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FEENBACIK, ITERATION AND REPLETITION
¥irgil-Emil C&zinesco and Gheorghe Sleféineseu

In order to get an alpebraic theory of computztion one necds an axiomatic looping
o-pcmllnn. This may be Kleene's rape.tition {ef. [8], for exminple), Flgot's iteration [7] ar
fecdbaok {11,12,3). The proper ncyelic contoxd l‘m-.[-epelition seems Lo be a malrix theory
'1fsuch o theory is equivalent with the theory of matrices over a semiving [8)), for iteration
an alycbraie theory in the sense of Lawvere and for fcedback a {symmetrie} siriet
mmmin‘!znl category In the sense af MacLane [10). |

The equational axiomsfor the leoping operation are not easily codilied. A regular
algebra of. Conway [8] is a struclure whieh satisfies all the identitics fweitten in Lerms of
union, composition, repetition and econstants 0, 1) whieh are valid in the rigebra of regular
events. Tha theory of matrices over a regular alpebien is o matrix theory, but the axioms
for repetition arce yet unknown (hy authors' knowledze). This aloebren is intendeod as a
mode] [or the input—m:tp.ul behavipur of nondeterministic computation.

An iteration theory ef. Bloom, Elgot and Wrighl (1] is a strueture whieh satis{ies all
the identities (writton in torms of tupling, composition, iteration and constants la‘ I:lu, x?]
which are valid in the theory ol regular trees. The axiomalization for [leration theories
was—wind by Isik (sce [90. An iteration theory is an algebraie t];ccr}r in which an iteration
opcration is given Tulliling some axioms. This algebra is intendod ns a model for the inpul
behaviour of delerministic computation {(we use the vame “input bchaviou:"’. insicad of 'lhc
nome "strong behaviour uscﬂ by Llerot) -

A biflow is a structure which satisfies all the identitics {written in terms of

scparated sumn, composition, feedback and constants I&. Vhb} which nre wvalid in the

-algebm of flowechart schiemes. An axiomatization for biflows is given in [12,3). A




biflow is a symmtctrie strict moncidal entegory in which-a feedback operation Is given
fulfiling some sxioms. This model is more related with the algorithms Lhemselves than
witl Ehcir boelviours.,

1015 weell hewin that we hwive some nolural inelusions

matrix theorics o algebraie theories € {symmetrice) striet monoidal eategorics
alid the inelusions e striet. TU s also known that

oty e arios - iteration theorios - hiflows |
of regolar slrebras over matrix thearies  over matrix theorics

ard
fteratio: throries < biflows over alpebraic Lheories,

(1t sooan likory ol one e prove that the ubove inelusions are striet - this was proved
b I3k Tor the 1ntler one.) N

The nie of s paper is to give snolbior passing belween iterations and fecdbncks

Af,,

than that provicesly piven in [9] Via this passing the medoms.of iteration in an axiomaltic
systern [or alpcbraie thoories with iterate (= hiflows over slpebraie theorics) are
trasctaled in Lovms of fecdbiell one- by- one.

wWhen wo combine the present pussing with the known passing iterations -repetitions
11,) | | o o .
f14] wo set an ersy and notural passing between fecdbacks, iterations and repetitions. This
is u=nd lo give ecrlain axiomalic systems for biflows aver algebraie or matrix theories.
More importantly, this passing s used in the coneluded remarks to emphasize some new

advoniages of the use of fecdback over the use of iteration or repetition than those

initially given in [12).
BIFLOWS AND BIFLOWS OV ALGEBRALC AND MATRIX THEORIES
We assume the reader is familiur with Lhe caleulus of symmetrie striet moncidai

categories (ef. [10.4], for example), algebraie theovies (ef. [7.4], for example) and matrix

theories {ef. [8,4), for example).
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Let us consider & ecategory [T"’Ia} having a5 ohbieets the clements of & monoid

{M,+, M) That is the eompaosition satisfics

..]-.'_Il (fgit = I{ixh} B2 Iaf =f= ['Ih.

