
for every biflow B there exists a unique morphism of biflows from Bi to B), the initial
wording "the support theory T contains bijections" gets a precise meaning, when T is a

biflow.

188 V.E. Cadzdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes
y
£]
J, £
= g ; = f =
: v
h
*Jr) 4
(B2)
Y y
(B1)
m+n
m n
K y 2 r
f g h = £ g hi |: =
m n
v ¥ Y N 4 4 v Y Y 2 2
m+n
(B3) {B5)
m n m
'
g f g
= n H =
4 u A4
v
\ 2
m n m
v Y v
(B6) (B7)
FIGURE 12

The axioms that define a biflow (axioms (B4),
(B8), and (B14) cannot be illustrated).

-

V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

189

n p
m
{B9) (B10)
+ + +
N p
f o
m (€
£ J4
‘ g
v &‘ N
— 1%
g9 = g ; = L
vJ . g 3
. h P Iq
h \Vn vn
B13
Y ¥ (B13)
(B11)
\ N
g = f g ; = .
Y
v
Y Y h 2 (B15)
(B12)

FIGURE 12 (comtinued).

~.

190 V.E. Cazdnescu, G. Stefanescu / Algebraic Theory of Flowchart Schemes

TABLE L.

These axioms define a biflow

(B1) {(fgh = f(gh) (B9) m<>(n + p) = (m<>n + lp)(ln + M<>p)

(B2) lmf=f=f1n (B10)(f + g)* nergq=mesp- (g + f)

B3)(f+g)+h=1+(g+h) for f: m—n,g:p->q

B4) ly+f=f=1f+1 ®11) f(gtPh = ((f + 1 g + 1p))1‘P

0
B5)1 _+1 =1_ (B12) (f + g*P =1 + gtP
(B6) (f + gXu + v) = fu + gv (B13) (£(1_ + gP = 1+ g9
form-f->n9+p, m'8, o Y —>p' forf:m+p->n+q,g8:q—>p
(B7) me>n-nem=1_ ®14) 1,4 =1
(B8) 0<+n = ln=n4+0 (B15) le1? = 1l

&.4. The universal property. In order to get an interpretation of flownomial expressions
in EXPX,T (or representations in FIX’T) in a biflow B we have to interpret the variable in
X using a rank-preserving application Iy s X—>B (i.e., x€X(m,n) > Ix(x)G B(m,n)) and
the morphisms in T using a morphism of biflows !T : T->B (.e., lT is given by a family of
applications I.r : T(m,n)—>B(m,n) which preserve the constants lm’ m<n and the
operations "+", ", and "4 "). Now the interpretation of a flownomial expression in normal

formF = ((lm X)H et xk) . g)fr €EXPX T(m,n) is (IX,IT)f(F)€B(m,n), given by
(U, TPOME) = (1 + E b)+ n + L0) - L@ AT

(Of course, the restriction to normal form is inessential.)

The above formula makes sense in each abstract structure B endowed with 1 m’ att, et
and " 4 ". The reasons we have taken a biflow B are twofold: (1) the interpretation Iy T)
has to commute with the operations, and (2) the = Bi—equwalent flownomial expressions
should have the same interpretation. The latter statement shows that the extension
(X’ T) makes sense for Fl T/_ . too, and in that case we denote the corresponding

bf

application by (lx,l) Fl, ,I./_Bl -> B.
14

In the standard cases T is a subtheory of Rel, B is a subtheory in a Rel(S), lx gives the
semantics for each statement x €X, and lT is the restriction to T of the embedding of Rel
into Rel(S). In this cases the interpretation (lX’IT)f(F) gives the behaviour of the program

obtained by interpreting via IX the flowchart scheme corresponding to the flownomial

expression F.

V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 191

b b
Let (Ex, E‘T) be the embedding of (X,T) into FIX,T/=Bi obtained using the embedding
(EX, ET) of (X,T) in Fly o defined in €1.3, and the canonical projection from Fl, 1 to
b ?
FIX,T/=Bi' The universal property satisfied by FlX,T/=Bi is similar to that satisfied by the
polynomials, namely

for every biflow B and every interpretation (IX,IT) of (X,T) in B there exists a unique
morphism of biflows Ibf : le .l./=Bi — B (namely, (IX,IT)bf defined above) such that
?

b _ ,bf bf
EX I =lx

:I ."

b
and ET 1 T

In a categorical language this property shows that le T/=Bi is the coproduct, in the
’
category of biflows, of the biflow T and the biflow freely generated by X.

8.5. Bi-flow-calculus. The calculus with flownomials associated to flowchart schemes,
called bi-flow-calculus, is obtained by adding to the rules (R1-5), that define the flow-
calculus (i.e., the calculus for representations introduced in 81.4), the rule which consists
in the identification of =Bi-equivalent flownomial expressions.

Another method to define the same bi-flow-calculus is to consider flownomial
X-expressions over T together with the algebraic rules that define a biflow. More
precisely, the calculus is defined by the rule (R1) in 81l.4 and (B1-4, B6, B10-13) in
Table 1. (Since T is a biflow, the other rules (B5, B7-9, B14-15) are covered by (R1).)

Example. The following identity holds in bi-flow-calculus
(VL= x(1) +y + Db (L3 + yX1,3,2,3)5 = avi - x(i, + x4 (1,3,2,8),0, +ly + YIVD).

(a) Proof using normal forms. As in example in §1.4 the normal form of the left-hand
side expression is NFl = [(ll +X+Y +X+ y)(4,1,5,6,3,2,7,#,3)7]1‘u and of the right-hand
side expression is NF2 = [(ll FX+X+Y+Y) (#,1,6,5,2,7,4,3,3)7]1“‘. We shall prove that
NFl —+u NF2 for the bijection u = (1,3,2,0)“. Note that u preserves the statements with
respect to the sequences (x,y,x,y) and (x,x,y,y), hence condition (i) in definition §3.1
holds. The extension of u to inputs is (1,3,2,4)4 and to outputs is (1,2,3,7,14,5,6,8)8. Since
(4,1,5,6,3,2,7,#,3)7(13 + (1,3,2,‘4)4) = (4, 1,6,5,3,2,7,‘#,3)7 = (ll + (1,2,3,7,4,5,6,8)8) .
. (4,1,6,5,2,7,4,3,3)7 condition (ii) in definition & 3.1 holds, too.

