
Lecture Notes on the Lambda Calculus

Peter Selinger

Department of Mathematics and Statistics
Dalhousie University, Halifax, Canada

Abstract

This is a set of lecture notes that developed out of courses on the lambda

calculus that I taught at the University of Ottawa in 2001 and at Dalhousie

University in 2007 and 2013. Topics covered in these notes include the un-

typed lambda calculus, the Church-Rosser theorem, combinatory algebras,

the simply-typed lambda calculus, the Curry-Howard isomorphism, weak

and strong normalization, polymorphism, type inference, denotational se-

mantics, complete partial orders, and the language PCF.

Contents

1 Introduction 1

1.1 Extensional vs. intensional view of functions 1

1.2 The lambda calculus . 2

1.3 Untyped vs. typed lambda-calculi 3

1.4 Lambda calculus and computability 4

1.5 Connections to computer science 5

1.6 Connections to logic . 5

1.7 Connections to mathematics . 6

2 The untyped lambda calculus 6

2.1 Syntax . 6

i

2.2 Free and bound variables, α-equivalence 8

2.3 Substitution . 10

2.4 Introduction to β-reduction . 12

2.5 Formal definitions of β-reduction and β-equivalence 13

3 Programming in the untyped lambda calculus 14

3.1 Booleans . 14

3.2 Natural numbers . 15

3.3 Fixed points and recursive functions 17

3.4 Other data types: pairs, tuples, lists, trees, etc. 20

4 The Church-Rosser Theorem 22

4.1 Extensionality, η-equivalence, and η-reduction 22

4.2 Statement of the Church-Rosser Theorem, and some consequences 23

4.3 Preliminary remarks on the proof of the Church-Rosser Theorem . 25

4.4 Proof of the Church-Rosser Theorem 27

4.5 Exercises . 32

5 Combinatory algebras 34

5.1 Applicative structures . 34

5.2 Combinatory completeness . 35

5.3 Combinatory algebras . 37

5.4 The failure of soundness for combinatory algebras 38

5.5 Lambda algebras . 40

5.6 Extensional combinatory algebras 44

6 Simply-typed lambda calculus, propositional logic, and the Curry-

Howard isomorphism 46

6.1 Simple types and simply-typed terms 46

6.2 Connections to propositional logic 49

6.3 Propositional intuitionistic logic 51

ii

6.4 An alternative presentation of natural deduction 53

6.5 The Curry-Howard Isomorphism 55

6.6 Reductions in the simply-typed lambda calculus 57

6.7 A word on Church-Rosser . 58

6.8 Reduction as proof simplification 59

6.9 Getting mileage out of the Curry-Howard isomorphism 60

6.10 Disjunction and sum types . 61

6.11 Classical logic vs. intuitionistic logic 63

6.12 Classical logic and the Curry-Howard isomorphism 65

7 Weak and strong normalization 66

7.1 Definitions . 66

7.2 Weak and strong normalization in typed lambda calculus 67

8 Polymorphism 68

8.1 Syntax of System F . 68

8.2 Reduction rules . 69

8.3 Examples . 70

8.3.1 Booleans . 70

8.3.2 Natural numbers . 71

8.3.3 Pairs . 72

8.4 Church-Rosser property and strong normalization 72

8.5 The Curry-Howard isomorphism 73

8.6 Supplying the missing logical connectives 74

8.7 Normal forms and long normal forms 75

8.8 The structure of closed normal forms 77

8.9 Application: representation of arbitrary data in System F 79

9 Type inference 81

9.1 Principal types . 82

iii

9.2 Type templates and type substitutions 82

9.3 Unifiers . 84

9.4 The unification algorithm . 85

9.5 The type inference algorithm . 87

10 Denotational semantics 88

10.1 Set-theoretic interpretation . 89

10.2 Soundness . 91

10.3 Completeness . 93

11 The language PCF 93

11.1 Syntax and typing rules . 94

11.2 Axiomatic equivalence . 95

11.3 Operational semantics . 96

11.4 Big-step semantics . 98

11.5 Operational equivalence . 100

11.6 Operational approximation . 101

11.7 Discussion of operational equivalence 101

11.8 Operational equivalence and parallel or 102

12 Complete partial orders 104

12.1 Why are sets not enough, in general? 104

12.2 Complete partial orders . 104

12.3 Properties of limits . 106

12.4 Continuous functions . 106

12.5 Pointed cpo’s and strict functions 107

12.6 Products and function spaces . 107

12.7 The interpretation of the simply-typed lambda calculus in com-

plete partial orders . 109

12.8 Cpo’s and fixed points . 109

iv

12.9 Example: Streams . 110

13 Denotational semantics of PCF 111

13.1 Soundness and adequacy . 111

13.2 Full abstraction . 113

14 Acknowledgements 114

15 Bibliography 115

v

1 Introduction

1.1 Extensional vs. intensional view of functions

What is a function? In modern mathematics, the prevalent notion is that of “func-

tions as graphs”: each function f has a fixed domain X and codomain Y , and a

function f : X → Y is a set of pairs f ⊆ X × Y such that for each x ∈ X , there

exists exactly one y ∈ Y such that (x, y) ∈ f . Two functions f, g : X → Y are

considered equal if they yield the same output on each input, i.e., f(x) = g(x) for

all x ∈ X . This is called the extensional view of functions, because it specifies

that the only thing observable about a function is how it maps inputs to outputs.

However, before the 20th century, functions were rarely looked at in this way.

An older notion of functions is that of “functions as rules”. In this view, to give

a function means to give a rule for how the function is to be calculated. Often,

such a rule can be given by a formula, for instance, the familiar f(x) = x2 or

g(x) = sin(ex) from calculus. As before, two functions are extensionally equal if

they have the same input-output behavior; but now we can also speak of another

notion of equality: two functions are intensionally1 equal if they are given by

(essentially) the same formula.

When we think of functions as given by formulas, it is not always necessary to

know the domain and codomain of a function. Consider for instance the function

f(x) = x. This is, of course, the identity function. We may regard it as a function

f : X → X for any set X .

In most of mathematics, the “functions as graphs” paradigm is the most elegant

and appropriate way of dealing with functions. Graphs define a more general

class of functions, because it includes functions that are not necessarily given by

a rule. Thus, when we prove a mathematical statement such as “any differen-

tiable function is continuous”, we really mean this is true for all functions (in the

mathematical sense), not just those functions for which a rule can be given.

On the other hand, in computer science, the “functions as rules” paradigm is often

more appropriate. Think of a computer program as defining a function that maps

input to output. Most computer programmers (and users) do not only care about

the extensional behavior of a program (which inputs are mapped to which out-

puts), but also about how the output is calculated: How much time does it take?

How much memory and disk space is used in the process? How much communi-

cation bandwidth is used? These are intensional questions having to do with the

1Note that this word is intentionally spelled “intensionally”.

1

particular way in which a function was defined.

1.2 The lambda calculus

The lambda calculus is a theory of functions as formulas. It is a system for ma-

nipulating functions as expressions.

Let us begin by looking at another well-known language of expressions, name-

ly arithmetic. Arithmetic expressions are made up from variables (x, y, z . . .),
numbers (1, 2, 3, . . .), and operators (“+”, “−”, “×” etc.). An expression such as

x+y stands for the result of an addition (as opposed to an instruction to add, or the

statement that something is being added). The great advantage of this language

is that expressions can be nested without any need to mention the intermediate

results explicitly. So for instance, we write

A = (x+ y)× z2,

and not

let w = x+ y, then let u = z2, then let A = w × u.

The latter notation would be tiring and cumbersome to manipulate.

The lambda calculus extends the idea of an expression language to include func-

tions. Where we normally write

Let f be the function x 7→ x2. Then consider A = f(5),

in the lambda calculus we just write

A = (λx.x2)(5).

The expression λx.x2 stands for the function that maps x to x2 (as opposed to the

statement that x is being mapped to x2). As in arithmetic, we use parentheses to

group terms.

It is understood that the variable x is a local variable in the term λx.x2. Thus, it

does not make any difference if we write λy.y2 instead. A local variable is also

called a bound variable.

One advantage of the lambda notation is that it allows us to easily talk about

higher-order functions, i.e., functions whose inputs and/or outputs are themselves

functions. An example is the operation f 7→ f ◦ f in mathematics, which takes a

2

function f and maps it to f ◦ f , the composition of f with itself. In the lambda

calculus, f ◦ f is written as

λx.f(f(x)),

and the operation that maps f to f ◦ f is written as

λf.λx.f(f(x)).

The evaluation of higher-order functions can get somewhat complex; as an exam-

ple, consider the following expression:

(

(λf.λx.f(f(x)))(λy.y2)
)

(5)

Convince yourself that this evaluates to 625. Another example is given in the

following exercise:

Exercise 1. Evaluate the lambda-expression

(

(

(λf.λx.f(f(f(x)))) (λg.λy.g(g(y)))
)

(λz.z + 1)
)

(0).

We will soon introduce some conventions for reducing the number of parentheses

in such expressions.

1.3 Untyped vs. typed lambda-calculi

We have already mentioned that, when considering “functions as rules”, it is not

always necessary to know the domain and codomain of a function ahead of time.

The simplest example is the identity function f = λx.x, which can have any set X
as its domain and codomain, as long as domain and codomain are equal. We say

that f has the type X → X . Another example is the function g = λf.λx.f(f(x))
that we encountered above. One can check that g maps any function f : X → X
to a function g(f) : X → X . In this case, we say that the type of g is

(X → X) → (X → X).

By being flexible about domains and codomains, we are able to manipulate func-

tions in ways that would not be possible in ordinary mathematics. For instance, if

f = λx.x is the identity function, then we have f(x) = x for any x. In particular,

we can take x = f , and we get

f(f) = (λx.x)(f) = f.

3

Note that the equation f(f) = f never makes sense in ordinary mathematics,

since it is not possible (for set-theoretic reasons) for a function to be included in

its own domain.

As another example, let ω = λx.x(x).

Exercise 2. What is ω(ω)?

We have several options regarding types in the lambda calculus.

• Untyped lambda calculus. In the untyped lambda calculus, we never specify

the type of any expression. Thus we never specify the domain or codomain

of any function. This gives us maximal flexibility. It is also very unsafe,

because we might run into situations where we try to apply a function to an

argument that it does not understand.

• Simply-typed lambda calculus. In the simply-typed lambda calculus, we

always completely specify the type of every expression. This is very similar

to the situation in set theory. We never allow the application of a function

to an argument unless the type of the argument is the same as the domain of

the function. Thus, terms such as f(f) are ruled out, even if f is the identity

function.

• Polymorphically typed lambda calculus. This is an intermediate situation,

where we may specify, for instance, that a term has a type of the form

X → X for all X , without actually specifying X .

As we will see, each of these alternatives has dramatically different properties

from the others.

1.4 Lambda calculus and computability

In the 1930s, several people were interested in the question: what does it mean for

a function f : N → N to be computable? An informal definition of computability

is that there should be a pencil-and-paper method allowing a trained person to

calculate f(n), for any given n. The concept of a pencil-and-paper method is not

so easy to formalize. Three different researchers attempted to do so, resulting in

the following definitions of computability:

1. Turing defined an idealized computer we now call a Turing machine, and

postulated that a function is computable (in the intuitive sense) if and only

if it can be computed by such a machine.

4

2. Gödel defined the class of general recursive functions as the smallest set of

functions containing all the constant functions, the successor function, and

closed under certain operations (such as compositions and recursion). He

postulated that a function is computable (in the intuitive sense) if and only

if it is general recursive.

3. Church defined an idealized programming language called the lambda cal-

culus, and postulated that a function is computable (in the intuitive sense) if

and only if it can be written as a lambda term.

It was proved by Church, Kleene, Rosser, and Turing that all three computational

models were equivalent to each other, i.e., each model defines the same class

of computable functions. Whether or not they are equivalent to the “intuitive”

notion of computability is a question that cannot be answered, because there is no

formal definition of “intuitive computability”. The assertion that they are in fact

equivalent to intuitive computability is known as the Church-Turing thesis.

1.5 Connections to computer science

The lambda calculus is a very idealized programming language; arguably, it is the

simplest possible programming language that is Turing complete. Because of its

simplicity, it is a useful tool for defining and proving properties of programs.

Many real-world programming languages can be regarded as extensions of the

lambda calculus. This is true for all functional programming languages, a class

that includes Lisp, Scheme, Haskell, and ML. Such languages combine the lambda

calculus with additional features, such as data types, input/output, side effects,

updatable memory, object oriented features, etc. The lambda calculus provides a

vehicle for studying such extensions, in isolation and jointly, to see how they will

affect each other, and to prove properties of programming languages (such as: a

well-formed program will not crash).

The lambda calculus is also a tool used in compiler construction, see e.g. [8, 9].

1.6 Connections to logic

In the 19th and early 20th centuries, there was a philosophical dispute among

mathematicians about what a proof is. The so-called constructivists, such as

Brouwer and Heyting, believed that to prove that a mathematical object exists, one

5

must be able to construct it explicitly. Classical logicians, such as Hilbert, held

that it is sufficient to derive a contradiction from the assumption that it doesn’t

exist.

Ironically, one of the better-known examples of a proof that isn’t constructive is

Brouwer’s proof of his own fixed point theorem, which states that every continu-

ous function on the unit disk has a fixed point. The proof is by contradiction and

does not give any information on the location of the fixed point.

The connection between lambda calculus and constructive logics is via the “proofs-

as-programs” paradigm. To a constructivist, a proof (of an existence statement)

must be a “construction”, i.e., a program. The lambda calculus is a notation for

such programs, and it can also be used as a notation for (constructive) proofs.

For the most part, constructivism has not prevailed as a philosophy in mainstream

mathematics. However, there has been renewed interest in constructivism in the

second half of the 20th century. The reason is that constructive proofs give more

information than classical ones, and in particular, they allow one to compute solu-

tions to problems (as opposed to merely knowing the existence of a solution). The

resulting algorithms can be useful in computational mathematics, for instance in

computer algebra systems.

1.7 Connections to mathematics

One way to study the lambda calculus is to give mathematical models of it, i.e.,

to provide spaces in which lambda terms can be given meaning. Such models are

constructed using methods from algebra, partially ordered sets, topology, category

theory, and other areas of mathematics.

2 The untyped lambda calculus

2.1 Syntax

The lambda calculus is a formal language. The expressions of the language are

called lambda terms, and we will give rules for manipulating them.

Definition. Assume given an infinite set V of variables, denoted by x, y, z etc.

The set of lambda terms is given by the following Backus-Naur Form:

Lambda terms: M,N ::= x (MN) (λx.M)

6

The above Backus-Naur Form (BNF) is a convenient abbreviation for the follow-

ing equivalent, more traditionally mathematical definition:

Definition. Assume given an infinite set V of variables. Let A be an alphabet

consisting of the elements of V , and the special symbols “(”, “)”, “λ”, and “.”. Let

A∗ be the set of strings (finite sequences) over the alphabet A. The set of lambda

terms is the smallest subset Λ ⊆ A∗ such that:

• Whenever x ∈ V then x ∈ Λ.

• Whenever M,N ∈ Λ then (MN) ∈ Λ.

• Whenever x ∈ V and M ∈ Λ then (λx.M) ∈ Λ.

Comparing the two equivalent definitions, we see that the Backus-Naur Form is

a convenient notation because: (1) the definition of the alphabet can be left im-

plicit, (2) the use of distinct meta-symbols for different syntactic classes (x, y, z
for variables and M,N for terms) eliminates the need to explicitly quantify over

the sets V and Λ. In the future, we will always present syntactic definitions in the

BNF style.

The following are some examples of lambda terms:

(λx.x) ((λx.(xx))(λy.(yy))) (λf.(λx.(f(fx))))

Note that in the definition of lambda terms, we have built in enough mandatory

parentheses to ensure that every term M ∈ Λ can be uniquely decomposed into

subterms. This means, each term M ∈ Λ is of precisely one of the forms x,

(MN), (λx.M). Terms of these three forms are called variables, applications,

and lambda abstractions, respectively.

We use the notation (MN), rather thanM(N), to denote the application of a func-

tion M to an argument N . Thus, in the lambda calculus, we write (fx) instead

of the more traditional f(x). This allows us to economize more efficiently on the

use of parentheses. To avoid having to write an excessive number of parentheses,

we establish the following conventions for writing lambda terms:

Convention. • We omit outermost parentheses. For instance, we write MN
instead of (MN).

• Applications associate to the left; thus, MNP means (MN)P . This is

convenient when applying a function to a number of arguments, as in fxyz,

which means ((fx)y)z. Applying a function to multiple arguments by ap-

plying it to one argument at a time is also known as “currying” the function.

7

• The body of a lambda abstraction (the part after the dot) extends as far

to the right as possible. In particular, λx.MN means λx.(MN), and not

(λx.M)N .

• Multiple lambda abstractions can be contracted; thus λxyz.M will abbre-

viate λx.λy.λz.M .

It is important to note that this convention is only for notational convenience; it

does not affect the “official” definition of lambda terms.

Exercise 3. (a) Write the following terms with as few parenthesis as possible,

without changing the meaning or structure of the terms:

(i) (λx.(λy.(λz.((xz)(yz))))),

(ii) (((ab)(cd))((ef)(gh))),

(iii) (λx.((λy.(yx))(λv.v)z)u)(λw.w).

(b) Restore all the dropped parentheses in the following terms, without chang-

ing the meaning or structure of the terms:

(i) xxxx,

(ii) λx.xλy.y,

(iii) λx.(xλy.yxx)x.

2.2 Free and bound variables, α-equivalence

In our informal discussion of lambda terms, we have already pointed out that the

terms λx.x and λy.y, which differ only in the name of their bound variable, are

essentially the same. We will say that such terms are α-equivalent, and we write

M =α N . In the rare event that we want to say that two terms are precisely equal,

symbol for symbol, we say that M and N are identical and we write M ≡ N . We

reserve “=” as a generic symbol used for different purposes.