The application of z fupetion f in a point x is written x{, while the composite of

f:A=Band mG—>C s written in the diagramatic order f+g {or {z)

A& eategory as above is a striet _monoidal eatepory {sme, for short) if & sum

+ 1 Tlaub) X T{e,d) —==Tlate,b+d) s given {ulfiting the axioms

B3 (f+giih = f+{g+h) BS I # = Lt

.B{ IA‘*f =f= f'l'I}\ B6  (f+glutv) = futgy
for = L‘,- b ll-;H':, a Es b Yyen

An smo T s a symmctrie strict moneidal enteweory (zsme, for short) i some
ST Jital i ECTy

constants 4 HE Tlatb,btad are given fulliling the axiems
ily -

B V:l,b ‘wbh,:l i [u+h B3 \lilll‘a,b*'c - “"alﬂ?l,I_‘JI-I-Ir:::]UtJ4 el,n}
= e 4 E T 1T
BS 1Iqllwﬂ\,.?'\ L B1G (f*b]ﬁ'ﬁb,d ""ti,c(“i”
for [a->U, gio—>rd

Ansme T is an algebraie theory if some constonts D€ T(3a) and ¥V & Tlataa) avc
given fulfiling the axioms

EBll By =1y B13 ".’af = {f+-_f]|"v’b

B12 ﬂ}\ f= {}ﬂ . Bl4 {a+l} = “ﬂ+nb+a+lbwa+b

In  an algcbraic  theory T, defined as  above, a tupling operation

<, »:TiaelxTib,e)—> Tlatb,e})  oand some constants <a,b,e>¢ Tib,atb+e} may be

introduecd as follows

fad= {f+g]‘u’u <a,b,e> = 0_+1 40

An Hlgebrale theory may cquivalently be introduced as a category T as above in

whieh a tupling <, > and sonie constants <a,b,e> are given [ulfiling the axioms
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Ti T(O\wa) eontains a unique element, denoted 0 ; _
T2 SERESS T3 <abe> <datbte,ed = «ltabeted;
T4 for every [€T(a,e} and geTih,e) the morphism <o is the wnigue

~heTla+b,e} such that <Aa,a,b> h = { and <a,bA> oo g

In & sueh defined algebiale theory the sum of fia->»b omd pre-rd is
<ECh bady, g, du RS and ".a'a = <Ia’1a>‘ We menlion that cvery algpelrale theoey i3 an some,
. = e
where Vﬂ,b b, a, A0, NGB EDD,
An algebraie theory T s a matrix thoory il someo constants _LlET{:'.,}.‘i oyt

e ———— ke

Aﬂ{- Tila,a+a) arc given fulfiling the sxiams

B15 _L),%:I;k B1Y ff\b:,’\ﬂliﬁﬂ

BI6  fig=a BIS A, (1 +0,, +) =1

1 il

In 4 matrix theory T, defined as above. & target-tapling 1, 1: Tlab) = Tloe) <4 Toyhie)

and some canstants [a.b, el Tiatb+o, ) muy be intraduced ns Tolloas
(f.gl= .n"\a{f+g} [a.b,e] =L iﬂ-_i-_'ll_:+

In & matrix theary T we may also define a union operation Us Tla,bd = 1{n b= Tl

and same consiants ﬂu D*-’:’l"iu.b) a5 lollows

[ug=A (Bzivy na,b =1 0

" - . - a 1 & ’
and a matrix building operation which maps [tn-=e, pa-rd, htb-se and gbhod in

[:‘1 ?]E T{a+hetd} defined as being

either <[f.gLihil> or [<f,h>, <o,i>].

st

. ) ) ] , [ &
For given a,b.e and d every jeTiatb,edd) miay be written in a unigue way as j = [h T]

with f,g.b and i as above.

Let us consider the [ollowing axiamatic systems F1-2, {1-4 and R1-3.