(b) Proof using the algebraic rules (without marking (R1) and (B1-4)).
(VL x(l +y + x4 (54 yX1,3,2,3)
=[1V1 - x(Ly + (1) +y + 1)+ 1L, + y)1,3,2,3), by B6

= (VL x(1, + xNF (L) +y+ 105+ yX1,3,2,3), by Bll

=(1Vvl - x(l2 + x4 (ll vy s+l +y)(1l + 1ol + 11)(12+ iVl) by B6

192 V.E. Cdzdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

=(1V1 - x(l, + x)) 4 (1, + 1‘”“1 +y) + yXL, + 1V1) by Bé6, B10

= (VL= x(1, + x))f(l,3,2,u),4(12 +(y +y)e 1V]) by B6 .

5. ACCESSIBILITY

A flowchart scheme is a notation for a sequential computation process. In the process
of computation only the vertices that can be reached by paths going from inputs matter;

these vertices form the accessible part of the scheme. A flowchart scheme will be called

accessible if it coincides with its accessible part. Here we regard as equivalent two
flowchart schemes that have the same accessible part. In a formal approach accessibility

is captured by simulation via injective functions.

5.1. The simulation via injective functions; the resulting congruence. Suppose that the
support theory T "contains" injective finite functions. In the case T&Rel this means T=2In.

The definition of simulation via injective functions is obtained from the general
definition, given in 8§ 3.1, using for u morphisms in In.

In the particular case when T is a subtheory of Rel the meaning of the simulation
“F -—*u F' with u in In" is "F' can be obtained from F by adding a part inaccessible from F,
namely that corresponding to the vertices that are not in the image of u". Of course, the
relation In is not symmetric, the meaning of the converse relation F' & F being "F
can be obtained from F' by deleting the part corresponding to the complement of the
image of u; this part is not accessible from the remaining one".

Let ~» be a sorted equivalence on T (i.e. a family ~m,n of equivalence relations on
T(m,n)). A morphism y€T(p,q) is called ~n-functorial if for every f€ T(m+p,n+p) and
g €ET(m+q,n+q) the condition f(ln +y) (lm +y)g implies 4P ~ gfq. Functorial means
=-functorial for the relation of equality =.

Now we turn back to the general setting. For the congruence relation n’ generated

by —, , the following equivalent characterizations can be given:

)
(ii) =
in B 4.1 and the identifications

In

ol " P

is the least congruence relation generated by the identifications (+>X)

5 5

((lm +x)0)4% itx) = ((lm + X+ y)g)lr ix +y) when f(ln + li(x) + Oi(y)) =

= (lm + lo(x) + Oo(y))g)
where x and y are finite sums of variables;

(iii) =l I$ the least congruence relation generated by the identifications (<*X)

and the identifications
(OX) Op-x= O, , where x€X(m,n) (see Figure 10.b)

in the class of congruence relations ~ satisfying: every injection is ~v -functorial.

V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 193

Comments. By (i) two flowchart schemes are :ln-equivalent iff they can be
transformed into the saroe scheme by deleting inaccessible parts. In (ii), by using separate
simulations via bijective functions, we can suppose that the injective function u has the
particular form l +0 § and, in this case, the meaning of the formula of simulation is
much clearer. Much more interesting is the characterization (iii), since it reduces the

generators to (e>X) + (OX) by restricting the class of the congruence relations used to

generate = .

5.2. The mathematical concept of accessible flowchart scheme. The above facts show
that, in the case T&Rel, every equivalence class with respect to =, contains an
accessible flowchart scheme, unique up to an isomorphism. Consequently we can identify

an accessible flowchart scheme to its =In-equivalence class. Generalizing we say

the elements in a le T/=ln are accessible flowchart schemes.
b

5.3, 5.4. We do not insist on the algebraic rules satisfied by accessible flowchart
schemes. We only mention that the corresponding algebraic structure, called inflow, is a

biflow, contains injections (in order to generate injections we use the distinguished

morphisms O_ : 0—n), and satisfies:

(1) Om-f=0n,forf:m—->n;

(12) every injection is functorial.

5.5. In flow-calculus. The calculus with flownomials associated to accessible flowchart
schemes, called in-flow-calculus, is obtained by adding to the rules that define the bi-
flow-calculus in 84.5 the rule which consists in the identification of ﬁn-equivalent
expressions.

For the algebraic version, we add the rules (11-2) above to the rules (R1, Bl-4, BS6,
B10-13) in © 4.5 that define algebraically the bi-flow-calculus.

Example. In in-flow-calculus the following identity holds:
((1 + y + X+ y)(l’3’2,3’2’5147l‘))f 2 = (13 + y)(l,3’2,3)3

(a) Proof using normal forms. The normal form of the left-hand side expression (G in
Figure 9) is NF| =[(1, +y +x + Y{1,3,2,4,3,2,6,5,5)]f3 and of (15+yN1L,3,2,3)y
NF = [(l + yX1, 3,2 4,3)]1‘ 1 We shall prove that NF2—> NF for the m]ectlon
u= ll + O = (l) Note that u preserves the statements with respect to the sequences (y)
and (y,x,y) hence condition (i) in definition § 3.1 holds. The extension of u to input is (l)
and the extension to outputs is (1)5. Since (1,3,2,14,3)[‘(13 +(1)) =(1,3,2,4 3)6 = (l + (1)5)

. (1,3,2,14,3,2,6,5,5)6 the condition (ii) in definition §3.1 holds, too.

194 V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

(b) Proof using algebraic rules (marking the application of the new rules (11-2) only).
Note that Oz(x +y)= (Ol + Ol)(x +y)= le + OIy = (by I1) O3 + Ol = Oq, hence

(114 +|0_| X1

3ty +x+ y)(l,3,2,3,2,5,‘4,4)5 = (l3 +Y + Oq)(l,3,2,3,2,5,4,4)5 =

= (L, + Y01, + 0,)(1,3,2,3,2,5,8,8), = (1, + yX1,3,2,3)5(1, + [0]).

Using (12) we obtain
[y +y + %+ YN1,3,2,3,2,5,6,8514% = [(15 + (1,3,2,9,14°

hence the conclusion follows.

6. REDUCTION

We repeat: a flowchart scheme is a notation for a sequential computation process.
Hence the result of the computation depends on the sequences of statements to be

executed only. The (step-by-step) behaviour of a vertex in a flowchart scheme is the set

of all finite and infinite sequences of statements that can be executed beginning with the
given vertex. In a flowchart scheme we can identify the vertices that have the same
behaviour and obtain a flowchart scheme that denotes the same computation process. A
flowchart scheme will be called reduced if it has no different vertices having the same
behaviour. Here we regard as equivalent two flowchart schemes that can be reduced to
the same scheme by identifying vertices with the same behaviour. In a formal approach

reduction is captured by simulation via surjective functions.