An occurrence of a variable x inside a term of the form λx.N is said to be bound.

The corresponding λx is called a binder, and we say that the subterm N is the

scope of the binder. A variable occurrence that is not bound is free. Thus, for

example, in the term

M ≡ (λx.xy)(λy.yz),

x is bound, but z is free. The variable y has both a free and a bound occurrence.

The set of free variables of M is {y, z}.

8

More generally, the set of free variables of a term M is denoted FV (M), and it is

defined formally as follows:

FV (x) = {x},
FV (MN) = FV (M) ∪ FV (N),
FV (λx.M) = FV (M) \ {x}.

This definition is an example of a definition by recursion on terms. In other words,

in defining FV (M), we assume that we have already defined FV (N) for all

subterms of M . We will often encounter such recursive definitions, as well as

inductive proofs.

Before we can formally define α-equivalence, we need to define what it means

to rename a variable in a term. If x, y are variables, and M is a term, we write

M{y/x} for the result of renaming x as y in M . Renaming is formally defined as

follows:

x{y/x} ≡ y,
z{y/x} ≡ z, if x 6= z,

(MN){y/x} ≡ (M{y/x})(N{y/x}),
(λx.M){y/x} ≡ λy.(M{y/x}),
(λz.M){y/x} ≡ λz.(M{y/x}), if x 6= z.

Note that this kind of renaming replaces all occurrences of x by y, whether free,

bound, or binding. We will only apply it in cases where y does not already occur

in M .

Finally, we are in a position to formally define what it means for two terms to be

“the same up to renaming of bound variables”:

Definition. We define α-equivalence to be the smallest congruence relation =α

on lambda terms, such that for all terms M and all variables y that do not occur in

M ,

λx.M =α λy.(M{y/x}).

Recall that a relation on lambda terms is an equivalence relation if it satisfies rules

(refl), (symm), and (trans). It is a congruence if it also satisfies rules (cong) and

(ξ). Thus, by definition, α-equivalence is the smallest relation on lambda terms

satisfying the six rules in Table 1.

It is easy to prove by induction that any lambda term is α-equivalent to another

term in which the names of all bound variables are distinct from each other and

from any free variables. Thus, when we manipulate lambda terms in theory and

9

(refl)
M = M

(symm)
M = N
N = M

(trans)
M = N N = P

M = P

(cong)
M = M ′ N = N ′

MN = M ′N ′

(ξ)
M = M ′

λx.M = λx.M ′

(α)
y 6∈ M

λx.M = λy.(M{y/x})

Table 1: The rules for alpha-equivalence

in practice, we can (and will) always assume without loss of generality that bound

variables have been renamed to be distinct. This convention is called Barendregt’s

variable convention.

As a remark, the notions of free and bound variables and α-equivalence are of

course not particular to the lambda calculus; they appear in many standard math-

ematical notations, as well as in computer science. Here are four examples where

the variable x is bound.

∫ 1

0
x2 dx

∑10
x=1

1
x

limx→∞ e−x

int succ(int x) { return x+1; }

2.3 Substitution

In the previous section, we defined a renaming operation, which allowed us to

replace a variable by another variable in a lambda term. Now we turn to a less

trivial operation, called substitution, which allows us to replace a variable by a

lambda term. We will write M [N/x] for the result of replacing x by N in M . The

definition of substitution is complicated by two circumstances:

1. We should only replace free variables. This is because the names of bound

variables are considered immaterial, and should not affect the result of a

substitution. Thus, x(λxy.x)[N/x] is N(λxy.x), and not N(λxy.N).

10

2. We need to avoid unintended “capture” of free variables. Consider for ex-

ample the term M ≡ λx.yx, and let N ≡ λz.xz. Note that x is free in N
and bound in M . What should be the result of substituting N for y in M?

If we do this naively, we get

M [N/y] = (λx.yx)[N/y] = λx.Nx = λx.(λz.xz)x.

However, this is not what we intended, since the variable x was free in N ,

and during the substitution, it got bound. We need to account for the fact

that the x that was bound in M was not the “same” x as the one that was

free in N . The proper thing to do is to rename the bound variable before the

substitution:

M [N/y] = (λx′.yx′)[N/y] = λx′.Nx′ = λx′.(λz.xz)x′.

Thus, the operation of substitution forces us to sometimes rename a bound vari-

able. In this case, it is best to pick a variable from V that has not been used yet as

the new name of the bound variable. A variable that is currently unused is called

fresh. The reason we stipulated that the set V is infinite was to make sure a fresh

variable is always available when we need one.

Definition. The (capture-avoiding) substitution of N for free occurrences of x in

M , in symbols M [N/x], is defined as follows:

x[N/x] ≡ N,
y[N/x] ≡ y, if x 6= y,

(MP)[N/x] ≡ (M [N/x])(P [N/x]),
(λx.M)[N/x] ≡ λx.M,
(λy.M)[N/x] ≡ λy.(M [N/x]), if x 6= y and y 6∈ FV (N),
(λy.M)[N/x] ≡ λy′.(M{y′/y}[N/x]), if x 6= y, y ∈ FV (N), and y′ fresh.

This definition has one technical flaw: in the last clause, we did not specify which

fresh variable to pick, and thus, technically, substitution is not well-defined. One

way to solve this problem is to declare all lambda terms to be identified up to

α-equivalence, and to prove that substitution is in fact well-defined modulo α-

equivalence. Another way would be to specify which variable y′ to choose: for

instance, assume that there is a well-ordering on the set V of variables, and stipu-

late that y′ should be chosen to be the least variable that does not occur in either

M or N .

11

2.4 Introduction to β-reduction

Convention. From now on, unless stated otherwise, we identify lambda terms up

to α-equivalence. This means, when we speak of lambda terms being “equal”, we

mean that they are α-equivalent. Formally, we regard lambda terms as equivalence

classes modulo α-equivalence. We will often use the ordinary equality symbol

M = N to denote α-equivalence.

The process of evaluating lambda terms by “plugging arguments into functions”

is called β-reduction. A term of the form (λx.M)N , which consists of a lambda

abstraction applied to another term, is called a β-redex. We say that it reduces

to M [N/x], and we call the latter term the reduct. We reduce lambda terms by

finding a subterm that is a redex, and then replacing that redex by its reduct. We

repeat this as many times as we like, or until there are no more redexes left to

reduce. A lambda term without any β-redexes is said to be in β-normal form.

For example, the lambda term (λx.y)((λz.zz)(λw.w)) can be reduced as follows.

Here, we underline each redex just before reducing it:

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w))

→β (λx.y)(λw.w)

→β y.

The last term, y, has no redexes and is thus in normal form. We could reduce the

same term differently, by choosing the redexes in a different order:

(λx.y)((λz.zz)(λw.w)) →β y.

As we can see from this example:

- reducing a redex can create new redexes,

- reducing a redex can delete some other redexes,

- the number of steps that it takes to reach a normal form can vary, depending

on the order in which the redexes are reduced.

We can also see that the final result, y, does not seem to depend on the order in

which the redexes are reduced. In fact, this is true in general, as we will prove

later.

If M and M ′ are terms such that M →→β M ′, and if M ′ is in normal form, then

we say that M evaluates to M ′.

12

Not every term evaluates to something; some terms can be reduced forever without

reaching a normal form. The following is an example:

(λx.xx)(λy.yyy) →β (λy.yyy)(λy.yyy)
→β (λy.yyy)(λy.yyy)(λy.yyy)
→β . . .

This example also shows that the size of a lambda term need not decrease during

reduction; it can increase, or remain the same. The term (λx.xx)(λx.xx), which

we encountered in Section 1, is another example of a lambda term that does not

reach a normal form.

2.5 Formal definitions of β-reduction and β-equivalence

The concept of β-reduction can be defined formally as follows:

Definition. We define single-step β-reduction to be the smallest relation →β on

terms satisfying:

(β)
(λx.M)N →β M [N/x]

(cong1)
M →β M ′

MN →β M ′N

(cong2)
N →β N ′

MN →β MN ′

(ξ)
M →β M ′

λx.M →β λx.M ′

Thus, M →β M ′ iff M ′ is obtained from M by reducing a single β-redex of M .

Definition. We write M →→β M ′ if M reduces to M ′ in zero or more steps.

Formally, →→β is defined to be the reflexive transitive closure of →β , i.e., the

smallest reflexive transitive relation containing →β .

Finally, β-equivalence is obtained by allowing reduction steps as well as inverse

reduction steps, i.e., by making →β symmetric:

Definition. We write M =β M ′ if M can be transformed into M ′ by zero or

more reduction steps and/or inverse reduction steps. Formally, =β is defined to

be the reflexive symmetric transitive closure of →β , i.e., the smallest equivalence

relation containing →β .

13

Exercise 4. A slightly different way to define β-equivalence is as the smallest

equivalence relation =β on terms satisfying:

(β)
(λx.M)N =β M [N/x]

(cong1)
M =β M ′

MN =β M ′N

(cong2)
N =β N ′

MN =β MN ′

(ξ)
M =β M ′

λx.M =β λx.M ′

Prove that the two definitions are equivalent.

3 Programming in the untyped lambda calculus

One of the amazing facts about the untyped lambda calculus is that we can use it

to encode data, such as booleans and natural numbers, as well as programs that

operate on the data. This can be done purely within the lambda calculus, without

adding any additional syntax or axioms.

We will often have occasion to give names to particular lambda terms; we will

usually use boldface letters for such names.

3.1 Booleans

We begin by defining two lambda terms to encode the truth values “true” and

“false”:
T = λxy.x
F = λxy.y

Let and be the term λab.abF. Verify the following:

and TT →→β T

and TF →→β F

and FT →→β F

and FF →→β F

Note that T and F are normal forms, so we can really say that a term such as

and TT evaluates to T. We say that and encodes the boolean function “and”. It

14

is understood that this coding is with respect to the particular coding of “true” and

“false”. We don’t claim that and MN evaluates to anything meaningful if M or

N are terms other than T and F.

Incidentally, there is nothing unique about the term λab.abF. It is one of many

possible ways of encoding the “and” function. Another possibility is λab.bab.

Exercise 5. Find lambda terms or and not that encode the boolean functions “or”

and “not”. Can you find more than one term?

Moreover, we define the term if then else = λx.x. This term behaves like an

“if-then-else” function — specifically, we have

if then else TMN →→β M
if then else FMN →→β N

for all lambda terms M , N .

3.2 Natural numbers

If f and x are lambda terms, and n > 0 a natural number, write fnx for the term

f(f(. . . (fx) . . .)), where f occurs n times. For each natural number n, we define

a lambda term n, called the nth Church numeral, as n = λfx.fnx. Here are the

first few Church numerals:

0 = λfx.x
1 = λfx.fx
2 = λfx.f(fx)
3 = λfx.f(f(fx))

. . .

This particular way of encoding the natural numbers is due to Alonzo Church,

who was also the inventor of the lambda calculus. Note that 0 is in fact the same

term as F; thus, when interpreting a lambda term, we should know ahead of time

whether to interpret the result as a boolean or a numeral.

The successor function can be defined as follows: succ = λnfx.f(nfx). What

does this term compute when applied to a numeral?

succ n = (λnfx.f(nfx))(λfx.fnx)
→β λfx.f((λfx.fnx)fx)
→→β λfx.f(fnx)
= λfx.fn+1x
= n+ 1

15

Thus, we have proved that the term succ does indeed encode the successor func-

tion, when applied to a numeral. Here are possible definitions of addition and

multiplication:

add = λnmfx.nf(mfx)
mult = λnmf.n(mf).

Exercise 6. (a) Manually evaluate the lambda terms add 2 3 and mult 2 3.

(b) Prove that add nm →→β n+m, for all natural numbers n, m.

(c) Prove that mult nm →→β n ·m, for all natural numbers n, m.

Definition. Suppose f : Nk → N is a k-ary function on the natural numbers, and

that M is a lambda term. We say that M (numeralwise) represents f if for all

n1, . . . , nk ∈ N,

M n1 . . . nk →→β f(n1, . . . , nk) .

This definition makes explicit what it means to be an “encoding”. We can say, for

instance, that the term add = λnmfx.nf(mfx) represents the addition function.

The definition generalizes easily to boolean functions, or functions of other data

types.

Often handy is the function iszero from natural numbers to booleans, which is

defined by

iszero (0) = true

iszero (n) = false, if n 6= 0.

Convince yourself that the following term is a representation of this function:

iszero = λnxy.n(λz.y)x.

Exercise 7. Find lambda terms that represent each of the following functions:

(a) f(n) = (n+ 3)2,

(b) f(n) =

{

true if n is even,

false if n is odd,

(c) exp (n,m) = nm,

(d) pred (n) = n− 1.

16

Note: part (d) is not easy. In fact, Church believed for a while that it was impos-

sible, until his student Kleene found a solution. (In fact, Kleene said he found

the solution while having his wisdom teeth pulled, so his trick for defining the

predecessor function is sometimes referred to as the “wisdom teeth trick”.)

We have seen how to encode some simple boolean and arithmetic functions. How-

ever, we do not yet have a systematic method of constructing such functions. What

we need is a mechanism for defining more complicated functions from simple

ones. Consider for example the factorial function, defined by:

0! = 1
n! = n · (n− 1)!, if n 6= 0.

The encoding of such functions in the lambda calculus is the subject of the next

section. It is related to the concept of a fixed point.

3.3 Fixed points and recursive functions

Suppose f is a function. We say that x is a fixed point of f if f(x) = x. In

arithmetic and calculus, some functions have fixed points, while others don’t. For

instance, f(x) = x2 has two fixed points 0 and 1, whereas f(x) = x + 1 has no

fixed points. Some functions have infinitely many fixed points, notably f(x) = x.

We apply the notion of fixed points to the lambda calculus. If F and N are lambda

terms, we say that N is a fixed point of F if FN =β N . The lambda calculus

contrasts with arithmetic in that every lambda term has a fixed point. This is

perhaps the first surprising fact about the lambda calculus we learn in this course.

Theorem 3.1. In the untyped lambda calculus, every term F has a fixed point.

Proof. Let A = λxy.y(xxy), and define Θ = AA. Now suppose F is any lambda

term, and let N = ΘF . We claim that N is a fixed point of F . This is shown by

the following calculation:

N = ΘF
= AAF
= (λxy.y(xxy))AF
→→β F (AAF)
= F (ΘF)
= FN.

�

17

The term Θ used in the proof is called Turing’s fixed point combinator.

The importance of fixed points lies in the fact that they allow us to solve equations.

After all, finding a fixed point for f is the same thing as solving the equation

x = f(x). This covers equations with an arbitrary right-hand side, whose left-

hand side is x. From the above theorem, we know that we can always solve such

equations in the lambda calculus.

To see how to apply this idea, consider the question from the last section, namely,

how to define the factorial function. The most natural definition of the factorial

function is recursive, and we can write it in the lambda calculus as follows:

fact n = if then else (iszero n)(1)(mult n(fact (pred n)))

Here we have used various abbreviations for lambda terms that were introduced in

the previous section. The evident problem with a recursive definition such as this

one is that the term to be defined, fact , appears both on the left- and the right-hand

side. In other words, to find fact requires solving an equation!

We now apply our newfound knowledge of how to solve fixed point equations in

the lambda calculus. We start by rewriting the problem slightly:

fact = λn. if then else (iszero n)(1)(mult n(fact (pred n)))
fact = (λf.λn. if then else (iszero n)(1)(mult n(f(pred n)))) fact

Let us temporarily write F for the term

λf.λn. if then else (iszero n)(1)(mult n(f(pred n))).

Then the last equation becomes fact = F fact , which is a fixed point equation.

We can solve it up to β-equivalence, by letting

fact = ΘF
= Θ(λf.λn. if then else (iszero n)(1)(mult n(f(pred n))))

Note that fact has disappeared from the right-hand side. The right-hand side is a

closed lambda term that represents the factorial function. (A lambda term is called

closed if it contains no free variables).

To see how this definition works in practice, let us evaluate fact 2. Recall from

18

the proof of Theorem 3.1 that ΘF →→β F (ΘF), therefore fact →→β F fact .

fact 2 →→β F fact 2
→→β if then else (iszero 2)(1)(mult 2(fact (pred 2)))
→→β if then else (F)(1)(mult 2(fact (pred 2)))
→→β mult 2(fact (pred 2))
→→β mult 2(fact 1)
→→β mult 2(F fact 1)
→→β . . .
→→β mult 2(mult 1(fact 0))
→→β mult 2(mult 1(F fact 0))
→→β mult 2(mult 1(if then else (iszero 0)(1)(mult 0(fact (pred 0)))))
→→β mult 2(mult 1(if then else (T)(1)(mult 0(fact (pred 0)))))

→→β mult 2(mult 1 1)
→→β 2

Note that this calculation, while messy, is completely mechanical. You can easily

convince yourself that fact 3 reduces to mult 3(fact 2), and therefore, by the

above calculation, to mult 3 2, and finally to 6. It is now a matter of a simple

induction to prove that fact n →→β n!, for any n.

Exercise 8. Write a lambda term that represents the Fibonacci function, defined

by

f(0) = 1, f(1) = 1, f(n+ 2) = f(n+ 1) + f(n), for n > 2

Exercise 9. Write a lambda term that represents the characteristic function of the

prime numbers, i.e., f(n) = true if n is prime, and false otherwise.

Exercise 10. We have remarked at the beginning of this section that the number-

theoretic function f(x) = x + 1 does not have a fixed point. On the other hand,

the lambda term F = λx. succ x, which represents the same function, does have

a fixed point by Theorem 3.1. How can you reconcile the two statements?

Exercise 11. The first fixed point combinator for the lambda calculus was discov-

ered by Curry. Curry’s fixed point combinator, which is also called the paradoxi-

cal fixed point combinator, is the term Y = λf.(λx.f(xx))(λx.f(xx)).