Suppoone n Feedback operation 4%:7{asb, 40} —> Plh,c) is given, -
& _ B -

F1, #'¢ .71 F2, + {Ta,a“a_+ M =r

FL, £P4% = 4370 rz, (4% =14 |

[

. a+b _ . gbta \ FRED . Ab+a

El& t { l'll'ﬂ,b”c) f {?L},aﬂd}} = 1-23 0 l[{1'4'.“1:11.I:1+IicJ f {“3,&+Id}] B 1‘ ‘f

Ao gl . Bp _4h
F1, ¢ f)g = $7(l, + ¢) F2, tor0 =47+ 0y
CF1 g = 4%, + g | F2, APchg> = gt 0 o0
Fi, 1 +g=4t+yg) - for f:a—»a+e, gih>ate
A
Fl, £ =1y

A morfism yia -+Db is called f-functorial if for every fute — a+d and gibte > bid
the eqguality fly + Id} =(y+ [cjg implies £8f = 1‘bg,

Suppose an iveration operaticn 1':T{ﬂ,a+b} —>Ma, b} is given.

13

i, v ppt=0t 12, refhp =t
i, g+ =t 12, (v 10t =it
for fia=>Dic, mb—=a 123-' el + 1e}}+ = {gl’}f
1, {i'(I}1 + [{]']'Jr = ITE: . for fin->b+e, mibda
12, G, +ont =Yg
, o+t -1 14, (@ DT =1
13, gyt = ctlent o,n> 14, <t = ctTen1 >
where b = {[j(l‘T,]bm}}r wheve h = {g<f! *Ib-r-c>}1-
12 O DA VA 14, {\]~H?bf(%l&-!1cﬂ'b Yol
13, (L + et =iy 14, (£+0 )" = theo,

A morphisin  y:a—b is called t-lunctorial if for every lra—>ate and :b-—>b+e the
equality f[ly + Ic} = yg implics fT = },rgT.

Suppose a repeiition operation ¥.v{a,a)—>Tla,a) i given.

RL, {Uo* = {*g*r* R2, t* =Iani‘*
R1, (N Y flel) g R2, Fue® = (* et
R2, (Fe)*i = fgly®




-
¥ _
R31 UEL,B. B Ia
& *
¢ [ f*ewhf UT*  *gw
1{3? . . , where w = {hf*gui}*
h i _ whi™ W

e . b - *
Hd'\:’r l:ll":;*.,brl'fl}_.:l} TJ:-1,L}[ "!"b.u‘

Iy = v dmplics £y v yg™.

L

Fl]-”' & bileew awer an albmebraie thoory (resp. over a matrix theq['y} i5 an algcbraie

thees Coewp omateix theory) eomstdered with the natursl strueiure of ssme in which a

foocls ol o clvon Pelliting thw axioms Fl) o

Asonoearaliy ol the thcorems in this poper we nole that in an algebraic theory
(recp. ima nnoirix theery) U axiematie systems FL, F2, [, 12, 13 and 4 {resp. F1, ¥2, 11,

12, T, 1, B L2 ced R3) are equivalent.

Proposition. Inan algebraie Uscory the axiomatic sysioms [1-4 are equivalent.

Proof, TU Qs bnown [eom Lsilk [9] that Hl-wﬂ; is equivalicnt with 121, 14 and I?.‘J‘. AS

-3
If].1 follows fromm ll"-l ihd 134 we pet that 13 {==% 14 holas,

HWote that ”l’- 5 o particular case of 123. By the Proposition B.1 of Appendix B in

Stefanczou [15) the axiam 132 is cquivalent witl 12 in the prescnec of 12, and 13

2-3 1 3-4

Heneo 17 <==> 13,

It is casy lo sec -lhat 11 <==> 12, [ndeed, 11, for g=la gives [2.: moreaver,

2 s
g{fijr 4 IEII]IJr = (by Ilzll gf({gf]f. 1.2 = {by 121} (gf]l)r, henee [1.z ==> [2,. Conversely,

1, 412, =2> 1, indeed, (g + 10T = oy 12)) flg + 1 )<UE(g + It

t<glicg + 107, 1> = (by 12,) i<tgryf, ST
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ITERATIONS AND FEEDDACKS IN ALGEBRAIC THEQRIES

&

Let 1 be an alpebraic theory and {T) (resp. FA{TH the set of all iterations {resp.