6.1. The simulation via surjective functions; the resulting congruence. Suppose that the
support theory T "contains" surjective, finite functions. In the case T Rel this means
T=2Sur.

The definition of simulation via surjective functions is obtained from the general
definition, given in § 3.1, by using for u morphisms in Sur.

In the particular case when T is a subtheory of Rel the meaning of the simulation
"F —+u F' with u in Sur" is "F' can be obtained from F by identifying vertices which have
the same label and whose output connections are equal after identification". Of course,
the relation “>sur is not symmetric, the meaning of the converse relation F' N F being
"F can be obtained from F' by (partially) unfolding some vertices".

Now we turn back to the general setting. For the congruence relation = Sur’ generated

by _+Sur' the following equivalent characterizations can be given:

W =g = Psur “sure
(i) =gyr 1S the least congruence relation generated by the identifications («>X) and the

identifications
(VX) mVm - x = (x + x) - nVn, where x €X(m,n) (see Figure 10 ¢)

in the class of the congruence relations ~ satisfying: every surjection is ~ -functorial.

V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 195

Comments. By (i) two flowchart schemes are :Sur-equivalent iff they can be reduced
to the same scheme by identifying certain vertices. The characterization (ii) gives very

simple generators for =g, by restricting the class of congruence relations used to

generate =g .

6.2. The mathematical concept of reduced flowchart scheme. The above facts show in
the case T&Rel every equivalence class, with respect to =g, . contains a reduced
flowchart scheme, unique up to an isomorphism. Consequently, we can identify a reduced

flowchart scheme to its =Sm,—equivalence class. Generalizing we say:

the elements ina FlX,T/=Sur are reduced flowchart schemes.

6.3, 6.4 We do not exhibit all of the algebraic rules satisfied by reduced flowchart
schemes. We only mention that the corresponding algebraic structure, called surflow, is a
biflow, contains surjections (in order to generate surjections we use the distinguished

morphisms mVm : m + m -»m), and satisfies:

(S1) mVm - £ = (f + f) - nVn, for f:m—n;

(S2) every surjection is functorial.

6.5. Sur-flow-calculus. The calculus with flownomials associated to reduced flowchart
schemes, called sur-flow-calculus, is obtained by adding to the bi-flow-calculus the rule

which consists in the identification of =Sur-equivalent expressions.
For the algebraic version, we add the rules (S1-2) above to the rules that algebraically

define the bi-flow-calculus in 64.5.

Examples. In sur-flow-calculus the following identities hold:
(@) (1V1 - x(1, + x4t (L1, L0, = (Vi 04 (L5
() (IV1-x(1) +y+ x4 (1, +),)(1,3,2,3)3 = (V1 x(1, + N4 (1,3,2,3)3(12 +y).

Proof of (a) using normal forms. The normal form of the left-hand side expression is
NFl =[(l1 +X +)()(2,_L,1,3,_1.,1,2)3]1~2 and that of the right-hand side expression is
NF, =1, + 02, 1,1,2,04 1 we shall prove that NF —» NF, for the sujection
us= (l,l)l. Note that u preserves the statements with respect to the sequences (x,x) and
(x), hence the condition (i) in definition &3.1 holds. The extension of u to inputs is (l,l)1
and the extension to outputs is (1,2,3,1,2,3)3. Since (2,.1--,1,3,_L,1,2)3(1l + “’”l) =
-2 d,,24,,2, =0, +(1,2,3,1,2,3),(2,1,1,2), the condition (ii) in definition 8 3.1

holds, too.

Proof of (b) using algebraic rules. By the example in § 4.5 the left-hand side expression

is equal to

196 V.E. Cdzénescu, G. Stefdnescu / Algebfaic Theory of Flowchart Schemes

(VL= x(ly + A (1,3,2,8),(1, + &y +y) « 1VI)
= (VL x(1, + M4 (1,3,2,8),(1, + 1V1 - y) by (S1)

= (lVl . X(lz + X»* (1,3)2)3)3(12 + Y)-

7. THE INPUT BEHAVIOUR (COMPLETE MINIMIZATION)

A flowchart scheme denotes a sequential computation process. For an input of the
scheme let us consider the set of finite and infinite sequences of statements that can be
executed beginning with this input. (In the case when i(x) = 1, ¥xEX this set can be
identified with the tree obtained by completly unfolding the scheme beginning with the
given input.) By (step-by-step) input behaviour of a flowchart scheme we mean the tuple

of the sets obtained as above for each input. It is natural to regard as equivalent two
flowchart schemes that have the same input behaviour. In the class of the flowchart
schemes that have the same input behaviour there is a minimal one, unique up to an
isomorphism. This minimization preserves the completeness of the scheme, namely the
minimal flowchart scheme in FlX,an of a scheme over Fn is over Fn, too — hence the
name. In a formal approach the (step-by-step) input behaviour is captured by simulation

via functions.

7.1. The simulation via functions; the resulting congruence. Suppose that the support
theory T "contains" functions. In the case TS Rel this means T=2Fn.

The definition of simulation via functions is obtained from the general definition,
given in § 3.1, by using for u morphisms in Fn.

In the general case »an —>Sur —*ln’ hence in the case T&Rel the meaning of
the simulation "F ->u F* with u in Fn" is "F' can be obtained from F in two steps: first by
identifying vertices with common labels and coherent continuations, and second by adding
inaccessible vertices". The meaning of the equivalence relation “En generated by g
is "F =g F'" iff "F and F' have the same (step-by-step) input behaviour (or equivalently,
by completly unfolding F and F' we get the same tuple of trees)" iff "by identifying
vertices and deleting inaccessible ones F and F' can be transformed into the same minimal
flowchart (with respect to the input behaviour)".

For the congruence relation =, generated by ~>En’ the following equivalent

characterization can be given:

@ Fn = Tsur I T s
(ii) =gq 15 the least congruence relation generated by the identifications (4>X)

in §4.1, (OX) in §5.1 and (VX) in §6.1 in the class of congruence relations ~ satisfying:

every function is ~ -functorial.

Comments. By (i) two flowchart schemes are “Fp-€quivalent iff by identifying vertices

and deleting inaccessible ones they can be transformed into the same scheme. Again in

V.E. Clzdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 197

statement (ii) we get very simple generators (now for =Fn) restricting the class of

congruence relations used for generation.

7.2. Computation processes (or minimal flowchart schemes with respect to the input
behaviour). In the case T&Rel every =Fn—equivalence class has a minimal flowchart,
unique up to an isomorphism. Since two schemes are :Fn-equivalent iff they have the
same computation sequences, we can identify such a class to a computation process that

consist in finite and infinite sequences of statements. Generalizing we say

The elements in a FlX,T/=Fn are:

- minimal flowchart schemes with respect to the input behaviour;

- computation sequential processes.