(a) Prove that this is indeed a fixed point combinator, i.e., that YF is a fixed

point of F , for any term F .

19

(b) Turing’s fixed point combinator not only satisfies ΘF =β F (ΘF), but also

ΘF →→β F (ΘF). We used this fact in evaluating fact 2. Does an analo-

gous property hold for Y? Does this affect the outcome of the evaluation of

fact 2?

(c) Can you find another fixed point combinator, besides Curry’s and Turing’s?

3.4 Other data types: pairs, tuples, lists, trees, etc.

So far, we have discussed lambda terms that represented functions on booleans

and natural numbers. However, it is easily possible to encode more general data

structures in the untyped lambda calculus. Pairs and tuples are of interest to ev-

erybody. The examples of lists and trees are primarily interesting to people with

experience in a list-processing language such as LISP or PROLOG; you can safely

ignore these examples if you want to.

Pairs. If M and N are lambda terms, we define the pair 〈M,N〉 to be the

lambda term λz.zMN . We also define two terms π1 = λp.p(λxy.x) and π2 =
λp.p(λxy.y). We observe the following:

π1〈M,N〉 →→β M
π2〈M,N〉 →→β N

The terms π1 and π2 are called the left and right projections.

Tuples. The encoding of pairs can easily be extended to arbitrary n-tuples. If

M1, . . . ,Mn are terms, we define the n-tuple 〈M1, . . . ,Mn〉 as the lambda term

λz.zM1 . . .Mn, and we define the ith projection πn
i = λp.p(λx1 . . . xn.xi). Then

πn
i 〈M1, . . . ,Mn〉 →→β Mi, for all 1 6 i 6 n.

Lists. A list is different from a tuple, because its length is not necessarily fixed.

A list is either empty (“nil”), or else it consists of a first element (the “head”)

followed by another list (the “tail”). We write nil for the empty list, and H :: T
for the list whose head is H and whose tail is T . So, for instance, the list of the

first three numbers can be written as 1 :: (2 :: (3 :: nil)). We usually omit the

parentheses, where it is understood that “::” associates to the right. Note that every

list ends in nil .

In the lambda calculus, we can define nil = λxy.y and H :: T = λxy.xHT .

Here is a lambda term that adds a list of numbers:

addlist l = l(λh t. add h(addlist t))(0).

20

Of course, this is a recursive definition, and must be translated into an actual

lambda term by the method of Section 3.3. In the definition of addlist , l and t are

lists of numbers, and h is a number. If you are very diligent, you can calculate the

sum of last weekend’s Canadian lottery results by evaluating the term

addlist (4 :: 22 :: 24 :: 32 :: 42 :: 43 :: nil).

Note that lists enable us to give an alternative encoding of the natural numbers: We

can encode a natural number as a list of booleans, which we interpret as the binary

digits 0 and 1. Of course, with this encoding, we would have to carefully redesign

our basic functions, such as successor, addition, and multiplication. However, if

done properly, such an encoding would be a lot more efficient (in terms of number

of β-reductions to be performed) than the encoding by Church numerals.

Trees. A binary tree is a data structure that can be one of two things: either a leaf,

labelled by a natural number, or a node, which has a left and a right subtree. We

write leaf (N) for a leaf labelled N , and node (L,R) for a node with left subtreeL
and right subtree R. We can encode trees as lambda terms, for instance as follows:

leaf (n) = λxy.xn, node (L,R) = λxy.yLR

As an illustration, here is a program (i.e., a lambda term) that adds all the numbers

at the leafs of a given tree.

addtree t = t(λn.n)(λl r. add (addtree l)(addtree r)).

Exercise 12. This is a voluntary programming exercise.

(a) Write a lambda term that calculates the length of a list.

(b) Write a lambda term that calculates the depth (i.e., the nesting level) of a

tree. You may need to define a function max that calculates the maximum

of two numbers.

(c) Write a lambda term that sorts a list of numbers. You may assume given a

term less that compares two numbers.

21

4 The Church-Rosser Theorem

4.1 Extensionality, η-equivalence, and η-reduction

In the untyped lambda calculus, any term can be applied to another term. There-

fore, any term can be regarded as a function. Consider a term M , not containing

the variable x, and consider the term M ′ = λx.Mx. Then for any argument A,

we have MA =β M ′A. So in this sense, M and M ′ define “the same function”.

Should M and M ′ be considered equivalent as terms?

The answer depends on whether we want to accept the principle that “if M andM ′

define the same function, then M and M ′ are equal”. This is called the principle

of extensionality, and we have already encountered it in Section 1.1. Formally, the

extensionality rule is the following:

(ext∀)
∀A.MA = M ′A

M = M ′
.

In the presence of the axioms (ξ), (cong), and (β), it can be easily seen that MA =
M ′A is true for all terms A if and only if Mx = M ′x, where x is a fresh variable.

Therefore, we can replace the extensionality rule by the following equivalent, but

simpler rule:

(ext)
Mx = M ′x, where x 6∈ FV (M,M ′)

M = M ′
.

Note that we can apply the extensionality rule in particular to the case whereM ′ =
λx.Mx, where x is not free in M . As we have remarked above, Mx =β M ′x,

and thus extensionality implies that M = λx.Mx. This last equation is called the

η-law (eta-law):

(η) M = λx.Mx, where x 6∈ FV (M).

In fact, (η) and (ext) are equivalent in the presence of the other axioms of the

lambda calculus. We have already seen that (ext) and (β) imply (η). Conversely,

assume (η), and assume that Mx = M ′x, for some terms M and M ′ not con-

taining x freely. Then by (ξ), we have λx.Mx = λx.M ′x, hence by (η) and

transitivity, M = M ′. Thus (ext) holds.

We note that the η-law does not follow from the axioms and rules of the lambda

calculus that we have considered so far. In particular, the terms x and λy.xy

22

are not β-equivalent, although they are clearly η-equivalent. We will prove that

x 6=β λy.xy in Corollary 4.5 below.

Single-step η-reduction is the smallest relation →η satisfying (cong1), (cong2),

(ξ), and the following axiom (which is the same as the η-law, directed right to

left):

(η) λx.Mx →η M, where x 6∈ FV (M).

Single-step βη-reduction →βη is defined as the union of the single-step β- and

η-reductions, i.e., M →βη M ′ iff M →β M ′ or M →η M ′. Multi-step η-

reduction →→η, multi-step βη-reduction →→βη, as well as η-equivalence =η and

βη-equivalence =βη are defined in the obvious way as we did for β-reduction and

equivalence. We also get the evident notions of η-normal form, βη-normal form,

etc.

4.2 Statement of the Church-Rosser Theorem, and some con-

sequences

Theorem (Church and Rosser, 1936). Let →→ denote either →→β or →→βη. Suppose

M , N , and P are lambda terms such that M →→ N and M →→ P . Then there

exists a lambda term Z such that N →→ Z and P →→ Z .

In pictures, the theorem states that the following diagram can always be com-

pleted:

M

PN

Z

This property is called the Church-Rosser property, or confluence. Before we

prove the Church-Rosser Theorem, let us highlight some of its consequences.

Corollary 4.1. If M =β N then there exists some Z with M,N →→β Z . Similarly

for βη.

Proof. Please refer to Figure 1 for an illustration of this proof. Recall that =β is

the reflexive symmetric transitive closure of →β . Suppose that M =β N . Then

there exist n > 0 and terms M0, . . . ,Mn such that M = M0, N = Mn, and

23

M5

M6

M7

M3

M4M2M0

M1

Z ′′

Z ′

Z

Figure 1: The proof of Corollary 4.1

for all i = 1 . . . n, either Mi−1 →β Mi or Mi →β Mi−1. We prove the claim

by induction on n. For n = 0, we have M = N and there is nothing to show.

Suppose the claim has been proven for n−1. Then by induction hypothesis, there

exists a term Z ′ such that M →→β Z ′ and Mn−1 →→β Z ′. Further, we know that

either N →β Mn−1 or Mn−1 →β N . In case N →β Mn−1, then N →→β Z ′,

and we are done. In case Mn−1 →β N , we apply the Church-Rosser Theorem

to Mn−1, Z ′, and N to obtain a term Z such that Z ′ →→β Z and N →→β Z .

Since M →→β Z ′ →→β Z , we are done. The proof in the case of βη-reduction is

identical. �

Corollary 4.2. If N is a β-normal form and N =β M , then M →→β N , and

similarly for βη.

Proof. By Corollary 4.1, there exists some Z with M,N →→β Z . But N is a

normal form, thus N =α Z . �

Corollary 4.3. If M and N are β-normal forms such that M =β N , then M =α

N , and similarly for βη.

Proof. By Corollary 4.2, we have M →→β N , but since M is a normal form, we

have M =α N . �

24

Corollary 4.4. If M =β N , then neither or both have a β-normal form. Similarly

for βη.

Proof. Suppose that M =β N , and that one of them has a β-normal form. Say,

for instance, that M has a normal form Z . Then N =β Z , hence N →→β Z by

Corollary 4.2. �

Corollary 4.5. The terms x and λy.xy are not β-equivalent. In particular, the

η-rule does not follow from the β-rule.

Proof. The terms x and λy.xy are both β-normal forms, and they are not α-

equivalent. It follows by Corollary 4.3 that x 6=β λy.xy. �

4.3 Preliminary remarks on the proof of the Church-Rosser

Theorem

Consider any binary relation → on a set, and let →→ be its reflexive transitive

closure. Consider the following three properties of such relations:

(a) M

PN

Z

(b) M

PN

Z

(c) M

PN

Z

Each of these properties states that for all M,N,P , if the solid arrows exist, then

there exists Z such that the dotted arrows exist. The only difference between (a),

(b), and (c) is the difference between where → and →→ are used.

Property (a) is the Church-Rosser property. Property (c) is called the diamond

property (because the diagram is shaped like a diamond).

A naive attempt to prove the Church-Rosser Theorem might proceed as follows:

First, prove that the relation →β satisfies property (b) (this is relatively easy to

prove); then use an inductive argument to conclude that it also satisfies property

(a).

Unfortunately, this does not work: the reason is that in general, property (b) does

not imply property (a)! An example of a relation that satisfies property (b) but not

25

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

...
...

...

Figure 2: An example of a relation that satisfies property (b), but not property (a)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3: Proof that property (c) implies property (a)

26

property (a) is shown in Figure 2. In other words, a proof of property (b) is not

sufficient in order to prove property (a).

On the other hand, property (c), the diamond property, does imply property (a).

This is very easy to prove by induction, and the proof is illustrated in Figure 3. But

unfortunately, β-reduction does not satisfy property (c), so again we are stuck.

To summarize, we are faced with the following dilemma:

• β-reduction satisfies property (b), but property (b) does not imply property

(a).

• Property (c) implies property (a), but β-reduction does not satisfy property

(c).

On the other hand, it seems hopeless to prove property (a) directly. In the next

section, we will solve this dilemma by defining yet another reduction relation ⊲,

with the following properties:

• ⊲ satisfies property (c), and

• the transitive closure of ⊲ is the same as that of →β (or →βη).

4.4 Proof of the Church-Rosser Theorem

In this section, we will prove the Church-Rosser Theorem for βη-reduction. The

proof for β-reduction (without η) is very similar, and in fact slightly simpler, so

we omit it here. The proof presented here is due to Tait and Martin-Löf. We begin

by defining a new relation M ⊲ M ′ on terms, called parallel one-step reduction.

We define ⊲ to be the smallest relation satisfying

(1)
x ⊲ x

(2)
P ⊲ P ′ N ⊲ N ′

PN ⊲ P ′N ′

(3)
N ⊲ N ′

λx.N ⊲ λx.N ′

(4)
Q ⊲ Q′ N ⊲ N ′

(λx.Q)N ⊲ Q′[N ′/x]

(5)
P ⊲ P ′, where x 6∈ FV (P)

λx.Px ⊲ P ′
.

27

Lemma 4.6. (a) For all M,M ′, if M →βη M ′ then M ⊲ M ′.

(b) For all M,M ′, if M ⊲ M ′ then M →→βη M ′.

(c) →→βη is the reflexive, transitive closure of ⊲.

Proof. (a) First note that we have P ⊲ P , for any term P . This is easily shown by

induction on P . We now prove the claim by induction on a derivation of M →βη

M ′. Please refer to pages 13 and 23 for the rules that define →βη. We make a

case distinction based on the last rule used in the derivation of M →βη M ′.

• If the last rule was (β), then M = (λx.Q)N and M ′ = Q[N/x], for some

Q and N . But then M ⊲ M ′ by (4), using the facts Q ⊲ Q and N ⊲ N .

• If the last rule was (η), then M = λx.Px and M ′ = P , for some P such

that x 6∈ FV (P). Then M ⊲ M ′ follows from (5), using P ⊲ P .

• If the last rule was (cong1), then M = PN and M ′ = P ′N , for some P ,

P ′, and N where P →βη P ′. By induction hypothesis, P ⊲ P ′. From this

and N ⊲ N , it follows immediately that M ⊲ M ′ by (2).

• If the last rule was (cong2), we proceed similarly to the last case.

• If the last rule was (ξ), then M = λx.N and M ′ = λx.N ′ for some N and

N ′ such that N →βη N ′. By induction hypothesis, N ⊲ N ′, which implies

M ⊲ M ′ by (3).

(b) We prove this by induction on a derivation of M ⊲ M ′. We distinguish several

cases, depending on the last rule used in the derivation.

• If the last rule was (1), then M = M ′ = x, and we are done because

x →→βη x.

• If the last rule was (2), then M = PN and M ′ = P ′N ′, for some P , P ′,

N , N ′ with P ⊲ P ′ and N ⊲ N ′. By induction hypothesis, P →→βη P ′ and

N →→βη N ′. Since →→βη satisfies (cong), it follows that PN →→βη P ′N ′,

hence M →→βη M ′ as desired.

• If the last rule was (3), then M = λx.N and M ′ = λx.N ′, for some

N,N ′ with N ⊲ N ′. By induction hypothesis, N →→βη N ′, hence M =
λx.N →→βη λx.N ′ = M ′ by (ξ).

28

• If the last rule was (4), then M = (λx.Q)N and M ′ = Q′[N ′/x], for some

Q,Q′, N,N ′ with Q ⊲ Q′ and N ⊲ N ′. By induction hypothesis, Q →→βη

Q′ and N →→βη N ′. Therefore M = (λx.Q)N →→βη (λx.Q′)N ′ →βη

Q′[N ′/x] = M ′, as desired.

• If the last rule was (5), then M = λx.Px and M ′ = P ′, for some P, P ′

with P ⊲ P ′, and x 6∈ FV (P). By induction hypothesis, P →→βη P ′, hence

M = λx.Px →βη P →→βη P ′ = M ′, as desired.

(c) This follows directly from (a) and (b). Let us write R∗ for the reflexive transi-

tive closure of a relation R. By (a), we have →βη ⊆ ⊲, hence →→βη = →βη
∗ ⊆

⊲∗. By (b), we have ⊲ ⊆ →→βη, hence ⊲∗ ⊆ →→βη
∗ = →→βη. It follows that

⊲∗ = →→βη. �

We will soon prove that ⊲ satisfies the diamond property. Note that together with

Lemma 4.6(c), this will immediately imply that →→βη satisfies the Church-Rosser

property.

Lemma 4.7 (Substitution). If M ⊲ M ′ and U ⊲ U ′, then M [U/y] ⊲ M ′[U ′/y].

Proof. We assume without loss of generality that any bound variables of M are

different from y and from the free variables of U . The claim is now proved by

induction on derivations of M ⊲ M ′. We distinguish several cases, depending on

the last rule used in the derivation:

• If the last rule was (1), then M = M ′ = x, for some variable x. If x = y,

then M [U/y] = U ⊲ U ′ = M ′[U ′/y]. If x 6= y, then by (1), M [U/y] =
x ⊲ x = M ′[U ′/y].

• If the last rule was (2), then M = PN and M ′ = P ′N ′, for some P , P ′, N ,

N ′ with P ⊲ P ′ and N ⊲ N ′. By induction hypothesis, P [U/y] ⊲ P ′[U ′/y]
and N [U/y] ⊲ N ′[U ′/y], hence by (2), M [U/y] = P [U/y]N [U/y] ⊲
P ′[U ′/y]N ′[U ′/y] = M ′[U ′/y].

• If the last rule was (3), then M = λx.N and M ′ = λx.N ′, for some N,N ′

with N ⊲ N ′. By induction hypothesis, N [U/y] ⊲ N ′[U ′/y], hence by (3)

M [U/y] = λx.N [U/y] ⊲ λx.N ′[U ′/y] = M ′[U ′/y].

• If the last rule was (4), then M = (λx.Q)N and M ′ = Q′[N ′/x], for some

Q,Q′, N,N ′ with Q ⊲ Q′ and N ⊲ N ′. By induction hypothesis, Q[U/y] ⊲
Q′[U ′/y] and N [U/y] ⊲ N ′[U ′/y], hence by (4), (λx.Q[U/y])N [U/y] ⊲
Q′[U ′/y][N ′[U ′/y]/x] = Q′[N ′/x][U ′/y]. Thus M [U/y] ⊲ M ′[U ′/y].

29

• If the last rule was (5), then M = λx.Px and M ′ = P ′, for some P, P ′ with

P ⊲ P ′, and x 6∈ FV (P). By induction hypothesis, P [U/y] ⊲ P ′[U ′/y],
hence by (5), M [U/y] = λx.P [U/y]x ⊲ P ′[U ′/y] = M ′[U ′/y]. �

A more conceptual way of looking at this proof is the following: consider any

derivation of M ⊲ M ′ from axioms (1)–(5). In this derivation, replace any axiom

y ⊲ y by U ⊲ U ′, and propagate the changes (i.e., replace y by U on the left-

hand-side, and by U ′ on the right-hand-side of any ⊲). The result is a derivation

of M [U/y] ⊲ M ′[U ′/y]. (The formal proof that the result of this replacement

is indeed a valid derivation requires an induction, and this is the reason why the

proof of the substitution lemma is so long).