- feedbacks) defined on T. We define two applications
o : Fa(T}=> 1t(1) and B: 1t{T) = FA(T)
as follows

Ot mops f€ T, atbY in 2L, [a + 0, >;

b

& (4 f,’:]ln maps [ = <f1,f e Tlo+h,a+c) (with [, :a—s a+c and fz:h = a+e)in f2<f11,1c>.

2 1

Let Fdr{T] {resp. Ft’ii{T}} be the subsel of all the feedbacks in FA(T) that obey the axioms

F (resp. F2.} and HI_II’I‘} the subset of all the iterations in [t{T) that obey the axiom

y-g
134. Finafly, let us consider the restrietions q’r:]?‘dr{'l‘}ﬁltl_f,”l‘:lf F’r :-{t[_(T}—}I*{J:,'ZT},

oot FA{Th=»it (T and ﬁ d 1t {1)—= Falt) induced by « and ]G
} 1 . 1 . L

Theoren. a) ‘The restrictions oLir B c(f and B nre {tolatty defined) hijoetive
functions. Morcover ﬁfi is the converse of }‘%i and of of P’r'

b} For keldl, § satisfied 14 if t+g satisfies ¥2,.

e) Far ke[2], 1+ salisfies le i 1= sntisfies Flk’

g}y is t-funetarial if( yis § p - [unctorial.
b 17

= g(fT,ID> = ‘Fa<f.g>. Consequently g, is totally defined. Obviously

Proof. @) Note that 4=4p satisties F2  indeed, g<+"<f,1ﬂm

- 1
=gl #O KEE > T

»
b™* b

1= T4 . For the eonverse, note that { 'f‘p{F.}a Maps <fl,fz>GT(&+b?ﬂFn} {with I'l:a ~3 n4e

. il _ . .*
and f2.11 =»at+e)in [244" ([1,1a+ﬂc>, lﬂ>. Henee 1= ’Tc{F’, for T &k dj(T}.
For the second resteiction, note that + satisfies [34 ill B denoted 4, satisfies Fl-l'
Indeed, 4 satisfies qu iflf for every [ = <1‘1,f2> s a+bh = ate {with fl:a —»>n+e  and
. ) Boy | ¥ - T, . .
fyib-rate}  and  ge->d (470g = £,<f, I g = 14<f Teg> is  equal to

¢ +o} = 498 o e = D'T = T“’
4 (e, =) = 4 <flua+b}.fzﬂa+b}>--fzﬂa+ghﬂflﬂa+bﬂ 19> = f<f vy g>




Consequently if + satisfics !34, then 4 satisfies F1£1 and if 4 satisfies qu, then by using
L+0, for f2 gbove we conclude that 1 satisfics 134. Henee we have a bijeetive
corirospondones between Ilr{T} and the subset of all the feedbacks in FA{T) that satisfy

14‘1'5 + 1-"1{1. Tiwe eanetusion follows if we show that F2_+ Fl, <==»F1 Mote thet:

57 Fiyg 4-6°

FZo =» P13 indeed, if = <1’1,f2>:u+h-+ ate {with Il:a——}nﬂ: and t‘z:b-¥a+e} and
- h ] a U fad - a = o a .
g =5 b then AL ) = 470 gl = by F2,) gh, AT 40 > 1 >
=y F2gi s A7 SPEE o A2 )

Fe_ o+ iy, == Tl s indeed, if = <E,{, 2m+b—» a+e (with [ ra-pa+e and [_:b—>a+c)

5 4 G 12 i P2

B ol e, then A8 4 o} =’]"a<f U 1‘?+g> = (by
N  EE L G =
1?.bj.fz+[j:n<. NTELUR FL RS S0 {by F1 }f +;,}<f;~ rcij1 L0200 1, 0>
_ PRI S i 1 _ = .
=, Fe i< SRR I ; f2<+ <f1,lu4 0,>d,> + g = (by 1*25} 4 f+ .