7.3. The algebra of minimal flowchart scheme (with respect to the input behaviour).
We have selected some identities that are satisfied by such minimal schemes (namely, the
identities listed in Table Il and illustrated in Figure 13), in order to define an algebraic
structure, called funflow. The main point is that the set of identities (B1-15) + (F1-5),
suffices to prove that flownomial expressions over Pin, which represent the same
computation process, are equal.

Rigorously, a funflow (or a strong iteration algebraic theory cf. [32) is a biflow B,
with some distinguished morphisms Om€ B(0,m) and mVmEB(m + m,m), and satisfying the
algebraic rules listed in Table 11 (it should be emphasized that (F5) is not an equation, but
an implication). The axioms (B 1-6) + (F1-4) give a presentation of algebraic theories — in

the sense of Lawvere — in terms of sum, composition, Om, and mVm (by definition

mesn = (On + lm + ln + Om) -(n + m)V(n + m) and the axioms B7-10 follow), hence finite

functions are embedded in each funflow.

TABLE 1l.

The axioms in Table I together with these ones
define a funflow (= a strong iteration theory)

(F1) Oy = 1y (F2) o f= o,
(E3) mVm=«f=(+f)*nVn (F4) (ln +O_ + O, + lm) e(n+ mV(n + m) = Lem
(F5) every function is functorial, i.e.

f(ln+y)=(lm+y)g =D f‘rngfq

forf:m+p—>n+p,g:m+q—>n+q and y €Fn(p,q)

198 V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

invisible

(F1)

(F3)

m lp n| le
r 9 Yy
P o
Y
nd 4 n £
(F5)
FIGURE 13

~,

(

m

F2)

The axioms that are to be added to those in
figure 12 in order to define a funflow.

-

V.E. Cazanescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 199

Semantic models: Rel(S) and all of its subtheories, which contain the embedding of Fn
in Rel(S), are funflows. Particularly, Pfn and Rel are funflows, Pin being an initial

funflow.

Syntactic models: If T is a funflow, then FlX,T/=Fn is a funflow.

7.4. The universal property. Let (Ex, ET) be the embedding of (X,T) into le T/‘Fn
obtained by using the embedding (Ex, E..) of (X,T) into le T defined in § 1.3, and the
canonical projection from FIX,T to FlX,T/'Fn The umversal property satisfied by
FlX,‘l'/=Fn 1

"for every funflow F and every interpretation (IX,IT) of (X,T) in F there exists a unique

. ff _ f_ . ff_ f_ . ff_
morphism of funflows 1" : FlX,T/'Fn—’F such that Ex =1y and ET I = lr .

The axiom (F5) ensures that the interpretation (lx,l)f, defined in § 4.4, identifies
_Fh—equxvalent flownomlal expressions. Note that the morphism [t above is the morphism
that is induced by (Ix,l) in the quotient structure le T/'Fn

7.5. Fn-flow-calculus. The calculus with flownomials associated to computation
processes (or to minimal flowchart schemes, with respect to the input behaviour) calied
tn-flow-calculus, is obtained by adding to the bi-flow-calculus the rule which consists in

the identification of = “En -equivalent expressions.
For the algebraic version, we add the rules (F2, F3, F5) in Table I to the rules that

algebraically define the bi-flow-calculus.

Examples. In fn-flow-calculus the following identity holds
FeG-H=[VL-x(1,+x14(1,3,2,3,01 + Vi -92F +y],

where Fi=(IVI-x(l +y+x]f, Ga=[yey+x+yXl, 3,2,3,2,5,4,4) Mz and
H := ((ll +1V1I-y)2)4 + l . Moreover, the right- hand side expression is =g —mlmmal

Indeed, by examples in §5.5 G = (l + y)1,3,2, 3) -1 G' and by example in §6.5.b
F-G'=[1Vl -x(l +x)] (1,3,2,3) (l +y) Hence the xdentlty holds. The right-hand side

expression is _Fn—mxmmal because the associated flowchart scheme is reduced and

accessible.

Comment (iteration theories, cf. [5,21]; see also (6,7,22]). The theorem in § 7.4 shows
that a correct interpretation of the input behaviour of schemes may be given in strong
iteration theories. If we restrict the class of schemes to those over Pin or, more

generally, over a strong iteration theory T satisfying

200 V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

(p) for every f E T(n,p+r) there exists '€ T(n,p+r+k) such that:
(i) there exists y€ Sur(k,r) with f = f'(lp+<lr,y>);
(ii) for every g€T(n,p+r+k), z€ Sur(r+k,s) such that f'(lp+z) = g(lp+z) there exists
2’€Fn(r+k,r+k) with 2'z = z such that g = i'(lp+z').

then the theorem in § 7.4 may be made a bit stronger: a correct interpretation may be

given in all iteration theories. More exactly, the new theorem is:

"if T satisfies (p), then for every iteration theory F and every interpretation (Ix,lT) of
(X,T) in F there exists a unique morphism of iteration theories lff : le T/=F“—~> F such
’

f_ff £,
that Ey =1 =l andEp -1 = L".

Iteration theories are defined only by equations and are weaker than strong iteration

theories. They may be defined by the axioms that define strong iteration theories

Bl-15 + F1-5 in which the implication F5 must be replaced with the equation

if h:n—+m+p, y€Fn(m,n) and yl,...,yme Fn(m,m) are such that Y,y =Y Vi€ [m], then
m m
(<x lyh(yl+lp)’ ...,xmyh(ym+lp)>)‘t = y(h(y + lp»f'
Here the tupling of f:im —p and gin—p is (f+g)pVp, while the iterate of fim-+m+n is
m m.
(mVmefemen)P; x0is O, (+1,+40 ..

8. COACCESSIBILITY

Sometimes in a computation process we are interested in successful computation
sequences only (i.e., computation paths that finish normally by reaching an output). In that
case, in the execution process only the vertices that belong to paths going to outputs

matter; these vertices form the coaccessible part of the scheme. Here we regard as

equivalent two flowchart schemes that have the same ooaccessible part. In a formal
approach coaccessibility is captured by simulation via relations whose converses are
injective functions.

The study of coaccessibility can be reduced to the study of accessibility, made in
Section 5, by using a principle of duality: The dual flowchart scheme associated to a
scheme F with m inputs and n outputs, is the scheme F°, with n inputs and m outputs,
obtained by reversing arrows of F (in the abstract case this method consists in taking the
composition in the dual category). In this way the coaccessible part of a scheme F is the
dual of the accessible part of the dual scheme F°.