Our next goal is to prove that ⊲ satisfies the diamond property. Before proving this,

we first define the maximal parallel one-step reduct M∗ of a term M as follows:

1. x∗ = x, for a variable.

2. (PN)∗ = P ∗N∗, if PN is not a β-redex.

3. ((λx.Q)N)∗ = Q∗[N∗/x].

4. (λx.N)∗ = λx.N∗, if λx.N is not an η-redex.

5. (λx.Px)∗ = P ∗, if x 6∈ FV (P).

Note that M∗ depends only on M . The following lemma implies the diamond

property for ⊲.

Lemma 4.8 (Maximal parallel one-step reductions). Whenever M ⊲ M ′, then

M ′ ⊲ M∗.

Proof. By induction on the size of M . We distinguish five cases, depending on

the last rule used in the derivation of M ⊲ M ′. As usual, we assume that all bound

variables have been renamed to avoid clashes.

• If the last rule was (1), then M = M ′ = x, also M∗ = x, and we are done.

• If the last rule was (2), then M = PN and M ′ = P ′N ′, where P ⊲ P ′ and

N ⊲ N ′. By induction hypothesis P ′ ⊲ P ∗ and N ′ ⊲ N∗. Two cases:

– If PN is not a β-redex, then M∗ = P ∗N∗. Thus M ′ = P ′N ′ ⊲
P ∗N∗ = M∗ by (2), and we are done.

30

– If PN is a β-redex, say P = λx.Q, then M∗ = Q∗[N∗/x]. We dis-

tinguish two subcases, depending on the last rule used in the derivation

of P ⊲ P ′:

* If the last rule was (3), then P ′ = λx.Q′, where Q ⊲ Q′. By

induction hypothesis Q′ ⊲ Q∗, and with N ′ ⊲ N∗, it follows that

M ′ = (λx.Q′)N ′ ⊲ Q∗[N∗/x] = M∗ by (4).

* If the last rule was (5), then P = λx.Rx and P ′ = R′, where

x 6∈ FV (R) and R ⊲ R′. Consider the term Q = Rx. Since

Rx ⊲ R′x, and Rx is a subterm of M , by induction hypothe-

sis R′x ⊲ (Rx)∗. By the substitution lemma, M ′ = R′N ′ =
(R′x)[N ′/x] ⊲ (Rx)∗[N∗/x] = M∗.

• If the last rule was (3), then M = λx.N and M ′ = λx.N ′, where N ⊲ N ′.

Two cases:

– If M is not an η-redex, then M∗ = λx.N∗. By induction hypothesis,

N ′ ⊲ N∗, hence M ′ ⊲ M∗ by (3).

– If M is an η-redex, then N = Px, where x 6∈ FV (P). In this case,

M∗ = P ∗. We distinguish two subcases, depending on the last rule

used in the derivation of N ⊲ N ′:

* If the last rule was (2), then N ′ = P ′x, where P ⊲ P ′. By

induction hypothesis P ′ ⊲ P ∗. Hence M ′ = λx.P ′x ⊲ P ∗ =
M∗ by (5).

* If the last rule was (4), then P = λy.Q and N ′ = Q′[x/y], where

Q ⊲ Q′. Then M ′ = λx.Q′[x/y] = λy.Q′ (note x 6∈ FV (Q′)).
But P ⊲ λy.Q′, hence by induction hypothesis, λy.Q′ ⊲ P ∗ =
M∗.

• If the last rule was (4), then M = (λx.Q)N and M ′ = Q′[N ′/x], where

Q ⊲ Q′ and N ⊲ N ′. Then M∗ = Q∗[N∗/x], and M ′ ⊲ M∗ by the

substitution lemma.

• If the last rule was (5), then M = λx.Px and M ′ = P ′, where P ⊲ P ′ and

x 6∈ FV (P). Then M∗ = P ∗. By induction hypothesis, P ′ ⊲ P ∗, hence

M ′ ⊲ M∗. �

The previous lemma immediately implies the diamond property for ⊲:

Lemma 4.9 (Diamond property for ⊲). If M ⊲ N and M ⊲ P , then there exists Z
such that N ⊲ Z and P ⊲ Z .

31

Proof. Take Z = M∗. �

Finally, we have a proof of the Church-Rosser Theorem:

Proof of Theorem 4.2: Since ⊲ satisfies the diamond property, it follows that

its reflexive transitive closure ⊲∗ also satisfies the diamond property, as shown in

Figure 3. But ⊲∗ is the same as →→βη by Lemma 4.6(c), and the diamond property

for →→βη is just the Church-Rosser property for →βη. �

4.5 Exercises

Exercise 13. Give a detailed proof that property (c) from Section 4.3 implies

property (a).

Exercise 14. Prove that M ⊲ M , for all terms M .

Exercise 15. Without using Lemma 4.8, prove that M ⊲ M∗ for all terms M .

Exercise 16. Let Ω = (λx.xx)(λx.xx). Prove that Ω 6=βη ΩΩ.

Exercise 17. What changes have to be made to Section 4.4 to get a proof of the

Church-Rosser Theorem for →β , instead of →βη?

Exercise 18. Recall the properties (a)–(c) of binary relations → that were dis-

cussed in Section 4.3. Consider the following similar property, which is some-

times called the “strip property”:

(d) M

PN

Z.

Does (d) imply (a)? Does (b) imply (d)? In each case, give either a proof or a

counterexample.

Exercise 19. To every lambda term M , we may associate a directed graph (with

possibly multiple edges and loops) G(M) as follows: (i) the vertices are terms

N such that M →→β N , i.e., all the terms that M can β-reduce to; (ii) the edges

are given by a single-step β-reduction. Note that the same term may have two (or

32

more) reductions coming from different redexes; each such reduction is a separate

edge. For example, let I = λx.x. Let M = I(Ix). Then

G(M) = I(Ix) Ix x .

Note that there are two separate edges from I(Ix) to Ix. We also sometimes

write bullets instead of terms, to get • • • . As another example, let

Ω = (λx.xx)(λx.xx). Then

G(Ω) = • .

(a) Let M = (λx.I(xx))(λx.xx). Find G(M).

(b) For each of the following graphs, find a term M such that G(M) is the given

graph, or explain why no such term exists. (Note: the “starting” vertex need

not always be the leftmost vertex in the picture). Warning: some of these

terms are tricky to find!

(i)

• •

(ii)

• •

(iii)

• • •

(iv)

• • •

(v)

• • • •

(vi)

• •

•

(vii)

• •

•

33

5 Combinatory algebras

To give a model of the lambda calculus means to provide a mathematical space

in which the axioms of lambda calculus are satisfied. This usually means that the

elements of the space can be understood as functions, and that certain functions

can be understood as elements.

Naı̈vely, one might try to construct a model of lambda calculus by finding a set

X such that X is in bijective correspondence with the set XX of all functions

from X to X . This, however, is impossible: for cardinality reasons, the equation

X ∼= XX has no solutions except for a one-element set X = 1. To see this, first

note that the empty set ∅ is not a solution. Also, suppose X is a solution with

|X | > 2. Then |XX | > |2X |, but by Cantor’s argument, |2X | > |X |, hence XX

is of greater cardinality than X , contradicting X ∼= XX .

There are two main strategies for constructing models of the lambda calculus, and

both involve a restriction on the class of functions to make it smaller. The first

approach, which will be discussed in this section, uses algebra, and the essential

idea is to replace the set XX of all function by a smaller, and suitably defined

set of polynomials. The second approach is to equip the set X with additional

structure (such as topology, ordered structure, etc), and to replace XX by a set

of structure-preserving functions (for example, continuous functions, monotone

functions, etc).

5.1 Applicative structures

Definition. An applicative structure (A, ·) is a set A together with a binary op-

eration “·”.

Note that there are no further assumptions; in particular, we do not assume that

application is an associative operation. We write ab for a · b, and as in the lambda

calculus, we follow the convention of left associativity, i.e., we write abc for (ab)c.

Definition. Let (A, ·) be an applicative structure. A polynomial in a set of vari-

ables x1, . . . , xn and with coefficients in A is a formal expression built from vari-

ables and elements of A by means of the application operation. In other words,

the set of polynomials is given by the following grammar:

t, s ::= x a ts,

34

where x ranges over variables and a ranges over the elements of A. We write

A{x1, . . . , xn} for the set of polynomials in variables x1, . . . , xn with coefficients

in A.

Here are some examples of polynomials in the variables x, y, z, where a, b ∈ A:

x, xy, axx, (x(y(zb)))(ax).

If t(x1, . . . , xn) is a polynomial in the indicated variables, and b1, . . . , bn are el-

ements of A, then we can evaluate the polynomial at the given elements: the

evaluation t(b1, . . . , bn) is the element of A obtained by “plugging” xi = bi into

the polynomial, for i = 1, . . . , n, and evaluating the resulting expression in A.

Note that in this way, every polynomial t in n variables can be understood as a

function from A
n → A. This is very similar to the usual polynomials in algebra,

which can also either be understood as formal expressions or as functions.

If t(x1, . . . , xn) and s(x1, . . . , xn) are two polynomials with coefficients in A,

we say that the equation t(x1, . . . , xn) = s(x1, . . . , xn) holds in A if for all

b1, . . . , bn ∈ A, t(b1, . . . , bn) = s(b1, . . . , bn).

5.2 Combinatory completeness

Definition (Combinatory completeness). An applicative structure (A, ·) is com-

binatorially complete if for every polynomial t(x1, . . . , xn) of n > 0 variables,

there exists some element a ∈ A such that

ax1 . . . xn = t(x1, . . . , xn)

holds in A.

In other words, combinatory completeness means that every polynomial function

t(x1, . . . , xn) can be represented (in curried form) by some element of A. We

are therefore setting up a correspondence between functions and elements as dis-

cussed in the introduction of this section.

Note that we do not require the element a to be unique in the definition of combi-

natory completeness. This means that we are dealing with an intensional view of

functions, where a given function might in general have several different names

(but see the discussion of extensionality in Section 5.6).

The following theorem characterizes combinatory completeness in terms of a

much simpler algebraic condition.

35

Theorem 5.1. An applicative structure (A, ·) is combinatorially complete if and

only if there exist two elements s, k ∈ A, such that the following equations are

satisfied for all x, y, z ∈ A:

(1) sxyz = (xz)(yz)
(2) kxy = x

Example 5.2. Before we prove this theorem, let us look at a few examples.

(a) The identity function. Can we find an element i ∈ A such that ix = x for

all x? Yes, indeed, we can let i = skk. We check that for all x, skkx =
(kx)(kx) = x.

(b) The boolean “true”. Can we find an element T such that for all x, y, Txy =
x? Yes, this is easy: T = k.

(c) The boolean “false”. Can we find F such that Fxy = y? Yes, what we need

is Fx = i. Therefore a solution is F = ki. And indeed, for all y, we have

kixy = iy = y.

(d) Find a function f such that fx = xx for all x. Solution: let f = sii. Then

siix = (ix)(ix) = xx.

Proof of Theorem 5.1: The “only if” direction is trivial. If A is combinatorially

complete, then consider the polynomial t(x, y, z) = (xz)(yz). By combinatory

completeness, there exists some s ∈ A with sxyz = t(x, y, z), and similarly for

k.

We therefore have to prove the “if” direction. Recall that A{x1, . . . , xn} is the

set of polynomials with variables x1, . . . , xn. Now for each polynomial t ∈
A{x, y1, . . . , yn} in n + 1 variables, we will define a new polynomial λ∗x.t ∈
A{y1, . . . , yn} in n variables, as follows by recursion on t:

λ∗x.x := i,
λ∗x.yi := kyi where yi 6= x is a variable,

λ∗x.a := ka where a ∈ A,

λ∗x.pq := s(λ∗x.p)(λ∗x.q).

We claim that for all t, the equation (λ∗x.t)x = t holds in A. Indeed, this is easily

proved by induction on t, using the definition of λ∗:

(λ∗x.x)x = ix = x,
(λ∗x.yi)x = kyix = yi,
(λ∗x.a)x = kax = a,
(λ∗x.pq)x = s(λ∗x.p)(λ∗x.q)x = ((λ∗x.p)x)((λ∗x.q)x) = pq.

36

Note that the last case uses the induction hypothesis for p and q.

Finally, to prove the theorem, assume thatA has elements s, k satisfying equations

(1) and (2), and consider a polynomial t ∈ A{x1, . . . , xn}. We must show that

there exists a ∈ A such that ax1 . . . xn = t holds in A. We let

a = λ∗x1.λ
∗xn.t.

Note that a is a polynomial in 0 variables, which we may consider as an element

of A. Then from the previous claim, it follows that

ax1 . . . xn = (λ∗x1.λ
∗x2.λ

∗xn.t)x1x2 . . . xn

= (λ∗x2.λ
∗xn.t)x2 . . . xn

= . . .
= (λ∗xn.t)xn

= t

holds in A. �

5.3 Combinatory algebras

By Theorem 5.1, combinatory completeness is equivalent to the existence of the s
and k operators. We enshrine this in the following definition:

Definition (Combinatory algebra). A combinatory algebra (A, ·, s, k) is an ap-

plicative structure (A, ·) together with elements s, k ∈ A, satisfying the following

two axioms:
(1) sxyz = (xz)(yz)
(2) kxy = x

Remark 5.3. The operation λ∗, defined in the proof of Theorem 5.1, is defined

on the polynomials of any combinatory algebra. It is called the derived lambda

abstractor, and it satisfies the law of β-equivalence, i.e., (λ∗x.t)b = t[b/x], for

all b ∈ A.

Finding actual examples of combinatory algebras is not so easy. Here are some

examples:

Example 5.4. The one-element set A = {∗}, with ∗ · ∗ = ∗, s = ∗, and k = ∗, is

a combinatory algebra. It is called the trivial combinatory algebra.

Example 5.5. Recall that Λ is the set of lambda terms. Let A = Λ/=β, the set of

lambda terms modulo β-equivalence. Define M ·N = MN , S = λxyz.(xz)(yz),

37

and K = λxy.x. Then (Λ, ·, S,K) is a combinatory algebra. Also note that, by

Corollary 4.5, this algebra is non-trivial, i.e., it has more than one element.

Similar examples are obtained by replacing =β by =βη, and/or replacing Λ by the

set Λ0 of closed terms.

Example 5.6. We construct a combinatory algebra of SK-terms as follows. Let

V be a given set of variables. The set C of terms of combinatory logic is given by

the grammar:

A,B ::= x S K AB,

where x ranges over the elements of V .

On C, we define combinatory equivalence =c as the smallest equivalence rela-

tion satisfying SABC =c (AC)(BC), KAB =c A, and the rules (cong1) and

(cong2) (see page 13). Then the set C/=c is a combinatory algebra (called the

free combinatory algebra generated by V , or the term algebra). You will prove in

Exercise 20 that it is non-trivial.

Exercise 20. On the set C of combinatory terms, define a notion of single-step

reduction by the following laws:

SABC →c (AC)(BC),
KAB →c A,

together with the usual rules (cong1) and (cong2) (see page 13). As in lambda

calculus, we call a term a normal form if it cannot be reduced. Prove that the

reduction →c satisfies the Church-Rosser property. (Hint: similarly to the lambda

calculus, first define a suitable parallel one-step reduction ⊲ whose reflexive tran-

sitive closure is that of →c . Then show that it satisfies the diamond property.)

Corollary 5.7. It immediately follows from the Church-Rosser Theorem for com-

binatory logic (Exercise 20) that two normal forms are =c-equivalent if and only

if they are equal.

5.4 The failure of soundness for combinatory algebras

A combinatory algebra is almost a model of the lambda calculus. Indeed, given

a combinatory algebra A, we can interpret any lambda term as follows. To each

term M with free variables among x1, . . . , xn, we recursively associate a polyno-

38

mial [[M]] ∈ A{x1, . . . , xn}:

[[x]] := x,
[[NP]] := [[N]][[P]],
[[λx.M]] := λ∗x.[[M]].

Notice that this definition is almost the identity function, except that we have

replaced the ordinary lambda abstractor of lambda calculus by the derived lambda

abstractor of combinatory logic. The result is a polynomial in A{x1, . . . , xn}. In

the particular case where M is a closed term, we can regard [[M]] as an element of

A.

To be able to say that A is a “model” of the lambda calculus, we would like the

following property to be true:

M =β N ⇒ [[M]] = [[N]] holds in A.

This property is called soundness of the interpretation. Unfortunately, it is in

general false for combinatory algebras, as the following example shows.

Example 5.8. Let M = λx.x and N = λx.(λy.y)x. Then clearly M =β N . On

the other hand,

[[M]] = λ∗x.x = i,
[[N]] = λ∗x.(λ∗y.y)x = λ∗x.ix = s(ki)i.

It follows from Exercise 20 and Corollary 5.7 that the equation i = s(ki)i does

not hold in the combinatory algebra C/=c. In other words, the interpretation is

not sound.

Let us analyze the failure of the soundness property further. Recall that β-equiva-

lence is the smallest equivalence relation on lambda terms satisfying the six rules

in Table 2.

If we define a relation ∼ on lambda terms by

M ∼ N ⇐⇒ [[M]] = [[N]] holds in A,

then we may ask which of the six rules of Table 2 the relation ∼ satisfies. Clearly,

not all six rules can be satisfied, or else we would have M =β N ⇒ M ∼ N ⇒
[[M]] = [[N]], i.e., the model would be sound.