Flfl—{i L F_-"?,_j; indeed, if fra - a+a and b =»n+e, then I ’F‘H<f,g>
L e[ ! = N -(4.2 = f
= |.[iu+r_.;._ x[.,ﬂ Uu> + !c)(ilﬂﬂ c::'] (by 1 1‘1__G} z{4 <f,lﬂ+ Uc:> + Icwc got <f.lﬂ+ﬂc>, Ic>'

b} Lot b and £ be sueh that 9= [ The cquivalence in the ease k = 1 hwlds since [or
oy - ) i “'lt - (S | = it +
fib-re (0 ¢ £} 4 <0 110> 4 (ma{[a ).
1 )
For §r 2, note that il fin—=adb+e, pib->a+b+e and i:d-»a+b+e, then "[‘ﬁ b<f,g,|.>

. Iranl ] by , : t . LAt
sichg iy ang PTMRe D =gty L ) = APqgetty, oriaT L, >

ot s ieert whore 1 o feett T conse sl
=g ’Ib+c>“"]c:> = jg¢f <h.lc>.h>, Ic>' where h = (g<f ‘[b-rcﬂ . Conscquently + satisfics

4 ir ' R o :
k 3.2 L satizdios 142.

For k=3, nhte that il [~ <r1,r2> btate ~» bia+d (with Il:b+a-}b+a+d and

f,ie->braid),  then ’f‘ﬂ..lb'[{";“;l!b"‘le}f{‘rb ) C\f’a Bl ﬁ),a Tk [ {Tb

[ t
Wb . 1(1}} g2 =14, u[‘fhb | “H:.,a L A and_

hlt 1 'y Lo = - H A -= 4
(AR f2~-11‘1 W0 l>. sinee 1”1!.{]1' ba Ia+b it follows 1tmt “3 (== 123.

e Lo ) . . : a
For k=4, note that the axioms I24_m1d 14, may be written as f {f[[ﬂ+c+ﬂdll

:f‘f‘af}{lc*ﬂd} and ff(lﬂ+b+ﬂciﬂ=f1{1b+[}ﬂl, respectively. Now the equivalence

- _1\a+l}

:f{\r }ik\

F24 {==3 H-l dircetly follows frem the above proof of the equivalence qu ==> [}

The proof of ¢) is covered by the above proof of b).

&




d) Suppose that y:ia->b is t-functorial and f = <f1,_f2>:a'+c 4 a+id {with f1:a+a+d
and fzze-a-a*d}l and g = <gl.p;2>:b+c — b+d {wiltj gl:b-:rlﬁd and g:e -+btd} are such that
fly + Id} ={y + Ic]lgu Then f1{1.=+1d} = yg, and le[y-ild} =y By the t-functoriality of y

T + L. _ t - T - T _ 1 = AD
£, =yg, - lence Ao = £l g = fo<ym, Ll = Ely#lg)<g, Yl = g, gy Ly =47g.

Converscly, suppose 1hal yra-»b is f-functorial and fia-» a+e and g:b=>bte are sueh
that f{y+1c) =y, Then <t'JE+Hc>{;;+[c} = <f(_1,r+1c}, },'+Ue> = <yg,y+ﬂu> = {y+la}<g,}r+ﬂc>, By

» e T fes 28 _ b i, e _ _ + A
the $-functoriality of y 4 <fI 0> =4 gy+0, > As b <t 40> r—{Iﬂ* 0 )<t ,Ic>—fund

{‘b<g,y+uc> = {}'-FOGJCng,IP} = },rgf the vesult folows, &

Covollary. ln an algebraic theory the axiomatic systams F1, T2, i1, 12, I3 and 14 are

equivalent. [

RUPLETITIONS, ITERATIONS AND FEEDBACKS TN MATRIN THRORIES
Let T be o wateix theory and Kp(T) the set of all repotitions defined on T, We nse

the applicativns in [13]
o HT)->0p(Tt and T RpCD 21D
defined as follows

@ ¢ maps (€7(a,a)in [f,la]T;