For this reason we omit any details here.

9. THE INPUT-OUTPUT BEHAVIOUR (DETERMINISTIC MINIMIZATION) |

The input-output behaviour of a scheme is the restriction of the (step-by-step) input

behaviour to the successful (terminal) paths. Here we regard as equivalent two flowchart

schemes that have the same input-output behaviour. In the class of the schemes that have

V.E. Cazdnescu, G. Stefanescu / Algebraic Theory of Flowchart Schemes PRVIY

the same input-output behaviour there is a minimal one, unique up to an isomorphism. The
minimization with respect to the input-output behaviour does not preserve the
completeness of a scheme, i.e., the minimal scheme associated to a scheme over Fn may
be over Pfn\ Fn. However, this minimization preserves the determinism of a scheme,
i.e., the minimal scheme in FlX,Rcl of a scheme over Pin is over Pin, too — hence the
name. Formally the input-output behaviour is captured by simulation via partially defined

functions.

9.1. The simulation via partial functions; the resulting congruence. Suppose that the
support theory T ncontains" partial functions. In the case T Rel this means T2 Pin.
The definition of simulation via partial functions is obtained from the general

definition, given in §3.1, by using for u morphisms in Pin.

In the general case —rpe & -—>In_l-—>sur-—>ln, hence in the case T&Rel the

meaning of the simulation "F -, F' with u in Pfa" is "F' can be obtained from F in three
steps: first by deleting noncoaccessible vertices, second by identifying vertices with
common labels and coherent continuations, and finally by adding inaccessible vertices".

The meaning of the equivalence relation “pfn’ generated by —>pe., is "F =ptn F " iff
"E and F' have the same input-output behaviour" iff "by deleting noncoaccessible vertices,
identifying vertices with common labels and coherent continuations, and deleting
inaccessible vertices F and F' can be transformed into the same minimal scheme (with
respect to the input-output behaviour)".

For the congruence relation =pg¢., generated by —>pgo the following equivalent
characterization can be given:

- 1—-);

© “Pfn —)h'l “sur” m Tin’ Sur In~
(ii) “pgn 1S the least congruence relation generated by the identifications (+*X)
in B4.1, (OX) in §5.1, (VX) in §6.1 and

AX)x- ’Ln = ‘Lm , where x € X(m,n) (see figure 10 d)

in the class of the congruence relations ~ satisfying: every partial function is

v -functorial.

Comments. By () two flowchart schemes are =Pin-equivalent iff by deleting
noncoaccessible vertices, identifying vertices and deleting inaccessible ones they can be
transformed into the same scheme. In (ii) we get very simple generators for =pgns by

restricting the class of congruence relations used to generate =p¢..-

9.2. Successful computation processes (or minimal flowchart schemes with respect to

the input-output behaviour). In the case TSRel every =an-equivalence class has a

minimal scheme, unique up to an isomorphism. Since two schemes are =an-equivalent iff

they have the same successful computation processes, we can identify such a class to a

202 V.E. Cazdnescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

successful computation process that consists of finite terminal sequences of statements.

Generalizing we say:

The elements in a le’,l./zan are:
- minimal flowchart schemes with respect to the input-output behaviour;

- successful sequential computation processes.

9.3, 9.4. We only mention that the algebraic structure corresponding to successful
computation processes, called parfunflow, is a funflow, contains partial functions (in order
to generate partial functions we use the distinguished morphisms _Lm:m-->0), and

satisfies:
(Pl)f°_Ln = "Lm’ for f: m —>n;

(P2) every partial function is functorial.

9.5. Pin-flow-calculus. The calculus with flownomials associated to successful
computation processes (or, to minimal flowchart schemes, with respect to the input-
output behaviour), called pfn-flow-calculus, is obtained by adding to the bi-flow-calculus
the rule which consists in the identification of :an—equivalent expressions.

For the algebraic version, we add the rules (P1-2) above to the rules that algebraically

define the fn-flow-calculus in §7.5.

Example. In pfn-flow-calculus the following identity holds
F:G-H=0VI-0}(L, +y),

where F,G,H are those defined in example §7.5. Moreover, the left-hand side expression

is = -minimal.
Pin

Indeed lg = -Lo’ hence [(1l + 1Vl - y)z14 =[(1l + 1Vl - y)zl4 - Iy =

= [(ll +1VL-y)z]4 - L 0 (by P1) _Lz_ Consequently, using the example 7.5 we obtain
FeG-H=(VI-x(l, +¥]14(1,3,230L, +y) = V1= x(1, +) (L,1,L,0)y .

Finally, using the example 8§ 6.5.a the desired identity follows easily. The right-hand side
expression is =an-minimal since the associated flowchart scheme is coaccessible, reduced

and accessible.

10. COREDUCTION

In the case we are interested in the study of input-output behaviours we can
successfully use the duality defined in Section 8. The input behaviour is not preserved by
duality, while the input-output behaviour is preserved. More exactly, the input-output

behaviour of a dual scheme contains the same computation sequences as the given

V.E. Cazdnescu, G. Stefinescu / Algebraic Theory of Flowchart Schemes 20&

scheme, but having the statements concatenated in the reversed order. Let us call (step-

-by-step) cobehaviour of a vertex in a scheme, the (step-by-step) behaviour of the

corresponding vertex in the dual scheme, defined as in Section 6. In a scheme we can
identify vertices that have the same cobehaviour, without changing the input-output
behaviour of the scheme. A flowchart scheme will be called coreduced if it has no
different vertices having the same cobehaviour. In a formal approach coreduction is
captured by simulation via relations whose converses are surjective functions.

This coreduction cannot be used properly in the context of deterministic flowchart
schemes. The reason is the following. By reduction we identify vertices provided after
identification they have the same output arrows and bring together the corresponding
input arrows. By coreduction we have to identify vertices provided after identification
they have the same input arrows and bring together the corresponding output arrows,
hence a nondeterministic choice between different output arrows of continuation occurs.

More details can be obtained from Section 6 by duality.