Clearly, ∼ is an equivalence relation, and therefore satisfies (refl), (symm), and

(trans). Also, (cong) is satisfied, because whenever p, q, p′, q′ are polynomials

39

(refl)
M = M

(symm)
M = N

N = M

(trans)
M = N N = P

M = P

(cong)
M = M ′ N = N ′

MN = M ′N ′

(ξ)
M = M ′

λx.M = λx.M ′

(β)
(λx.M)N = M [N/x]

Table 2: The rules for β-equivalence

such that p = p′ and q = q′ holds in A, then clearly pq = p′q′ holds in A as well.

Finally, we know from Remark 5.3 that the rule (β) is satisfied.

So the rule that fails is the (ξ) rule. Indeed, Example 5.8 illustrates this. Note

that x ∼ (λy.y)x (from the proof of Theorem 5.1), but λx.x 6∼ λx.(λy.y)x, and

therefore the (ξ) rule is violated.

5.5 Lambda algebras

A lambda algebra is, by definition, a combinatory algebra that is a sound model

of lambda calculus, and in which s and k have their expected meanings.

Definition (Lambda algebra). A lambda algebra is a combinatory algebra A sat-

isfying the following properties:

(∀M,N ∈ Λ) M =β N ⇒ [[M]] = [[N]] (soundness),
s = λ∗x.λ∗y.λ∗z.(xz)(yz) (s-derived),
k = λ∗x.λ∗y.x (k-derived).

The purpose of the remainder of this section is to give an axiomatic description of

lambda algebras.

Lemma 5.9. Recall that Λ0 is the set of closed lambda terms, i.e., lambda terms

without free variables. Soundness is equivalent to the following:

(∀M,N ∈ Λ0) M =β N ⇒ [[M]] = [[N]] (closed soundness)

Proof. Clearly soundness implies closed soundness. For the converse, assume

closed soundness and let M,N ∈ Λ with M =β N . Let FV (M) ∪ FV (N) =

40

{x1, . . . , xn}. Then

M =β N
⇒ λx1 . . . xn.M =β λx1 . . . xn.N by (ξ)

⇒ [[λx1 . . . xn.M]] = [[λx1 . . . xn.N]] by closed soundness

⇒ λ∗x1 . . . xn.[[M]] = λ∗x1 . . . xn.[[N]] by def. of [[−]]
⇒ (λ∗x1 . . . xn.[[M]])x1 . . . xn

= (λ∗x1 . . . xn.[[N]])x1 . . . xn

⇒ [[M]] = [[N]] by proof of Thm 5.1

This proves soundness. �

Definition (Translations between combinatory logic and lambda calculus). Let

A ∈ C be a combinatory term (see Example 5.6). We define its translation to

lambda calculus in the obvious way: the translation Aλ is given recursively by:

Sλ = λxyz.(xz)(yz),
Kλ = λxy.x,
xλ = x,
(AB)λ = AλBλ.

Conversely, given a lambda term M ∈ Λ, we recursively define its translation Mc

to combinatory logic like this:

xc = x,
(MN)c = McNc,
(λx.M)c = λ∗x.(Mc).

Lemma 5.10. For all lambda terms M , (Mc)λ =β M .

Lemma 5.11. Let A be a combinatory algebra satisfying k = λ∗x.λ∗y.x and

s = λ∗x.λ∗y.λ∗z.(xz)(yz). Then for all combinatory terms A, (Aλ)c = A holds

in A.

Exercise 21. Prove Lemmas 5.10 and 5.11.

Let C0 be the set of closed combinatory terms. The following is our first useful

characterization of lambda calculus.

Lemma 5.12. Let A be a combinatory algebra. Then A is a lambda algebra if

and only if it satisfies the following property:

(∀A,B ∈ C0) Aλ =β Bλ ⇒ A = B holds in A. (alt-soundness)

41

Proof. First, assume that A satisfies (alt-soundness). To prove closed soundness,

let M,N be closed lambda terms with M =β N . Then (Mc)λ =β M =β N =β

(Nc)λ, hence by (alt-soundness), Mc = Nc holds in A. But this is the definition

of [[M]] = [[N]].

To prove (k-derived), note that

Kλ = (λx.λy.x) by definition of (−)λ
=β ((λx.λy.x)c)λ by Lemma 5.10

= (λ∗x.λ∗y.x)λ by definition of (−)c.

Hence, by (alt-soundness), it follows that K = (λ∗x.λ∗y.x) holds in A. Similarly

for (s-derived).

Conversely, assume that A is a lambda algebra. Let A,B ∈ C0 and assume

Aλ =β Bλ. By soundness, [[Aλ]] = [[Bλ]]. By definition of the interpretation,

(Aλ)c = (Bλ)c holds in A. But by (s-derived), (k-derived), and Lemma 5.11,

A = (Aλ)c = (Bλ)c = B holds in A, proving (alt-soundness). �

Definition (Homomorphism). Let (A, ·A, sA, kA), (B, ·B, sB, kB) be combina-

tory algebras. A homomorphism of combinatory algebras is a function ϕ : A →
B such that ϕ(sA) = sB, ϕ(kA) = kB, and for all a, b ∈ A, ϕ(a ·A b) =
ϕ(a) ·B ϕ(b).

Any given homomorphism ϕ : A → B can be extended to polynomials in the

obvious way: we define ϕ̂ : A{x1, . . . , xn} → B{x1, . . . , xn} by

ϕ̂(a) = ϕ(a) for a ∈ A,

ϕ̂(x) = x if x ∈ {x1, . . . , xn},

ϕ̂(pq) = ϕ̂(p)ϕ̂(q).

Example 5.13. If ϕ(a) = a′ and ϕ(b) = b′, then ϕ̂((ax)(by)) = (a′x)(b′y).

The following is the main technical concept needed in the characterization of

lambda algebras. We say that an equation holds absolutely if it holds in A and in

any homomorphic image of A. If an equation holds only in the previous sense,

then we sometimes say it holds locally.

Definition (Absolute equation). Let p, q ∈ A{x1, . . . , xn} be two polynomials

with coefficients in A. We say that the equation p = q holds absolutely in A if for

all combinatory algebras B and all homomorphisms ϕ : A → B, ϕ̂(p) = ϕ̂(q)
holds in B. If an equation holds absolutely, we write p =abs q.

42

(a) 1k =abs k,
(b) 1s =abs s,
(c) 1(kx) =abs kx,
(d) 1(sx) =abs sx,
(e) 1(sxy) =abs sxy,
(f) s(s(kk)x)y =abs 1x,
(g) s(s(s(ks)x)y)z =abs s(sxz)(syz),
(h) k(xy) =abs s(kx)(ky),
(i) s(kx)i =abs 1x.

Table 3: An axiomatization of lambda algebras. Here 1 = s(ki).

We can now state the main theorem characterizing lambda algebras. Let 1 =
s(ki).

Theorem 5.14. Let A be a combinatory algebra. Then the following are equiva-

lent:

1. A is a lambda algebra,

2. A satisfies (alt-soundness),

3. for all A,B ∈ C such that Aλ =β Bλ, the equationA = B holds absolutely

in A,

4. A absolutely satisfies the nine axioms in Table 3,

5. A satisfies (s-derived) and (k-derived), and for all p, q ∈ A{y1, . . . , yn}, if

px =abs qx then 1p =abs 1q,

6. A satisfies (s-derived) and (k-derived), and for all p, q ∈ A{x, y1, . . . , yn},

if p =abs q then λ∗x.p =abs λ
∗y.q.

The proof proceeds via 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6 ⇒ 1.

We have already proven 1 ⇒ 2 in Lemma 5.12.

To prove 2 ⇒ 3, let FV (A) ∪ FV (B) ⊆ {x1, . . . , xn}, and assume Aλ =β

Bλ. Then λx1 . . . xn.(Aλ) =β λx1 . . . xn.(Bλ), hence (λ∗x1 . . . xn.A)λ =β

(λ∗x1 . . . xn.B)λ (why?). Since the latter terms are closed, it follows by the rule

(alt-soundness) that λ∗x1 . . . xn.A = λ∗x1 . . . xn.B holds in A. Since closed

equations are preserved by homomorphisms, the latter also holds in B for any

43

homomorphism ϕ : A → B. Finally, this implies that A = B holds for any such

B, proving that A = B holds absolutely in A.

Exercise 22. Prove the implication 3 ⇒ 4.

The implication 4 ⇒ 5 is the most difficult part of the theorem. We first dispense

with the easier part:

Exercise 23. Prove that the axioms from Table 3 imply (s-derived) and (k-derived).

The last part of 4 ⇒ 5 needs the following lemma:

Lemma 5.15. Suppose A satisfies the nine axioms from Table 3. Define a struc-

ture (B, •, S,K) by:

B = {a ∈ A | a = 1a},
a • b = sab,
S = ks,
K = kk.

Then B is a well-defined combinatory algebra. Moreover, the function ϕ : A →
B defined by ϕ(a) = ka defines a homomorphism.

Exercise 24. Prove Lemma 5.15.

To prove the implication 4 ⇒ 5, assume ax = bx holds absolutely in A. Then

ϕ̂(ax) = ϕ̂(bx) holds in B by definition of “absolute”. But ϕ̂(ax) = (ϕa)x =
s(ka)x and ϕ̂(bx) = (ϕb)x = s(kb)x. Therefore s(ka)x = s(kb)x holds in A.

We plug in x = i to get s(ka)i = s(kb)i. By axiom (i), 1a = 1b.

To prove 5 ⇒ 6, assume p =abs q. Then (λ∗x.p)x =abs p =abs q =abs (λ
∗x.q)x

by the proof of Theorem 5.1. Then by 5., (λ∗x.p) =abs (λ
∗x.q).

Finally, to prove 6 ⇒ 1, note that if 6 holds, then the absolute interpretation

satisfies the ξ-rule, and therefore satisfies all the axioms of lambda calculus.

Exercise 25. Prove 6 ⇒ 1.

Remark 5.16. The axioms in Table 3 are required to hold absolutely. They can

be replaced by local axioms by prefacing each axiom with λ∗xyz. Note that this

makes the axioms much longer.

5.6 Extensional combinatory algebras

Definition. An applicative structure (A, ·) is extensional if for all a, b ∈ A, if

ac = bc holds for all c ∈ A, then a = b.

44

Proposition 5.17. In an extensional combinatory algebra, the (η) axioms is valid.

Proof. By (β), (λ∗x.Mx)c = Mc for all c ∈ A. Therefore, by extensionality,

(λ∗x.Mx) = M . �

Proposition 5.18. In an extensional combinatory algebra, an equation holds lo-

cally if and only if it holds absolutely.

Proof. Clearly, if an equation holds absolutely, then it holds locally. Conversely,

assume the equation p = q holds locally in A. Let x1, . . . , xn be the variables

occurring in the equation. By (β),

(λ∗x1 . . . xn.p)x1 . . . xn = (λ∗x1 . . . xn.q)x1 . . . xn

holds locally. By extensionality,

λ∗x1 . . . xn.p = λ∗x1 . . . xn.q

holds. Since this is a closed equation (no free variables), it automatically holds

absolutely. This implies that (λ∗x1 . . . xn.p)x1 . . . xn = (λ∗x1 . . . xn.q)x1 . . . xn

holds absolutely, and finally, by (β) again, that p = q holds absolutely. �

Proposition 5.19. Every extensional combinatory algebra is a lambda algebra.

Proof. By Theorem 5.14(6), it suffices to prove (s-derived), (k-derived) and the

(ξ)-rule. Let a, b, c ∈ A be arbitrary. Then

(λ∗x.λ∗y.λ∗z.(xz)(yz))abc = (ac)(bc) = sabc

by (β) and definition of s. Applying extensionality three times (with respect to c,
b, and a), we get

λ∗x.λ∗y.λ∗z.(xz)(yz) = s.

This proves (s-derived). The proof of (k-derived) is similar. Finally, to prove (ξ),

assume that p =abs q. Then by (β), (λ∗x.p)c = (λ∗x.q)c for all c ∈ A. By

extensionality, λ∗x.p = λ∗x.q holds. �

45

6 Simply-typed lambda calculus, propositional logic,

and the Curry-Howard isomorphism

In the untyped lambda calculus, we spoke about functions without speaking about

their domains and codomains. The domain and codomain of any function was the

set of all lambda terms. We now introduce types into the lambda calculus, and thus

a notion of domain and codomain for functions. The difference between types and

sets is that types are syntactic objects, i.e., we can speak of types without having

to speak of their elements. We can think of types as names for sets.

6.1 Simple types and simply-typed terms

We assume a set of basic types. We usually use the Greek letter ι (“iota”) to denote

a basic type. The set of simple types is given by the following BNF:

Simple types: A,B ::= ι A → B A×B 1

The intended meaning of these types is as follows: base types are things like the

type of integers or the type of booleans. The type A → B is the type of functions

from A to B. The type A× B is the type of pairs 〈x, y〉, where x has type A and

y has type B. The type 1 is a one-element type. You can think of 1 as an abridged

version of the booleans, in which there is only one boolean instead of two. Or you

can think of 1 as the “void” or “unit” type in many programming languages: the

result type of a function that has no real result.

When we write types, we adopt the convention that × binds stronger than →, and

→ associates to the right. Thus, A×B → C is (A×B) → C, and A → B → C
is A → (B → C).

The set of raw typed lambda terms is given by the following BNF:

Raw terms: M,N ::= x MN λxA.M 〈M,N〉 π1M π2M ∗

Unlike what we did in the untyped lambda calculus, we have added special syntax

here for pairs. Specifically, 〈M,N〉 is a pair of terms, πiM is a projection, with

the intention that πi〈M1,M2〉 = Mi. Also, we have added a term ∗, which is the

unique element of the type 1. One other change from the untyped lambda calculus

is that we now write λxA.M for a lambda abstraction to indicate that x has type

A. However, we will sometimes omit the superscripts and write λx.M as before.

The notions of free and bound variables and α-conversion are defined as for the

untyped lambda calculus; again we identify α-equivalent terms.

46

(var)
Γ, x:A ⊢ x : A

(app)
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

(abs)
Γ, x:A ⊢ M : B

Γ ⊢ λxA.M : A → B

(pair)
Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ 〈M,N〉 : A×B

(π1)
Γ ⊢ M : A×B
Γ ⊢ π1M : A

(π2)
Γ ⊢ M : A×B
Γ ⊢ π2M : B

(∗)
Γ ⊢ ∗ : 1

Table 4: Typing rules for the simply-typed lambda calculus

We call the above terms the raw terms, because we have not yet imposed any

typing discipline on these terms. To avoid meaningless terms such as 〈M,N〉(P)
or π1(λx.M), we introduce typing rules.

We use the colon notation M : A to mean “M is of type A”. (Similar to the

element notation in set theory). The typing rules are expressed in terms of typing

judgments. A typing judgment is an expression of the form

x1:A1, x2:A2, . . . , xn:An ⊢ M : A.

Its meaning is: “under the assumption that xi is of type Ai, for i = 1 . . . n,

the term M is a well-typed term of type A.” The free variables of M must be

contained in x1, . . . , xn. The idea is that in order to determine the type of M , we

must make some assumptions about the type of its free variables. For instance, the

term xy will have type B if x:A → B and y:A. Clearly, the type of xy depends

on the type of its free variables.

A sequence of assumptions of the form x1:A1, . . . , xn:An, as in the left-hand-side

of a typing judgment, is called a typing context. We always assume that no variable

appears more than once in a typing context, and we allow typing contexts to be re-

ordered implicitly. We often use the Greek letter Γ to stand for an arbitrary typing

context, and we use the notations Γ,Γ′ and Γ, x:A to denote the concatenation of

typing contexts, where it is always assumed that the sets of variables are disjoint.

The symbol ⊢, which appears in a typing judgment, is called the turnstile symbol.

Its purpose is to separate the left-hand side from the right-hand side.

The typing rules for the simply-typed lambda calculus are shown in Table 4. The

rule (var) is a tautology: under the assumption that x has type A, x has type A.

The rule (app) states that a function of type A → B can be applied to an argument

47

of type A to produce a result of type B. The rule (abs) states that if M is a term of

type B with a free variable x of type A, then λxA.M is a function of type A → B.

The other rules have similar interpretations.

Here is an example of a valid typing derivation:

x:A → A, y:A ⊢ x : A → A

x:A → A, y:A ⊢ x : A → A x:A → A, y:A ⊢ y : A

x:A → A, y:A ⊢ xy : A

x:A → A, y:A ⊢ x(xy) : A

x:A → A ⊢ λyA.x(xy) : A → A

⊢ λxA→A.λyA.x(xy) : (A → A) → A → A

One important property of these typing rules is that there is precisely one rule

for each kind of lambda term. Thus, when we construct typing derivations in a

bottom-up fashion, there is always a unique choice of which rule to apply next.

The only real choice we have is about which types to assign to variables.

Exercise 26. Give a typing derivation of each of the following typing judgments:

(a) ⊢ λx(A→A)→B .x(λyA.y) : ((A → A) → B) → B

(b) ⊢ λxA×B .〈π2x, π1x〉 : (A×B) → (B ×A)

Not all terms are typable. For instance, the terms π1(λx.M) and 〈M,N〉(P)
cannot be assigned a type, and neither can the term λx.xx. Here, by “assigning

a type” we mean, assigning types to the free and bound variables such that the

corresponding typing judgment is derivable. We say that a term is typable if it can

be assigned a type.

Exercise 27. Show that neither of the three terms mentioned in the previous para-

graph is typable.

Exercise 28. We said that we will identify α-equivalent terms. Show that this

is actually necessary. In particular, show that if we didn’t identify α-equivalent

terms, there would be no valid derivation of the typing judgment

⊢ λxA.λxB .x : A → B → B.

Give a derivation of this typing judgment using the bound variable convention.