G *7 maps(= [fl,t'zle’l'(a,mb]l {with f.:n =8 and { ;a-> 1) in fr e

1
Finally, let us consider the restrietions o7, ILP(’I’]+R[J{T) and T RpE'I‘}—J-ltr,(T} induced

-b}f o nnd T,

Theorein. a) The reslrietions T, and T, are (totaily defined) bijective functions.
Morcover, f:r’r is the converse of Ir.
b) For ke [3]. * satisflies R3, Iff *T satisfies 13,.

o) For k€3], * satisfies sz.iff *7 satisfies [zk.



d} For k< [2), * satisfies le iff * satisfies Ilk‘

e yis *—[unctorial iff y is *¢ -funetorial.

Procf. o) Note (it #*#¢7, denoted §, salisfies 134; indeed, if [ = [fl,le:a-}a*-b fwith
e Y Fyrn-i b s b-se, then 134 +g'j}l1 = [1'l,t'2ErlJr =f} fzg = ng. Consoquently
T, s oMy defined. Obwiously ¥ = *1¢. For the converse note that 4¢7 maps

=l 0] (5,0

i B n i .. I . \ * ‘= 4
L ].1 r ‘J{ Fla.a+ ) {wilh i‘l,a »a and fz.ﬂ*—b— b oin [fl*[a] fz, Hence t+ = tire
Tor ff_lfl i),

LY It 4 and ¢ Lo sueh that 4 = *2. The cquivalenee in the, case k = 1 holds sinee

et o g Ten o= ¥
o naat it e InAa

Lt ko2, mate that if § = [!‘].1'2.[‘3] s a—atbde {with [ wn—=a, fzza = by aind [“H:ﬁ--‘n»c]l

1
and |7 - {:_;-1,552,5_{3::h-—:?-n*bit:'. (with Eyib—>a, gz:b-v‘-t:r and g.jba&rc}, then
PN B S R U I S Y (N SO B
et J} ", 2] 3 ) ana b= e, 3 =
[_1:1 2y Oy By 85 £y

s b

L0 O ; , s
=)y i) T 0 ) =[f_:1f1 [, ue, glfl fugyl = [“lrl faufg:j} , whaore

L I,

wo= {rr t"' r Um] . houce

¥ R r
'(f-r{h_.fc},flz- i ‘1 r?'.'h U r] I‘d fl f21""4_,.l 1 i) f ['1 fzw] [fﬂ +
' " 1WE’I l w Es

Consequently, if * salisfics R3, then | satisflies 13,. If § satisfics [3,. then applying
1

% -
£, fﬂ [1‘3} r f wﬂflu £ fl fzw] [fal
£l Py B3 wey ) W E3

forf.=1.uv,=08 eerael T

37 L 6y b 3 = ub,a’ E.'3 = II;:- we el K3

7

For k=3, note that il [= [f-l_.f.zl:hfa-—} brate {with fl:b4a—>b+a and fz:tﬁ'c EWIR
URTE RS t_ +

then “ﬁl bfl:l"bu icﬂ - [ﬁ,bfll"'”b,a’ ﬁbeﬁl w’a.hflrb,a} l"‘?t,bfi and

T = = i rg ==
\Na_.bf t l::-rl f..Since \Ir“b n"a'wa b " lb+a it follows that 1133< >133.

*7 For k = I, note that if f = [fl,le :a—>atb {with

It

e} Let + and * be sueh Lhat +

fl:a*-m and! [E:a—H::L then 1= f f and et . } "ff ‘l' Ur “{flfl*UIa}fz, Henes

H?.1<=:>121.