1. NONDETERMINISTIC FLOWCHART SCHEMES

The feature of flowchart schemes we take now into account is "nondeterministic
choice", i.e., the possibility in a point of a scheme (input, or continuation after a
statement) to have more arrows of continuation for the flow of control, from which the
execution process chooses one variant in a random way. Consequently, in the context of
usual flowchart schemes, represented as in g l.lv, the basic support theory for this
nondeterministic case is Rel, while in the deterministic case the basic support theory was
Pfn. In the presence of the nondeterministic choice we are interested in considering the
input-output behaviour, rather than the input behaviour. For modeling the input-output
behaviour, in this nondeterministic case we can try to apply simulation via relations. This
syntactic transformation of flowchart schemes is again useful: it is correct, in the sense it
preserves the input-output behaviour, but at the present time we do not know whether it
is complete, i.e. we do not know whether two usual nondeterministic schemes, having the

same input-output behaviour, can be connected by a chain of simulations.

11.1. The simulation via relations; the resulting congruence. Suppose that the support
theory T "contains" finite relations. In the case of usual flowchart schemes this means
T = Rel. The definition of the simulation via relations was given in 83.1.

In the general case _’Rel: -—rln_l . _*Sur_l **sur " TIn’ hence in the case T = Rel

the meaning of the simulation "F—+F' " is "F' can be obtained from F in four steps: first by
deleting noncoaccessible vertices, second by multiplying vertices keeping fixed the inputs
and sharing the outputs, then by identifying vertices that give the same outputs and bring
together the corresponding inputs, and finally by adding inaccessible vertices". The
meaning of the equivalence relation =p_p generated by —rp .1 is still unclear. We
conjecture that "F =Rel F' ", iff "F and F' have the same input-output behaviour".

] .. L R o VT Ay IV A G IV N T T 1T A
20k
For the congruence relation “Rel’ generated by _>Rel’ the following equivalent

characterization can be given:

‘. Ll K l.——)

© “Rel In" " Sur In -1

Sur —’ln ’ Sur'l*—) ln'l(_
(ii) =Rel IS the least congruence relation generated by the identifications (*X)
in B4.1, (OX)in 85.1, (vVX)in 6.1, (1X) in 9.1 and

(AX)x *nAn=mAm-(x +x), where x€ X(m,n) (see Figure 10 e)
in the class of congruence relations ~ satisfying: every relation is ~ -functorial.

As we do not know the semantic meaning of “Rel W€ do not insist on this syntactic

study which has been done as a natural extension of the above ones.

12. SOME HISTORICAL COMMENTS

Our comments concern the last ten years of algebraic theory of monadic computation.
This mathematical model of computation was introduced by Ilanov [26] and its
algebrization was initiated by Elgot in the early seventies [14,15,16]. The comments only
present our works and some other closely related papers and should by no means be

considered a complete survey of the area.

In order to get an algebraic theory of computation one needs an axiomatic looping
operation. This may be Kleene's repetition (cf. [13,33], for example), Elgot's iteration [15]
or feedback [30,31].

Nondeterministic computation. The proper acyclic context for repetition seems to be a
matrix theory (such a theory is equivalent with the theory of matrices over a semiring
{17D. The equational axiom for the looping operation are not easily codified. A regular
algebra cf. Conway [13] is a structure which satisfies all the identities (written in terms
of union, composition, repetition and constants 0, 1) which are valid in the algebras of
regular events. The theory of matrices over a regular algebra is a matrix theory, but the
axioms for repetition are yet unknown (by authors' knowledge). This algebra is intended as

a model for the input-output behaviour of nondeterministic computation.

This nondeterministic case is more difficult and was considered before the

deterministic case. The latter works on deterministic schemes put it in a new light.

Our result on nondeterministic computation in Section 11 are the translation in terms
of feedback of the results in [33]. Arbib and Manes [2] deals with nondeterminism in the
setting of partially additive categories. Some other algebras for nondeterministic
computation are presented by Bloom and Esik in [7, the extended abstract).

Much work must be done to put some order on all of these algebraic approaches.

V.b. CAIAnescud, . plejunestu o slgeutuie L1e0ry vy 4 UL DLHiCHILES ;Zuég-

Deterministic computation. The proper acyclic context for iteration seems to be an
algebraic theory in the sense of Lawvere [14]. Hence iteration may be used in a more

general context than repetition.

It is well known that the operations of "structured programming", i.e. composition, if-
-then-else and while-do are not enough for representing all flowchart scheme behaviours,
essentially since they use one-input/one-exit schemes. However they suffice, provided
additional memory is permitted. Elgot's idea in [16] is to use many-input/many-exit
flowchart schemes, having composition, tupling and scalar iteration as basic operations.
These operations suffice for representing all flowchart scheme behaviours. More
precisely, from Theorem 4.1 in [16] it follows that ew;ery flowchart scheme is equivalent
with respect to the input behaviour (in Elgot's terms: is "strongly equivalent”) to a
scheme built up from atomic schemes and trivial ones by means of these operations. (This
is done without adding memory.) However, for representing all flowchart schemes
(pictures) in this setting Elgot (16), Theorem 3.1) used a vector iteration, which is not

obtained by a repeated application of the scalar iteration.

Elgot's algebra for the input behaviours of acyclic (resp. cyclic) schemes was an
algebraic theory [14] (resp. an iterative algebraic theory [15] — note that this algebra is
not equationally presented). The fact that a class of trees forms the free iterative theory
was conjectured by Goguen and Thatcher [24] and proved in [23] and (19}

An iteration theory cf. Bloom, Elgot and Wright (5] is a structure which satisfies all

the identities (written in terms of tupling, composition, iteration and constants la’ Oa’
x?) which are valid in the theories of the input behaviours of flowchart schemes over Fn
or Pfn (i.e. in the theories of the regular trees). The axiomatization for iteration theories
was found by Esik [21) An iteration theory is an algebraic theory in which an iteration
operation is given fulfilling some axioms. This élgebra is intended as a model for the input
behaviour of deterministic computation. More exactly, the schemes over Pfn which have

the same input behaviour have the same interpretation in all iteration theories.

However, iteration theories seems to be too weak to study minimization. The process
of complete minimization is captured by the simulation via functions {32]. In the case
when the support theory is Fn this fact was shown by Elgot [18). (Note that the schemes
over Fn are not closed with respect to iteration.) In the abstract case the appropriate
algebraic structure for the support theory in order to deal with complete minimization
seems to be a strong iteration theory, i.e. an iteration theory in which every function is

functorial, cf. [32]. Strong iteration theories are not equationally presented. If T is a

strong iteration theory, then the schemes over T which have the same input behaviour
have the same interpretation in all strong iteration theories; if moreover T satisfies the
condition (p) in the Comment in§7.5, then they have the same interpretation in all
iteration theories. Condition (p) is adopted from [21]. So if we consider schemes over an
arbitrary strong iteration theory, not only over Pfn, then we have to restrict the class

where an appropriate interpretation may be given from iteration to strong iteration

206 V.t. Cazanescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes

theories.