48

6.2 Connections to propositional logic

Consider the following types:

(1) (A×B) → A
(2) A → B → (A×B)
(3) (A → B) → (B → C) → (A → C)
(4) A → A → A
(5) ((A → A) → B) → B
(6) A → (A×B)
(7) (A → C) → C

Let us ask, in each case, whether it is possible to find a closed term of the given

type. We find the following terms:

(1) λxA×B .π1x
(2) λxA.λyB.〈x, y〉
(3) λxA→B .λyB→C .λzA.y(xz)
(4) λxA.λyA.x and λxA.λyA.y

(5) λx(A→A)→B .x(λyA.y)
(6) can’t find a closed term

(7) can’t find a closed term

Can we answer the general question, given a type, whether there exists a closed

term for it?

For a new way to look at the problem, take the types (1)–(7) and make the follow-

ing replacement of symbols: replace “→” by “⇒” and replace “×” by “∧”. We

obtain the following formulas:

(1) (A∧B) ⇒ A
(2) A ⇒ B ⇒ (A∧B)
(3) (A ⇒ B) ⇒ (B ⇒ C) ⇒ (A ⇒ C)
(4) A ⇒ A ⇒ A
(5) ((A ⇒ A) ⇒ B) ⇒ B
(6) A ⇒ (A∧B)
(7) (A ⇒ C) ⇒ C

Note that these are formulas of propositional logic, where “⇒” is implication, and

“∧” is conjunction (“and”). What can we say about the validity of these formulas?

It turns out that (1)–(5) are tautologies, whereas (6)–(7) are not. Thus, the types

49

for which we could find a lambda term turn out to be the ones that are valid when

considered as formulas in propositional logic! This is not entirely coincidental.

Let us consider, for example, how to prove (A∧B) ⇒ A. The proof is very short.

It goes as follows: “Assume A ∧ B. Then, by the first part of that assumption,

A holds. Thus (A ∧ B) ⇒ A.” On the other hand, the lambda term of the

corresponding type is λxA×B .π1x. You can see that there is a close connection

between the proof and the lambda term. Namely, if one reads λxA×B as “assume

A ∧ B (call the assumption ‘x’)”, and if one reads π1x as “by the first part of

assumption x”, then this lambda term can be read as a proof of the proposition

(A∧B) ⇒ A.

This connection between the simply-typed lambda calculus and propositional logic

is known as the “Curry-Howard isomorphism”. Since types of the lambda calculus

correspond to formulas in propositional logic, and terms correspond to proofs, the

concept is also known as the “proofs-as-programs” paradigm, or the “formulas-

as-types” correspondence. We will make the actual correspondence more precise

in the next two sections.

Before we go any further, we must make one important point. When we are

going to make precise the connection between simply-typed lambda calculus and

propositional logic, we will see that the appropriate logic is intuitionistic logic, and

not the ordinary classical logic that we are used to from mathematical practice.

The main difference between intuitionistic and classical logic is that the former

misses the principles of “proof by contradiction” and “excluded middle”. The

principle of proof by contradiction states that if the assumption “not A” leads to

a contradiction then we have proved A. The principle of excluded middle states

that either “A” or “not A” must be true.

Intuitionistic logic is also known as constructive logic, because all proofs in it

are by construction. Thus, in intuitionistic logic, the only way to prove the ex-

istence of some object is by actually constructing the object. This is in contrast

with classical logic, where we may prove the existence of an object simply by

deriving a contradiction from the assumption that the object doesn’t exist. The

disadvantage of constructive logic is that it is generally more difficult to prove

things. The advantage is that once one has a proof, the proof can be transformed

into an algorithm.

50

6.3 Propositional intuitionistic logic

We start by introducing a system for intuitionistic logic that uses only three con-

nectives: “∧”, “→”, and “⊤”. Formulas A,B . . . are built from atomic formulas

α, β, . . . via the BNF

Formulas: A,B ::= α A → B A∧B ⊤.

We now need to formalize proofs. The formalized proofs will be called “deriva-

tions”. The system we introduce here is known as natural deduction, and is due

to Gentzen (1935).

In natural deduction, derivations are certain kinds of trees. In general, we will deal

with derivations of a formula A from a set of assumptions Γ = {A1, . . . , An}.

Such a derivation will be written schematically as

x1:A1, . . . , xn:An

...

A .

We simplify the bookkeeping by giving a name to each assumption, and we will

use lower-case letters such as x, y, z for such names. In using the above notation

for schematically writing a derivation of A from assumptions Γ, it is understood

that the derivation may in fact use a given assumption more than once, or zero

times. The rules for constructing derivations are as follows:

1. (Axiom)

(ax)
x:A

A
x

is a derivation of A from assumption A (and possibly other assumptions

that were used zero times). We have written the letter “x” next to the rule,

to indicate precisely which assumption we have used here.

2. (∧-introduction) If

Γ
...

A and

Γ
...

B

51

are derivations of A and B, respectively, then

(∧-I)

Γ
...

A

Γ
...

B

A∧B

is a derivation of A ∧ B. In other words, a proof of A ∧ B is a proof of A
and a proof of B.

3. (∧-elimination) If
Γ
...

A∧B

is a derivation of A∧B, then

(∧-E1)

Γ
...

A∧B

A
and (∧-E2)

Γ
...

A∧B

B

are derivations of A and B, respectively. In other words, from A ∧ B, we

are allowed to conclude both A and B.

4. (⊤-introduction)

(⊤-I)
⊤

is a derivation of ⊤ (possibly from some assumptions, which were not

used). In other words, ⊤ is always true.

5. (→-introduction) If
Γ, x:A

...

B

is a derivation of B from assumptions Γ and A, then

(→-I)

Γ, [x:A]
...

B

A → B
x

52

is a derivation of A → B from Γ alone. Here, the assumption x:A is no

longer an assumption of the new derivation — we say that it has been “can-

celled”. We indicate cancelled assumptions by enclosing them in brackets

[], and we indicate the place where the assumption was cancelled by writing

the letter x next to the rule where it was cancelled.

6. (→-elimination) If

Γ
...

A → B and

Γ
...

A

are derivations of A → B and A, respectively, then

(→-E)

Γ
...

A → B

Γ
...

A

B

is a derivation of B. In other words, from A → B and A, we are allowed

to conclude B. This rule is sometimes called by its Latin name, “modus

ponens”.

This finishes the definition of derivations in natural deduction. Note that, with the

exception of the axiom, each rule belongs to some specific logical connective, and

there are introduction and elimination rules. “∧” and “→” have both introduction

and elimination rules, whereas “⊤” only has an introduction rule.

In natural deduction, like in real mathematical life, assumptions can be made at

any time. The challenge is to get rid of assumptions once they are made. In the

end, we would like to have a derivation of a given formula that depends on as

few assumptions as possible — in fact, we don’t regard the formula as proven

unless we can derive it from no assumptions. The rule (→-I) allows us to discard

temporary assumptions that we might have made during the proof.

Exercise 29. Give a derivation, in natural deduction, for each of the formulas

(1)–(5) from Section 6.2.

6.4 An alternative presentation of natural deduction

The above notation for natural deduction derivations suffers from a problem of

presentation: since assumptions are first written down, later cancelled dynam-

53

ically, it is not easy to see when each assumption in a finished derivation was

cancelled.

The following alternate presentation of natural deduction works by deriving entire

judgments, rather than formulas. Rather than keeping track of assumptions as the

leaves of a proof tree, we annotate each formula in a derivation with the entire set

of assumptions that were used in deriving it. In practice, this makes derivations

more verbose, by repeating most assumptions on each line. In theory, however,

such derivations are easier to reason about.

A judgment is a statement of the form x1:A1, . . . , xn:An ⊢ B. It states that the

formula B is a consequence of the (labelled) assumptions A1, . . . , An. The rules

of natural deduction can now be reformulated as rules for deriving judgments:

1. (Axiom)

(axx)
Γ, x:A ⊢ A

2. (∧-introduction)

(∧-I)
Γ ⊢ A Γ ⊢ B

Γ ⊢ A∧B

3. (∧-elimination)

(∧-E1)
Γ ⊢ A∧B

Γ ⊢ A
(∧-E2)

Γ ⊢ A∧B
Γ ⊢ B

4. (⊤-introduction)

(⊤-I)
Γ ⊢ ⊤

5. (→-introduction)

(→-Ix)
Γ, x:A ⊢ B
Γ ⊢ A → B

6. (→-elimination)

(→-E)
Γ ⊢ A → B Γ ⊢ A

Γ ⊢ B

54

6.5 The Curry-Howard Isomorphism

There is an obvious one-to-one correspondence between types of the simply-typed

lambda calculus and the formulas of propositional intuitionistic logic introduced

in Section 6.3 (provided that the set of basic types can be identified with the set of

atomic formulas). We will identify formulas and types from now on, where it is

convenient to do so.

Perhaps less obvious is the fact that derivations are in one-to-one correspondence

with simply-typed lambda terms. To be precise, we will give a translation from

derivations to lambda terms, and a translation from lambda terms to derivations,

which are mutually inverse up to α-equivalence.

To any derivation of x1:A1, . . . , xn:An ⊢ B, we will associate a lambda term M
such that x1:A1, . . . , xn:An ⊢ M : B is a valid typing judgment. We define M by

recursion on the definition of derivations. We prove simultaneously, by induction,

that x1:A1, . . . , xn:An ⊢ M : B is indeed a valid typing judgment.

1. (Axiom) If the derivation is

(axx)
Γ, x:A ⊢ A

,

then the lambda term is M = x. Clearly, Γ, x:A ⊢ x : A is a valid typing

judgment by (var).

2. (∧-introduction) If the derivation is

(∧-I)

...

Γ ⊢ A

...

Γ ⊢ B

Γ ⊢ A∧B
,

then the lambda term is M = 〈P,Q〉, where P and Q are the terms as-

sociated to the two respective subderivations. By induction hypothesis,

Γ ⊢ P : A and Γ ⊢ Q : B, thus Γ ⊢ 〈P,Q〉 : A×B by (pair).

3. (∧-elimination) If the derivation is

(∧-E1)

...

Γ ⊢ A∧B

Γ ⊢ A
,

55

then we let M = π1P , where P is the term associated to the subderivation.

By induction hypothesis, Γ ⊢ P : A × B, thus Γ ⊢ π1P : A by (π1). The

case of (∧-E2) is entirely symmetric.

4. (⊤-introduction) If the derivation is

(⊤-I)
Γ ⊢ ⊤

,

then let M = ∗. We have ⊢ ∗ : 1 by (∗).

5. (→-introduction) If the derivation is

(→-Ix)

...

Γ, x:A ⊢ B

Γ ⊢ A → B
,

then we let M = λxA.P , where P is the term associated to the subderiva-

tion. By induction hypothesis,Γ, x:A ⊢ P : B, henceΓ ⊢ λxA.P : A → B
by (abs).

6. (→-elimination) Finally, if the derivation is

(→-E)

...

Γ ⊢ A → B

...

Γ ⊢ A

Γ ⊢ B
,

then we let M = PQ, where P and Q are the terms associated to the two

respective subderivations. By induction hypothesis, Γ ⊢ P : A → B and

Γ ⊢ Q : A, thus Γ ⊢ PQ : B by (app).

Conversely, given a well-typed lambda term M , with associated typing judgment

Γ ⊢ M : A, then we can construct a derivation of A from assumptions Γ. We

define this derivation by recursion on the type derivation of Γ ⊢ M : A. The

details are too tedious to spell them out here; we simply go through each of the

rules (var), (abs), (app), (pair), (π1), (π2), (∗) and apply the corresponding rule

(ax), (→-I), (→-E), (∧-I), (∧-E1), (∧-E2), (⊤-I), respectively.

56

6.6 Reductions in the simply-typed lambda calculus

β- and η-reductions in the simply-typed lambda calculus are defined much in the

same way as for the untyped lambda calculus, except that we have introduced

some additional terms (such as pairs and projections), which calls for some addi-

tional reduction rules. We define the following reductions:

(β→) (λxA.M)N → M [N/x],
(η→) λxA.Mx → M, where x 6∈ FV (M),
(β×,1) π1〈M,N〉 → M,
(β×,2) π2〈M,N〉 → N,
(η×) 〈π1M,π2M〉 → M,
(η1) M → ∗, if M : 1.

Then single- and multi-step β- and η-reduction are defined as the usual contextual

closure of the above rules, and the definitions of β- and η-equivalence also follow

the usual pattern. In addition to the usual (cong) and (ξ) rules, we now also have

congruence rules that apply to pairs and projections.

We remark that, to be perfectly precise, we should have defined reductions be-

tween typing judgments, and not between terms. This is necessary because some

of the reduction rules, notably (η1), depend on the type of the terms involved.

However, this would be notationally very cumbersome, and we will blur the dis-

tinction, pretending at times that terms appear in some implicit typing context that

we do not write.

An important property of the reduction is the “subject reduction” property, which

states that well-typed terms reduce only to well-typed terms of the same type.

This has an immediate application to programming: subject reduction guarantees

that if we write a program of type “integer”, then the final result of evaluating the

program, if any, will indeed be an integer, and not, say, a boolean.

Theorem 6.1 (Subject Reduction). If Γ ⊢ M : A and M →βη M ′, then Γ ⊢
M ′ : A.

Proof. By induction on the derivation of M →βη M ′, and by case distinction on

the last rule used in the derivation of Γ ⊢ M : A. For instance, if M →βη M ′ by

(β→), then M = (λxB .P)Q and M ′ = P [Q/x]. If Γ ⊢ M : A, then we must

have Γ, x:B ⊢ P : A and Γ ⊢ Q : B. It follows that Γ ⊢ P [Q/x] : A; the latter

statement can be proved separately (as a “substitution lemma”) by induction on P
and makes crucial use of the fact that x and Q have the same type.

57

The other cases are similar, and we leave them as an exercise. Note that, in par-

ticular, one needs to consider the (cong), (ξ), and other congruence rules as well.

�

6.7 A word on Church-Rosser

One important theorem that does not hold for βη-reduction in the simply-typed

λ→,×,1-calculus is the Church-Rosser theorem. The culprit is the rule (η1). For

instance, if x is a variable of type A × 1, then the term M = 〈π1x, π2x〉 reduces

to x by (η×), but also to 〈π1x, ∗〉 by (η1). Both these terms are normal forms.

Thus, the Church-Rosser property fails.

〈π1x, π2x〉
η× η1

x 〈π1x, ∗〉

There are several ways around this problem. For instance, if we omit all the η-

reductions and consider only β-reductions, then the Church-Rosser property does

hold. Eliminating η-reductions does not have much of an effect on the lambda

calculus from a computational point of view; already in the untyped lambda cal-

culus, we noticed that all interesting calculations could in fact be carried out with

β-reductions alone. We can say that β-reductions are the engine for computation,

whereas η-reductions only serve to clean up the result. In particular, it can never

happen that some η-reduction inhibits another β-reduction: if M →η M ′, and if

M ′ has a β-redex, then it must be the case that M already has a corresponding

β-redex. Also, η-reductions always reduce the size of a term. It follows that if

M is a β-normal form, then M can always be reduced to a βη-normal form (not

necessarily unique) in a finite sequence of η-reductions.

Exercise 30. Prove the Church-Rosser theorem for β-reductions in the λ→,×,1-

calculus. Hint: use the same method that we used in the untyped case.

Another solution is to omit the type 1 and the term ∗ from the language. In this

case, the Church-Rosser property holds even for βη-reduction.

Exercise 31. Prove the Church-Rosser theorem for βη-reduction in the λ→,×-

calculus, i.e., the simply-typed lambda calculus without 1 and ∗.

58

6.8 Reduction as proof simplification

Having made a one-to-one correspondence between simply-typed lambda terms

and derivations in intuitionistic natural deduction, we may now ask what β- and

η-reductions correspond to under this correspondence. It turns out that these re-

ductions can be thought of as “proof simplification steps”.

Consider for example the β-reduction π1〈M,N〉 → M . If we translate the left-

hand side and the right-hand side via the Curry-Howard isomorphism (here we

use the first notation for natural deduction), we get

(∧-E1)

(∧-I)

Γ
...

A

Γ
...

B

A∧ B

A
→

Γ
...

A .

We can see that the left derivation contains an introduction rule immediately fol-

lowed by an elimination rule. This leads to an obvious simplification if we replace

the left derivation by the right one.

In general, β-redexes correspond to situations where an introduction rule is im-

mediately followed by an elimination rule, and η-redexes correspond to situations

where an elimination rule is immediately followed by an introduction rule. For

example, consider the η-reduction 〈π1M,π2M〉 → M . This translates to:

(∧-I)

(∧-E1)

Γ
...

A∧ B

A
(∧-E2)

Γ
...

A∧B

B
A∧B

→

Γ
...

A∧B

Again, this is an obvious simplification step, but it has a side condition: the left

and right subderivation must be the same! This side condition corresponds to the

fact that in the redex 〈π1M,π2M〉, the two subterms called M must be equal. It

is another characteristic of η-reductions that they often carry such side conditions.

The reduction M → ∗ translates as follows:

Γ
...

⊤ → (⊤-I)
⊤

59

In other words, any derivation of ⊤ can be replaced by the canonical such deriva-

tion.

More interesting is the case of the (β→) rule. Here, we have (λxA.M)N →
M [N/x], which can be translated via the Curry-Howard Isomorphism as follows:

(→-E)

(→-I)

Γ, [x:A]
...

B

A → B
x

Γ
...

A

B
→

Γ,

Γ
...

A
...

B .

What is going on here is that we have a derivation M of B from assumptions Γ
and A, and we have another derivation N of A from Γ. We can directly obtain a

derivation of B from Γ by stacking the second derivation on top of the first!

Notice that this last proof “simplification” step may not actually be a simplifica-

tion. Namely, if the hypothesis labelled x is used many times in the derivation

M , then N will have to be copied many times in the right-hand side term. This

corresponds to the fact that if x occurs several times in M , then M [N/x] might

be a longer and more complicated term than (λx.M)N .

Finally, consider the (η→) rule λxA.Mx → M , where x 6∈ FV (M). This trans-

lates to derivations as follows:

(→-I)

(→-E)

Γ
...

A → B (ax)
[x:A]

A
x

B
A → B

x →

Γ
...