.-= ' : . ’ ' ! ' -.I..I -| ) -+ . -.. ) ’ . .. h i ._ - - ’ ..- : - . . .
Fof k=12, note that if [ = [frfz’fa] : a -»a+a+b (with fl:a-}a, Izza-}a and t'a:a——}-b},
t1 _ * ot _ioep Tt +_ *
ihen  f —{[1 fg, l‘1 1'3] = {l.'l fﬂ fl,*f,'j and {l‘{‘v’aﬂb]] —_[flu fz. f.‘i] -—{flLH“E} 1'3.
.Henece ]{22<==>122_
For k=3, note that If - [fl,fz] : a-~»bte (with fl:ﬂ —»b and fz:a -»¢) and g:b _}ﬂ,‘ i
then gt W =gl ml,1t = g, @*r,  and 0T = (gt et )T = (gf )0, lience

R2 <==>123.

3

d} The case k = 1 is cavered by ¢). Tor k = 2, note that if = [i'l,f ]:a—bie (with

2

f,:n—>b and f :a%c¢) and gib-ra, then fngJH'IcHT

1 2 - {flgprzl-r = {flg}tfz [',lnd

T B T * 5 *n' = T ¥ il

f <l ) ,Ic:: _[rl,le«:{url} gfz,le‘) fligfl} L,1‘2L.!1'2 {IﬂU flh,fl} g]'_i'z. Henee
R, <2001,

e) Suppose that y:ma-»b is *-[unctorial and { = ”rfz] ra-ra+th (with ['I:H—HL and

[a-re) and g = fg,,g,1 b bve {with g:b—b and gy:b > e} are sueh that (fly+1 )= yo.

Then fly = yir, and fz T ¥E,- By the *-funcloriality of y fI y = yg;. Conseqlently,

ygf = ygI g, = f;' 8o = [T 1'2 = (T, Conversely, suppose that y:n—> b is f-funetorial and

f:n-»a and gib->b arc sueh that fy = yg. Then 11',y](y+1b} = [Tyl = [yowwl = y[g;{lbL henee

[[,3,]1 = }'[j:-'.\!b]f. Therefare f+y = yo*.

Hote thal the compasites wa and TF, work as [olows:

1. 0

a “ad

' : f 1
8 Too maps feTan in »f“[ & ]
: !
i

> A, [‘]l 1 -»0, [’21:h =0 and

i 2

f r

@ {*‘Lp}ﬂ maps [ = {11 fw]eﬂum,um} (with f_l
tZl 22 )

th—e} in . f (. Ui, .. )

f 21711 "127 22

22

Corollary. a} The restrictions ol and T B arc {totally defined) bijretive
functions. Morcover ocl_:fr is the eonverse of Z.B,

b) For k€3], * satisfies Rﬂk iff *‘Lf, satislies Flk.




¢) y is *-functorial iff y is *tF-functcrinI. 2

Corollary. In a matrix theory the axiomatie systems F1, F2, 11, 12, 13. 14, R1, R2 and

N e conivalent. [N
CORCTUCHID HEMAMKS ’ '

Here we prive some adventares of the use of feedback over the use of iteration or
rer S,

Fast, the proper acyalic context {or lhe use of feedbr:ck s a symmelric steict
mocicsl goteoey, Tor iberation an algebraie iheory and for repetition a matrix theory.
e Teadls ol sy be used oo more geners] cantext than iteralion or repetition.

Second, i Wle cantest of mateix theorics there is a bijeetion between jleralions that

obuy e axicra 130 end repetiticns. [Henee iteration is better thaw repelition sinec it

}
a.'.ii.:-'[:l:x};’s sgine propertios of the looping operation which are hiddencd by repetition,
Ancleroualy, in the eontext of algebraie theuries there i3 a bijeelion Letween feedbacks
thol obey the cxiom FZ:_J andd iternlions, 1enee feedback is better than iteration (resp.
ropetition) sinee it displays somo properlics of the leoping operalion which are hiddened
By iteration (rosp, repetiticnd. Naturally. the proofls in terms of fcm;buaks are longer.

Finally, o us note that some propertics are casicr 1o express in terms of {cedback,
¢ the propocly expressed by the "matrix Tormula” 1132 or by the "pairing axiom” 132 t5
4+

exprosscd in terms of focdback as JE*’l2
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