The results of Section 7 are the translation in terms of feedback of the results in {32].
In the translation of these results the use of the new set of operations
(composition-sum-feedback) allows to separate the study of accessibility, given in Section
5, from the study of reduction, given in Section 6. The results of Sections 5 and 6 are new

and cannot be properly done using algebraic theories and iteration.

There is a close connection between simulation and the functoriality axiom (partially
suggested by the results presented in the present paper) which we hope to make clear in
our further papers. The functoriality axiom in its full generality was consideréd by Arbib
and Manes [1). The particular functoriality axiom that "every function is functorial” also

appear in [21].

Strong iteration theories are already implicit in [21). The existence of an iteration
theory which is not a strong iteration theory is pointed out in [22] where it is also noted

that most known iteration theories are strong iteration theories.

In Section 9 we have given some details for the extension of the calculus to the input-
output behaviour of deterministic flowchart schemes announced in [32, Section 7.a]l The
results appear here for the first time but a weaker variant directly follows from the

results in the nondeterministic case in [33].

An equational presentation of the variety of iteration theories generated by PEn(S)
appeared in Bloom and Esik [7]. This algebra is intended as an algebra for the input-output
behaviour of deterministic schemes. An interesting result proved by Bloom and Esik in [7]
shows that Pfn(S) with the standard algebraic theory structure become biflow in a unique
way. (Of course, their result is in terms of iteration theories, but the proof use only the

biflow rules.)

Flowchart schemes. The proper acyclic context for feedback is a symmetric strict
monoidal category in the sense of MacLane [28]. (An analoguous structure has been
introduced by Arnold and Dauchet in [3] under the name of "magmoid".) Hence feedback
may be used in a more general context than repetition or iteration.

The feedback operation was introduced in [30,31]. It is a "scalar" operation and it
seems that this operation is more adequate to study (cyclic) flowchart schemes than
scalar iteration. One reason is the following: All flowchart schemes (pictures) can be built
up from atomic schemes and trivial ones by means of composition, (separated) sum and
(scalar) feedback.

A biflow is a structure which satisfies all the identities (written in terms of separated
sum, composition, feedback and constants la’ a«+b) which are valid in the algebras of
flowchart schemes. An axiomatization for biflows is given in [31]. A biflow is a symmetric
strict monoidal category in which a feedback operation is given fulfilling some axioms.

This model is more related with the algorithms themselves than with their behaviours.

V.E. Cazanescu, G. Stefdnescu / Algebraic Theory of Flowchart Schemes 204

Normal forms, in essence similar to particular flownomial expressions in normal form
as given here, have been used elsewhere, cf. [15, 16, 21, 6]. The representation of
flowchart schemes by triples (i.e. the connection morphism is split into its "input" part
and its "transfer" part) is due to Elgot [15,16]. The schemes in [16] are over Fn, in [20]
over Sur and in [6] over Pfn (although it was not thought of connections as being

morphisms in a "theory"), and the operations on flowchart schemes are verbally defined.

In [12] the schemes are extended from schemes over Fn to schemes over Pfn in order
to obtain a good definition for scheme iteration. Based on this extension a general
extension of connections to morphisms in an "algebraic theory with iterate" is given
leading to the concept of "schemes over a theory." The operations on flowchart schemes
were defined formally by extending those of the theory of connections. (The motivation
for the extension of connections from simple relations to more complicated known
computation processes is given in [32] and some example of schemes connected with such

more complicated computation processes are given in [32,33).)

The representation of flowchart schemes by flownomial expressions in normal form
was introduced in [30,31]. The extension to arbitrary flownomial expressions was given in
[11]. It should be emphasized that our concept of flowchart scheme is a purely syntactic
one. Indeed, for an appropriate choice of the connection biflow (e.g. partial functions)

there is an isomorphism between our schemes and the schemes defined as a kind of

directed graph.

The results of Sections 1 and & are new. The details for Section 1 are given in [10].
Without axiomatizing finite bijections the result of Section & is presented in [31].

The results in Sections 1 and 4 seem to be much more natural than those in [6,9,12].
Actually a theory with iterate, as introduced in [12], may be defined as a biflow over an
algebraic theory; see [10]. (Later this algebraic structure was used as a frame to study
context-free trees in [8).) The main result in [12] characterizes the representations in
FlX,T’ where T is a theory with iterate, as being the "T.module with iterate" freely
generated by X. The extension to schemes in FIX,T/'—'Bi was given in [9]. The main
obstacle in obtaining a natural result regarding the algebraic characterization of
flowchart schemes in [12,9] was the use of an algebraic theory as support theory. Indeed,
the flowchart schemes do not have a structure of an algebraic theory but only of a

symmetric strict monoidal category.

Another algebra for flowchart schemes is given by Bloom and Esik in [6). Their
schemes are over Pfn, the algebra may be presented as a biflow over a symmetric strict
monoidal category which extend Pfn and the main result is a particular case of the
Theorem in § 4.4,

Also there are some technical advantages in working in the setting of sum-
-composition-feedback. For example the axiomatization for flowchart schemes as in

Table 1 is easier than the corresponding axiomatizations in terms of iteration in [6,12].

203

Finally, let us compare in more details the underlying equational algebras. As we

already pointed out for the acyclic context there are some natural inclusions

matrix theories & algebraic theories & (symmetric) strict monoidal categories
and the inclusions are strict. In the cyclic context the following inclusions holds

matrix theories — iteration theories — biflows
of regular algebras ~ over matrix theories ~— over matrix theories

and
iteration theories & biflows over algebraic theories.

It seems likely that one can prove that the above inclusions are also strict — this was

proved by Esik in [22] for the latter one.

ACKNOWLEDGEMENTS.

We should like to thank Professor Sergiu Rudeanu and the anonymous referees for their
help in improving the presentation and the content of the section with historical

comments, as well as Camelia Minculescu for a rapid typing.

REFERENCES

(1] M.A. Arbib and E.G. Manes, Partially additive categories and flow diagram
semantics, J. Algebra 62 (1980), 203-227.

{2] M.A. Arbib and E.G. Manes, Algebraic approaches to program semantics,
Springer-Verlag, 1936.

[3] A. Arnold and M. Dauchet, Théorie des magmoides, RAIRO Inform. Theor. 12
(1978), 235-257 and 13 (1979), 135-154.

[4] S.L. Bloom, Calvin C. Elgot, Selected Papers, Springer-Verlag, 1982.

[5] S.L. Bloom, C.C.Elgot and J.B. Wright, Vector iteration in pointed iterative
theories, SIAM J. Comput. 9 (1980), 525-540.