A → B

6.9 Getting mileage out of the Curry-Howard isomorphism

The Curry-Howard isomorphism makes a connection between the lambda calculus

and logic. We can think of it as a connection between “programs” and “proofs”.

What is such a connection good for? Like any isomorphism, it allows us to switch

back and forth and think in whichever system suits our intuition in a given situ-

ation. Moreover, we can save a lot of work by transferring theorems that were

proved about the lambda calculus to logic, and vice versa. As an example, we will

60

see in the next section how to add disjunctions to propositional intuitionistic logic,

and then we will explore what we can learn about the lambda calculus from that.

6.10 Disjunction and sum types

To the BNF for formulas of propositional intuitionistic logic from Section 6.3, we

add the following clauses:

Formulas: A,B ::= . . . A∨B ⊥.

Here, A ∨ B stands for disjunction, or “or”, and ⊥ stands for falsity, which we

can also think of as zero-ary disjunction. The symbol ⊥ is also known by the

names of “bottom”, “absurdity”, or “contradiction”. The rules for constructing

derivations are extended by the following cases:

7. (∨-introduction)

(∨-I1)
Γ ⊢ A

Γ ⊢ A∨B
(∨-I2)

Γ ⊢ B
Γ ⊢ A∨ B

In other words, if we have proven A or we have proven B, then we may

conclude A∨B.

8. (∨-elimination)

(∨-Ex,y)
Γ ⊢ A∨B Γ, x:A ⊢ C Γ, y:B ⊢ C

Γ ⊢ C

This is known as the “principle of case distinction”. If we know A∨B, and

we wish to prove some formula C, then we may proceed by cases. In the

first case, we assume A holds and prove C. In the second case, we assume

B holds and prove C. In either case, we prove C, which therefore holds

independently.

Note that the ∨-elimination rule differs from all other rules we have consid-

ered so far, because it involves some arbitrary formula C that is not directly

related to the principal formula A∨B being eliminated.

9. (⊥-elimination)

(⊥-E)
Γ ⊢ ⊥

Γ ⊢ C
,

for an arbitrary formula C. This rule formalizes the familiar principle “ex

falsum quodlibet”, which means that falsity implies anything.

61

There is no ⊥-introduction rule. This is symmetric to the fact that there is no

⊤-elimination rule.

Having extended our logic with disjunctions, we can now ask what these disjunc-

tions correspond to under the Curry-Howard isomorphism. Naturally, we need to

extend the lambda calculus by as many new terms as we have new rules in the

logic. It turns out that disjunctions correspond to a concept that is quite natural in

programming: “sum” or “union” types.

To the lambda calculus, add type constructors A+B and 0.

Simple types: A,B ::= . . . A+B 0.

Intuitively, A+B is the disjoint union of A and B, as in set theory: an element of

A + B is either an element of A or an element of B, together with an indication

of which one is the case. In particular, if we consider an element of A + A, we

can still tell whether it is in the left or right component, even though the two types

are the same. In programming languages, this is sometimes known as a “union”

or “variant” type. We call it a “sum” type here. The type 0 is simply the empty

type, corresponding to the empty set in set theory.

What should the lambda terms be that go with these new types? We know from

our experience with the Curry-Howard isomorphism that we have to have pre-

cisely one term constructor for each introduction or elimination rule of natural

deduction. Moreover, we know that if such a rule has n subderivations, then our

term constructor has to have n immediate subterms. We also know something

about bound variables: Each time a hypothesis is cancelled in a natural deduction

rule, there must be a binder of the corresponding variable in the lambda calculus.

This information more or less uniquely determines what the lambda terms should

be; the only choice that is left is what to call them!

We add four terms to the lambda calculus:

Raw terms: M,N,P ::= . . . in1M in2M

caseM ofxA ⇒ N | yB ⇒ P �AM

The typing rules for these new terms are shown in Table 5. By comparing these

rules to (∨-I1), (∨-I2), (∨-E), and (⊥-E), you can see that they are precisely

analogous.

But what is the meaning of these new terms? The term in1M is simply an element

of the left component of A + B. We can think of in1 as the injection function

A → A + B. Similar for in2. The term (caseM ofxA ⇒ N | yB ⇒ P) is a

case distinction: evaluate M of type A + B. The answer is either an element of

62

(in1)
Γ ⊢ M : A

Γ ⊢ in1M : A+B

(in2)
Γ ⊢ M : B

Γ ⊢ in2M : A+B

(case)
Γ ⊢ M : A+B Γ, x:A ⊢ N : C Γ, y:B ⊢ P : C

Γ ⊢ (caseM ofxA ⇒ N | yB ⇒ P) : C

(�)
Γ ⊢ M : 0

Γ ⊢ �AM : A

Table 5: Typing rules for sums

the left component A or of the right component B. In the first case, assign the

answer to the variable x and evaluate N . In the second case, assign the answer

to the variable y and evaluate P . Since both N and P are of type C, we get a

final result of type C. Note that the case statement is very similar to an if-then-

else; the only difference is that the two alternatives also carry a value. Indeed,

the booleans can be defined as 1 + 1, in which case T = in1∗, F = in2∗, and

if then else MNP = caseM ofx1 ⇒ N | y1 ⇒ P , where x and y don’t occur

in N and P , respectively.

Finally, the term �AM is a simple type cast, corresponding to the unique function

�A : 0 → A from the empty set to any set A.

6.11 Classical logic vs. intuitionistic logic

We have mentioned before that the natural deduction calculus we have presented

corresponds to intuitionistic logic, and not classical logic. But what exactly is the

difference? Well, the difference is that in intuitionistic logic, we have no rule for

proof by contradiction, and we do not have A∨ ¬A as an axiom.

Let us adopt the following convention for negation: the formula ¬A (“not A”) is

regarded as an abbreviation for A → ⊥. This way, we do not have to introduce

special formulas and rules for negation; we simply use the existing rules for →
and ⊥.

In intuitionistic logic, there is no derivation of A∨ ¬A, for general A. Or equiv-

alently, in the simply-typed lambda calculus, there is no closed term of type

A+ (A → 0). We are not yet in a position to prove this formally, but informally,

the argument goes as follows: If the type A is empty, then there can be no closed

63

term of type A (otherwise A would have that term as an element). On the other

hand, if the type A is non-empty, then there can be no closed term of type A → 0
(or otherwise, if we applied that term to some element of A, we would obtain an

element of 0). But if we were to write a generic term of type A+ (A → 0), then

this term would have to work no matter what A is. Thus, the term would have to

decide whether to use the left or right component independently of A. But for any

such term, we can get a contradiction by choosing A either empty or non-empty.

Closely related is the fact that in intuitionistic logic, we do not have a principle of

proof by contradiction. The “proof by contradiction” rule is the following:

(contrax)
Γ, x:¬A ⊢ ⊥

Γ ⊢ A
.

This is not a rule of intuitionistic propositional logic, but we can explore what

would happen if we were to add such a rule. First, we observe that the contradic-

tion rule is very similar to the following:

Γ, x:A ⊢ ⊥

Γ ⊢ ¬A
.

However, since we defined ¬A to be the same as A → ⊥, the latter rule is an

instance of (→-I). The contradiction rule, on the other hand, is not an instance of

(→-I).

If we admit the rule (contra), then A∨ ¬A can be derived. The following is such
a derivation:

(→-E)

(axy)
y:¬(A∨ ¬A) ⊢ ¬(A∨ ¬A)

(→-E)

(axy)
y:¬(A∨ ¬A), x:A ⊢ ¬(A∨ ¬A)

(∨-I1)

(axx)
y:¬(A∨ ¬A), x:A ⊢ A

y:¬(A∨ ¬A), x:A ⊢ A∨ ¬A

(∨-I2)

(→-Ix)
y:¬(A∨ ¬A), x:A ⊢ ⊥

y:¬(A∨ ¬A) ⊢ ¬A

y:¬(A∨ ¬A) ⊢ A∨ ¬A

(contray)
y:¬(A∨ ¬A) ⊢ ⊥

⊢ A∨ ¬A

Conversely, if we added A ∨ ¬A as an axiom to intuitionistic logic, then this

already implies the (contra) rule. Namely, from any derivation of Γ, x:¬A ⊢ ⊥,

we can obtain a derivation of Γ ⊢ A by using A∨ ¬A as an axiom. Thus, we can

simulate the (contra) rule, in the presence of A∨ ¬A.

(∨-Ex,y)

(excluded middle)

Γ ⊢ A∨ ¬A
(⊥-E)

Γ, x:¬A ⊢ ⊥

Γ, x:¬A ⊢ A
(axy)

Γ, y:A ⊢ A

Γ ⊢ A

64

In this sense, we can say that the rule (contra) and the axiom A∨ ¬A are equiva-

lent, in the presence of the other axioms and rules of intuitionistic logic.

It turns out that the system of intuitionistic logic plus (contra) is equivalent to

classical logic as we know it. It is in this sense that we can say that intuitionistic

logic is “classical logic without proofs by contradiction”.

Exercise 32. The formula ((A → B) → A) → A is called “Peirce’s law”. It is

valid in classical logic, but not in intuitionistic logic. Give a proof of Peirce’s law

in natural deduction, using the rule (contra).

Conversely, Peirce’s law, when added to intuitionistic logic for all A and B, im-

plies (contra). Here is the proof. Recall that ¬A is an abbreviation for A → ⊥.

(→-E)

(Peirce’s law for B = ⊥)

Γ ⊢ ((A → ⊥) → A) → A
(→-Ix)

(⊥-E)
Γ, x:A → ⊥ ⊢ ⊥

Γ, x:A → ⊥ ⊢ A

Γ ⊢ (A → ⊥) → A

Γ ⊢ A

We summarize the results of this section in terms of a slogan:

intuitionistic logic + (contra)

= intuitionistic logic + “A∨ ¬A”

= intuitionistic logic + Peirce’s law

= classical logic.

The proof theory of intuitionistic logic is a very interesting subject in its own right,

and an entire course could be taught just on that subject.

6.12 Classical logic and the Curry-Howard isomorphism

To extend the Curry-Howard isomorphism to classical logic, according to the ob-

servations of the previous section, it is sufficient to add to the lambda calculus a

term representing Peirce’s law. All we have to do is to add a term C : ((A →
B) → A) → A, for all types A and B.

Such a term is known as Felleisen’s C, and it has a specific interpretation in terms

of programming languages. It can be understood as a control operator (similar

to “goto”, “break”, or exception handling in some procedural programming lan-

guages).

65

Specifically, Felleisen’s interpretation requires a term of the form

M = C(λkA→B.N) : A

to be evaluated as follows. To evaluate M , first evaluate N . Note that both M and

N have type A. If N returns a result, then this immediately becomes the result of

M as well. On the other hand, if during the evaluation of N , the function k is ever

called with some argument x : A, then the further evaluation of N is aborted, and

x immediately becomes the result of M .

In other words, the final result of M can be calculated anywhere inside N , no

matter how deeply nested, by passing it to k as an argument. The function k is

known as a continuation.

There is a lot more to programming with continuations than can be explained in

these lecture notes. For an interesting application of continuations to compiling,

see e.g. [9] from the bibliography (Section 15). The above explanation of what

it means to “evaluate” the term M glosses over several details. In particular, we

have not given a reduction rule for C in the style of β-reduction. To do so is rather

complicated and is beyond the scope of these notes.

7 Weak and strong normalization

7.1 Definitions

As we have seen, computing with lambda terms means reducing lambda terms to

normal form. By the Church-Rosser theorem, such a normal form is guaranteed

to be unique if it exists. But so far, we have paid little attention to the question

whether normal forms exist for a given term, and if so, how we need to reduce the

term to find a normal form.

Definition. Given a notion of term and a reduction relation, we say that a term M
is weakly normalizing if there exists a finite sequence of reductions M → M1 →
. . . → Mn such that Mn is a normal form. We say that M is strongly normalizing

if there does not exist an infinite sequence of reductions starting from M , or in

other words, if every sequence of reductions starting from M is finite.

Recall the following consequence of the Church-Rosser theorem, which we stated

as Corollary 4.2: If M has a normal form N , then M →→ N . It follows that a

term M is weakly normalizing if and only if it has a normal form. This does not

66

imply that every possible way of reducing M leads to a normal form. A term is

strongly normalizing if and only if every way of reducing it leads to a normal form

in finitely many steps.

Consider for example the following terms in the untyped lambda calculus:

1. The term Ω = (λx.xx)(λx.xx) is neither weakly nor strongly normalizing.

It does not have a normal form.

2. The term (λx.y)Ω is weakly normalizing, but not strongly normalizing. It

reduces to the normal form y, but it also has an infinite reduction sequence.

3. The term (λx.y)((λx.x)(λx.x)) is strongly normalizing. While there are

several different ways to reduce this term, they all lead to a normal form in

finitely many steps.

4. The term λx.x is strongly normalizing, since it has no reductions, much

less an infinite reduction sequence. More generally, every normal form is

strongly normalizing.

We see immediately that strongly normalizing implies weakly normalizing. How-

ever, as the above examples show, the converse is not true.

7.2 Weak and strong normalization in typed lambda calculus

We found that the term Ω = (λx.xx)(λx.xx) is not weakly or strongly normaliz-

ing. On the other hand, we also know that this term is not typable in the simply-

typed lambda calculus. This is not a coincidence, as the following theorem shows.

Theorem 7.1 (Weak normalization theorem). In the simply-typed lambda calcu-

lus, all terms are weakly normalizing.

Theorem 7.2 (Strong normalization theorem). In the simply-typed lambda calcu-

lus, all terms are strongly normalizing.

Clearly, the strong normalization theorem implies the weak normalization theo-

rem. However, the weak normalization theorem is much easier to prove, which

is the reason we proved both these theorems in class. In particular, the proof of

the weak normalization theorem gives an explicit measure of the complexity of

a term, in terms of the number of redexes of a certain degree in the term. There

67

is no corresponding complexity measure in the proof of the strong normalization

theorem.

Please refer to Chapters 4 and 6 of “Proofs and Types” by Girard, Lafont, and

Taylor [2] for the proofs of Theorems 7.1 and 7.2, respectively.

8 Polymorphism

The polymorphic lambda calculus, also known as “System F”, is obtained extend-

ing the Curry-Howard isomorphism to the quantifier ∀. For example, consider the

identity function λxA.x. This function has type A → A. Another identity func-

tion is λxB .x of type B → B, and so forth for every type. We can thus think of

the identity function as a family of functions, one for each type. In the polymor-

phic lambda calculus, there is a dedicated syntax for such families, and we write

Λα.λxα.x of type ∀α.α → α.

System F was independently discovered by Jean-Yves Girard and John Reynolds

in the early 1970s.

8.1 Syntax of System F

The primary difference between System F and simply-typed lambda calculus is

that System F has a new kind of function that takes a type, rather than a term, as

its argument. We can also think of such a function as a family of terms that is

indexed by a type.

Let α, β, γ range over a countable set of type variables. The types of System F

are given by the grammar

Types: A,B ::= α A → B ∀α.A

A type of the form A → B is called a function type, and a type of the form ∀α.A
is called a universal type. The type variable α is bound in ∀α.A, and we identify

types up to renaming of bound variables; thus, ∀α.α → α and ∀β.β → β are

the same type. We write FTV (A) for the set of free type variables of a type A,

defined inductively by:

• FTV (α) = {α},

• FTV (A → B) = FTV (A) ∪ FTV (B),

68

(var)
Γ, x:A ⊢ x : A

(app)
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

(abs)
Γ, x:A ⊢ M : B

Γ ⊢ λxA.M : A → B

(typeapp)
Γ ⊢ M : ∀α.A

Γ ⊢ MB : A[B/α]

(typeabs)
Γ ⊢ M : A α 6∈ FTV (Γ)

Γ ⊢ Λα.M : ∀α.A

Table 6: Typing rules for System F

• FTV (∀α.A) = FTV (A) \ {α}.

We also write A[B/α] for the result of replacing all free occurrences of α by B in

A. Just like the substitution of terms (see Section 2.3), this type substitution must

be capture-free, i.e., special care must be taken to rename any bound variables of

A so that their names are different from the free variables of B.

The terms of System F are:

Terms: M,N ::= x MN λxA.M MA Λα.M

Of these, variables x, applications MN , and lambda abstractions λxA.M are ex-

actly as for the simply-typed lambda calculus. The new terms are type application

MA, which is the application of a type function M to a type A, and type abstrac-

tion Λα.M , which denotes the type function that maps a type α to a term M . The

typing rules for System F are shown in Table 6.

We also write FTV (M) for the set of free type variables in the term M . We need

a final notion of substitution: if M is a term, B a type, and α a type variable, we

write M [B/α] for the capture-free substitution of B for α in M .

8.2 Reduction rules

In System F, there are two rules for β-reduction. The first one is the familiar rule

for the application of a function to a term. The second one is an analogous rule

69

for the application of a type function to a type.

(β→) (λxA.M)N → M [N/x],
(β∀) (Λα.M)A → M [A/α],

Similarly, there are two rules for η-reduction.

(η→) λxA.Mx → M, if x 6∈ FV (M),
(η∀) Λα.Mα → M, if α 6∈ FTV (M).

The congruence and ξ-rules are as expected:

M → M ′

MN → M ′N

N → N ′

MN → MN ′

M → M ′

λxAM → λxAM ′

M → M ′

MA → M ′A

M → M ′

ΛαM → ΛαM ′

8.3 Examples

Just as in the untyped lambda calculus, many interesting data types and operations

can be encoded in System F.

8.3.1 Booleans

Define the System F type bool , and terms T,F : bool , as follows:

bool = ∀α.α → α → α,
T = Λα.λxα.λyα.x,
F = Λα.λxα.λyα.y.

It is easy to see from the typing rules that ⊢ T : bool and ⊢ F : bool are valid

typing judgments. We can define an if-then-else operation

if then else : ∀β. bool → β → β → β,
if then else = Λβ.λzbool .zβ.