(6] S.L. Bloom and Z. Esik, Axiomatizing schemes and their behaviours, J. Comput.
System Sci. 31 (1985), 375-393.

(7] S.L. Bloom and Z. Esik, Some varieties of iteration theories,- extended abstract,
Bull. EATCS, Oct. 1984; full version to appear in SIAM J. Comput.

(8] V.E. CAzinescu, On context-free trees, Theoret. Comput. Sci. 41 (1985), 33-50.

[9] V.E. Cizinescu and $. Grama, "On the Definition of M-Flowcharts," Preprint
Series in Mathematics, No.56/1984, INCREST, Bucharest; also in: An. Univ.
*"AlLlL.Cuza" lasi, Mat. XXXHI, 4 (1987), 311-320.

{10] V.E. Cazinescu and Gh. Stefinescu, "A formal representation of flowchart
schemes," Preprint Series in Mathematics, No.22/1987, INCREST, Bucharest; also
in: An. Univ. Bucuresti, Mat.-Inf. XXXV, 2 (1988), 33-51.

(11}

{12]

[13)

(14]

{15]

[16]
[17]
(18]
[19]
(20]
[21]
[22)

(23]

[24]

[25]
[26]
[27]
(28]

[29]
[30]

V.E. Cizanescu and Gh. Stefanescu, A calculus for flowchart schemes, in:
Abstracts 8th International Congress of Logic, Methodology and Philosophy of
Science Vol.1, Nauka, Moscow, 1987, 124-127.

V.E. C&zinescu and C. Ungureanu, "Again on Advice on Structuring Compilers and
Proving them Correct", Preprint Series in Mathematics, No. 75/1982, INCREST,
Bucharest; revised version: The free algebraic structure of flowcharts, Rev.
Roumaine Mat. Pures Appi. 34 (1989), 281-302.

J.H. Conway, Regular algebra and finite machines, Chapman and Hall, London,
1971.

C.C. Elgot, Algebraic theories and program schemes, in: Semantics of algorithmic
languages, Lecture Notes in Mathematics 188, Springer-Verlag, New York /Berlin,
1971.

C.C. Elgot, Monadic computation and iterative algebraic theories, in: Logic
Colloquium '73, Studies in Logic and the Foundations of Mathematics, Vol. 80,
North-Holland, Amsterdam, 1975, 175-230.

C.C. Elgot, Structured programming with and without GOTO statements, IEEE
Trans. Software Eng. SE-2 (1976), 41-53.

C.C. Elgot, Matricial theories, J. Algebra 42 (1976), 391-421.

C.C. Elgot, Some geometrical categories associated with flowchart schemes, in:
Proceedings, Fundamentals of Computation Theory, Poznan, 1977, Lecture Notes
in Computer Science 56, Springer-Verlag, Berlin / New York, 1977, 256-259.

C.C. Elgot, S.L. Bloom and R. Tindell, On the algebraic structure of rooted trees,
J. Comput. System Sci. 16 (1978), 362-399.

C.C. Elgot and J.C. Shepherdson, "An Equational Axiomatization of the Algebra
of Reducible Flowchart Schemes," Research Report, RC-8221, IBM, 1980.

Z. Esik, Identities in iterative and rational algebraic theories, Comput.
Linguistics Comput. Languages, XIV (1980), 183-207.

Z. Esik, Independence of the equational axioms of iteration theories, J. Comput.
System Sci. 36 (1988), 66-76.

S. Ginali, "Iterative Algebraic Theorles, Infinite Trees, and Program Schemata",
Dissertation, University of Chicago, June 1976; see also: Regular trees and free
iterative theory, J.Comput. System Sci. 18 (1979), 228-242.

J.A. Goguen and J.W. Thatcher, Initial algebra semantics, in: Proceedings 15th
IEEE Symposium on Switching and Automata Theory, 1974, 63-77; also the paper
with E.G. Wagner and J.B. Wright, Initial algebra semantics and continuous
algebras, J. Assoc. Comput. Mach. 24 (1977), 68-95.

S. Greibach, Theory of program structures: schemes, semantics, verification,
Springer-Verlag, Berlin / New York, 1975.

Iul. lanov, On logical schemata of algorithms, in: Problemi kibernetiki 1,
Fizmatgiz, Moskva, 1958 [Russian].

V.E. Kotov, Introduction to the theory of program schemes, Nauka, Novosibirsk,
1978 [Russian].

S. MacLane, Categories for the working mathematician, Springer-Verlag, Berlin
/ New York, 1971.

Z. Manna, Mathematical theory of computation, McGraw-Hill, New York, 1974.

Gh. $tefanescu, An algebraic theory of flowchart schemes (extended abstract), in:
Proceedings CAAP'86, Lecture Notes in Computer Science 21#&, Springer-Verlag,

Berlin / New York, 1986, 60-73.

209

240

[(31]

(32]

[33]

[34]

Gh. Stefinescu, "Feedback Theories (A Calculus for Isomorphism Classes of
Flowchart Schemes)," Preprint Series in Mathematics, No. 24/1986, INCREST,
Bucharest.

Gh. Stef¥nescu, On flowchart theories. Part I. The deterministic case, J. Comput.

System Sci. 35 (1987), 163-191; preliminary versions: Preprint Series in
ﬁathematics Nos. 39/1984, 7/1985, and 52/1986, INCREST, Bucharest.

Gh. Stefinescu, On flowchart theories. Part II: The nondeterministic case,
Theoret. Comput. Sci. 52 (1987), 307-340; preliminary version: Preprint Series in
Mathematics No.32/1985, INCREST, Bucharest.

3.W. Thatcher, E.G. Wagner and J.B. Wright, Notes on algebraic fundamentals for
theoretical computer science, in: Foundations of computer science lII, Part 2:
Language, logic, semantics (J.W. de Bakker and J. van Leeuwen, Eds.),
Mathematical Centre Tracts 109, Amsterdam, 1979, 83-164.

ADDITIONAL REFERENCES

Some details for Section 4 may be found in [35] below, while a comparation between

feedback, iteration, and repetition may be found in [36].

[35]

[36]

V.E. Cizinescu and Gh. §tef3nescu, "A Formal Representation of Flowchart
Schemes II," Preprint Series in Mathematics No.60/1988, INCREST, Bucharest;
Stud. Cerc. Mat. Vol. &1, No.3 (1989), in press.

V.E. Cazinescu and Gh. Steflnescu, '"Feedback, Iteration and Repétition,"
Preprint Series in Mathematics No.42/1988, INCREST, Bucharest.