It is then easy to see that, for any type B and any pair of terms M,N : B, we have

if then else BTMN →→β M,
if then else B FMN →→β N.

70

Once we have if-then-else, it is easy to define other boolean operations, for exam-

ple

and = λabool .λbbool . if then else bool a bF,
or = λabool .λbbool . if then else bool aT b,
not = λabool . if then else bool aFT.

Later, in Proposition 8.8, we will show that up to βη equality, T and and F are

the only closed terms of type bool . This, together with the if-then-else operation,

justifies calling this the type of booleans.

Note that the above encodings of the booleans and their if-then-else operation

in System F is exactly the same as the corresponding encodings in the untyped

lambda calculus from Section 3.1, provided that one erases all the types and type

abstractions. However, there is an important difference: in the untyped lambda

calculus, the booleans were just two terms among many, and there was no guar-

antee that the argument of a boolean function (such as and and or) was actually

a boolean. In System F, the typing guarantees that all closed boolean terms even-

tually reduce to either T or F.

8.3.2 Natural numbers

We can also define a type of Church numerals in System F. We define:

nat = ∀α.(α → α) → α → α,
0 = Λα.λfα→α.λxα.x,
1 = Λα.λfα→α.λxα.fx,
2 = Λα.λfα→α.λxα.f(fx),
3 = Λα.λfα→α.λxα.f(f(fx)),
. . .

It is then easy to define simple functions, such as successor, addition, and multi-

plication:

succ = λnnat .Λα.λfα→α.λxα.f(nαfx),
add = λnnat .λmnat .Λα.λfα→α.λxα.nαf(mαfx),
mult = λnnat .λmnat .Λα.λfα→α.nα(mαf).

Just as for the booleans, these encodings of the Church numerals and functions are

exactly the same as those of the untyped lambda calculus from Section 3.2, if one

erases all the types and type abstractions. We will show in Proposition 8.9 below

that the Church numerals are, up to βη-equivalence, the only closed terms of type

nat .

71

8.3.3 Pairs

You will have noticed that we didn’t include a cartesian product type A×B in the

definition of System F. This is because such a type is definable. Specifically, let

A×B = ∀α.(A → B → α) → α,
〈M,N〉 = Λα.λfA→B→α.fMN.

Note that when M : A and N : B, then 〈M,N〉 : A× B. Moreover, for any pair

of types A,B, we have projection functions π1AB : A × B → A and π2AB :
A×B → B, defined by

π1 = Λα.Λβ.λpα×β .pα(λxα.λyβ .x),
π2 = Λα.Λβ.λpα×β .pβ(λxα.λyβ .y).

This satisfies the usual laws

π1AB〈M,N〉 →→β M,
π2AB〈M,N〉 →→β N.

Once again, these encodings of pairs and projections are exactly the same as those

we used in the untyped lambda calculus, when one erases all the type-related parts

of the terms. You will show in Exercise 36 that every closed term of type A × B
is βη-equivalent to a term of the form 〈M,N〉.

Remark 8.1. It is also worth noting that the corresponding η-laws, such as

〈π1ABM,π2ABM〉 = M,

are not derivable in System F. These laws hold whenever M is a closed term, but

not necessarily when M contains free variables.

Exercise 33. Find suitable encodings in System F of the types 1, A + B, and 0,

along with the corresponding terms ∗, in1, in2, caseM ofxA ⇒ N | yB ⇒ P , and

�AM .

8.4 Church-Rosser property and strong normalization

Theorem 8.2 (Church-Rosser). System F satisfies the Church-Rosser property,

both for β-reduction and for βη-reduction.

Theorem 8.3 (Strong normalization). In System F, all terms are strongly normal-

izing.

72

The proof of the Church-Rosser property is similar to that of the simply-typed

lambda calculus, and is left as an exercise. The proof of strong normalization is

much more complex; it can be found in Chapter 14 of “Proofs and Types” [2].

8.5 The Curry-Howard isomorphism

From the point of view of the Curry-Howard isomorphism, ∀α.A is the universally

quantified logical statement “for all α, A is true”. Here α ranges over atomic

propositions. For example, the formula ∀α.∀β.α → (β → α) expresses the valid

fact that the implication α → (β → α) is true for all propositions α and β. Since

this quantifier ranges over propositions, it is called a second-order quantifier, and

the corresponding logic is second-order propositional logic.

Under the Curry-Howard isomorphism, the typing rules for System F become the

following logical rules:

• (Axiom)

(axx)
Γ, x:A ⊢ A

• (→-introduction)

(→-Ix)
Γ, x:A ⊢ B

Γ ⊢ A → B

• (→-elimination)

(→-E)
Γ ⊢ A → B Γ ⊢ A

Γ ⊢ B

• (∀-introduction)

(∀-I)
Γ ⊢ A α 6∈ FTV (Γ)

Γ ⊢ ∀α.A

• (∀-elimination)

(∀-E)
Γ ⊢ ∀α.A

Γ ⊢ A[B/α]

The first three of these rules are familiar from propositional logic.

The ∀-introduction rule is also known as universal generalization. It corresponds

to a well-known logical reasoning principle: If a statement A has been proven for

some arbitrary α, then it follows that it holds for all α. The requirement that α is

73

“arbitrary” has been formalized in the logic by requiring that α does not appear in

any of the hypotheses that were used to derive A, or in other words, that α is not

among the free type variables of Γ.

The ∀-elimination rule is also known as universal specialization. It is the simple

principle that if some statement is true for all propositions α, then the same state-

ment is true for any particular proposition B. Note that, unlike the ∀-introduction

rule, this rule does not require a side condition.

Finally, we note that the side condition in the ∀-introduction rule is of course the

same as that of the typing rule (typeabs) of Table 6. From the point of view of

logic, the side condition is justified because it asserts that α is “arbitrary”, i.e.,

no assumptions have been made about it. From a lambda calculus view, the side

condition also makes sense: otherwise, the term λxα.Λα.x would be well-typed

of type α → ∀α.α, which clearly does not make any sense: there is no way that an

element x of some fixed type α could suddenly become an element of an arbitrary

type.

8.6 Supplying the missing logical connectives

It turns out that a logic with only implication → and a second-order universal

quantifier ∀ is sufficient for expressing all the other usual logical connectives, for

example:

A∧B ⇐⇒ ∀α.(A → B → α) → α, (1)

A∨B ⇐⇒ ∀α.(A → α) → (B → α) → α, (2)

¬A ⇐⇒ ∀α.A → α, (3)

⊤ ⇐⇒ ∀α.α → α, (4)

⊥ ⇐⇒ ∀α.α, (5)

∃β.A ⇐⇒ ∀α.(∀β.(A → α)) → α. (6)

Exercise 34. Using informal intuitionistic reasoning, prove that the left-hand side

is logically equivalent to the right-hand side for each of (1)–(6).

Remark 8.4. The definitions (1)–(6) are somewhat reminiscent of De Morgan’s

laws and double negations. Indeed, if we replace the type variable α by the con-

stant F in (1), the right-hand side becomes (A → B → F) → F, which is

intuitionistically equivalent to ¬¬(A ∧ B). Similarly, the right-hand side of (2)

becomes (A → F) → (B → F) → F, which is intuitionistically equivalent to

74

¬(¬A ∧ ¬B), and similarly for the remaining connectives. However, the ver-

sions of (1), (2), and (6) using F are only classically, but not intuitionistically

equivalent to their respective left-hand sides. On the other hand, it is remarkable

that by the use of ∀α, each right-hand side is intuitionistically equivalent to the

left-hand sides.

Remark 8.5. Note the resemblance between (1) and the definition of A×B given

in Section 8.3.3. Naturally, this is not a coincidence, as logical conjunction A∧B
should correspond to cartesian productA×B under the Curry-Howard correspon-

dence. Indeed, by applying the same principle to the other logical connectives, one

arrives at a good hint for Exercise 33.

Exercise 35. Extend System F with an existential quantifier ∃β.A, not by using

(6), but by adding a new type with explicit introduction and elimination rules to

the language. Justify the resulting rules by comparing them with the usual rules

of mathematical reasoning for “there exists”. Can you explain the meaning of the

type ∃β.A from a programming language or lambda calculus point of view?

8.7 Normal forms and long normal forms

Recall that a β-normal form of System F is, by definition, a term that contains no

β-redex, i.e., no subterm of the form (λxA.M)N or (Λα.M)A. The following

proposition gives another useful way to characterize the β-normal forms.

Proposition 8.6 (Normal forms). A term of System F is a β-normal form if and

only if it is of the form

Λa1.Λa2 . . .Λan.zQ1Q2 . . . Qk, (7)

where:

• n > 0 and k > 0;

• Each Λai is either a lambda abstraction λxAi

i or a type abstraction Λαi;

• Each Qj is either a term Mj or a type Bj ; and

• Each Qj , when it is a term, is recursively in normal form.

Proof. First, it is clear that every term of the form (7) is in normal form: the term

cannot itself be a redex, and the only place where a redex could occur is inside

one of the Qj , but these are assumed to be normal.

75

For the converse, consider a term M in β-normal form. We show that M is of the

form (7) by induction on M .

• If M = z is a variable, then it is of the form (7) with n = 0 and k = 0.

• If M = NP is normal, then N is normal, so by induction hypothesis, N is

of the form (7). But since NP is normal, N cannot be a lambda abstraction,

so we must have n = 0. It follows that NP = zQ1Q2 . . . QkP is itself of

the form (7).

• If M = λxA.N is normal, then N is normal, so by induction hypothesis,

N is of the form (7). It follows immediately that λxA.N is also of the form

(7).

• The case for M = NA is like the case for M = NP .

• The case for M = Λα.N is like the case for M = λxA.N . �

Definition. In a term of the form (7), the variable z is called the head variable of

the term.

Of course, by the Church-Rosser property together with strong normalization, it

follows that every term of System F is β-equivalent to a unique β-normal form,

which must then be of the form (7). On the other hand, the normal forms (7) are

not unique up to η-conversion; for example, λxA→B .x and λxA→B .λyA.xy are

η-equivalent terms and are both of the form (7). In order to achieve uniqueness up

to βη-conversion, we introduce the notion of a long normal form.

Definition. A term of System F is a long normal form if

• it is of the form (7);

• the body zQ1 . . .Qk is of atomic type (i.e., its type is a type variable); and

• each Qj , when it is a term, is recursively in long normal form.

Proposition 8.7. Every term of System F is βη-equivalent to a unique long normal

form.

Proof. By strong normalization and the Church-Rosser property of β-reduction,

we already know that every term is β-equivalent to a unique β-normal form. It

therefore suffices to show that every β-normal form is η-equivalent to a unique

long normal form.

76

We first show that every β-normal form is η-equivalent to some long normal form.

We prove this by induction. Indeed, consider a β-normal form of the form (7).

By induction hypothesis, each of Q1, . . . , Qk can be η-converted to long normal

form. Now we proceed by induction on the type A of zQ1 . . . Qk. If A = α is

atomic, then the normal form is already long, and there is nothing to show. If

A = B → C, then we can η-expand (7) to

Λa1.Λa2 . . .Λan.λw
B .zQ1Q2 . . . Qkw

and proceed by the inner induction hypothesis. If A = ∀α.B, then we can η-

expand (7) to

Λa1.Λa2 . . .Λan.Λα.zQ1Q2 . . . Qkα

and proceed by the inner induction hypothesis.

For uniqueness, we must show that no two different long normal forms can be

βη-equivalent to each other. We leave this as an exercise. �

8.8 The structure of closed normal forms

It is a remarkable fact that if M is in long normal form, then a lot of the structure

of M is completely determined by its type. Specifically: if the type of M is

atomic, then M must start with a head variable. If the type of M is of the form

B → C, then M must be, up to α-equivalence, of the form λxB .N , where N is a

long normal form of type C. And if the type of M is of the form ∀α.C, then M
must be, up to α-equivalence, of the form Λα.N , where N is a long normal form

of type C.

So for example, consider the type

A = B1 → B2 → ∀α3.B4 → ∀α5.β.

We say that this type have five prefixes, where each prefix is of the form “Bi →”

or “∀αi.”. Therefore, every long normal form of type A must also start with five

prefixes; specifically, it must start with

λxB1

1 .λxB2

2 .Λα3.λx
B4

4 .Λα5. . . .

The next part of the long normal form is a choice of head variable. If the term is

closed, the head variable must be one of the x1, x2, or x4. Once the head variable

has been chosen, then its type determines how many arguments Q1, . . . , Qk the

head variable must be applied to, and the types of these arguments. The structure

77

of each of Q1, . . . , Qk is then recursively determined by its type, with its own

choice of head variable, which then recursively determines its subterms, and so

on.

In other words, the degree of freedom in a long normal form is a choice of head

variable at each level. This choice of head variables completely determines the

long normal form.

Perhaps the preceding discussion can be made more comprehensible by means of

some concrete examples. The examples take the form of the following proposi-

tions and their proofs.

Proposition 8.8. Every closed term of type bool is βη-equivalent to either T or

F.

Proof. Let M be a closed term of type bool . By Proposition 8.7, we may assume

that M is a long normal form. Since bool = ∀α.α → α → α, every long normal

form of this type must start, up to α-equivalence, with

Λα.λxα.λyα. . . .

This must be followed by a head variable, which, since M is closed, can only be

x or y. Since both x and y have atomic type, neither of them can be applied to

further arguments, and therefore, the only two possible long normal forms are:

Λα.λxα.λyα.x
Λα.λxα.λyα.y,

which are T and F, respectively. �

Proposition 8.9. Every closed term of type nat is βη-equivalent to a Church

numeral n, for some n ∈ N.

Proof. Let M be a closed term of type nat . By Proposition 8.7, we may assume

that M is a long normal form. Since nat = ∀α.(α → α) → α → α, every long

normal form of this type must start, up to α-equivalence, with

Λα.λfα→α.λxα. . . .

This must be followed by a head variable, which, since M is closed, can only be

x or f . If the head variable is x, then it takes no argument, and we have

M = Λα.λfα→α.λxα.x

78

If the head variable is f , then it takes exactly one argument, so M is of the form

M = Λα.λfα→α.λxα.fQ1.

Because Q1 has type α, its own long normal form has no prefix; therefore Q1

must start with a head variable, which must again be x or f . If Q1 = x, we have

M = Λα.λfα→α.λxα.fx.

If Q1 has head variable f , then we have Q1 = fQ2, and proceeding in this man-

ner, we find that M has to be of the form

M = Λα.λfα→α.λxα.f(f(. . . (fx) . . .)),

i.e., a Church numeral. �

Exercise 36. Prove that every closed term of type A × B is βη-equivalent to a

term of the form 〈M,N〉, where M : A and N : B.

8.9 Application: representation of arbitrary data in System F

Let us consider the definition of a long normal form one more time. By definition,

every long normal form is of the form

Λa1.Λa2 . . .Λan.zQ1Q2 . . . Qk, (8)

where zQ1Q2 . . . Qk has atomic type and Q1, . . . , Qk are, recursively, long nor-

mal forms. Instead of writing the long normal form on a single line as in (8), let

us write it in tree form instead:

Λa1.Λa2 . . .Λan.z

Q1 Q2 · · · Qk,

where the long normal forms Q1, . . . , Qk are recursively also written as trees. For

example, with this notation, the Church numeral 2 becomes

Λα.λfα→α.λxα.f

f

x,

(9)

79

and the pair 〈M,N〉 becomes

Λα.λfA→B→α.f

M N.

We can use this very idea to encode (almost) arbitrary data structures. For exam-

ple, suppose that the data structure we wish to encode is a binary tree whose leaves

are labelled by natural numbers. Let’s call such a thing a leaf-labelled binary tree.

Here is an example:
•

5 •

8 7.

(10)

In general, every leaf-labelled binary tree is either a leaf, which is labelled by a

natural number, or else a branch that has exactly two children (a left one and a

right one), each of which is a leaf-labelled binary tree. Written as a BNF, we have

the following grammar for leaf-labelled binary trees:

Tree: T, S ::= leaf (n) branch (T, S).

When translating this as a System F type, we think along the lines of long normal

forms. We need a type variable α to represent leaf-labelled binary trees. We

need two head variables whose type ends in α: The first head variable, let’s call

it ℓ, represents a leaf, and takes a single argument that is a natural number. Thus

ℓ : nat → α. The second head variable, let’s call it b, represents a branch, and

takes two arguments that are leaf-labelled binary trees. Thus b : α → α → α. We

end up with the following System F type:

tree = ∀α.(nat → α) → (α → α → α) → α.

A typical long normal form of this type is:

Λα.λℓ nat →α.λbα→α→α.b

ℓ b

5 ℓ ℓ

8 7 ,

80

where 5, 7, and 8 denote Church numerals as in (9), here not expanded into long

normal form for brevity. Notice how closely this long normal form follows (10).

Here is the same term written on a single line:

Λα.λℓ nat →α.λbα→α→α.b(ℓ 5)(b(ℓ 8)(ℓ 7))

Exercise 37. Prove that the closed long normal forms of type tree are in one-to-

one correspondence with leaf-labelled binary trees.

9 Type inference

In Section 6, we introduced the simply-typed lambda calculus, and we discussed

what it means for a term to be well-typed. We have also asked the question, for a

given term, whether it is typable or not.

In this section, we will discuss an algorithm that decides, given a term, whether it

is typable or not, and if the answer is yes, it also outputs a type for the term. Such

an algorithm is known as a type inference algorithm.

A weaker kind of algorithm is a type checking algorithm. A type checking algo-

rithm takes as its input a term with full type annotations, as well as the types of

any free variables, and it decides whether the term is well-typed or not. Thus, a

type checking algorithm does not infer any types; the type must be given to it as

an input and the algorithm merely checks whether the type is legal.

Many compilers of programming languages include a type checker, and programs

that are not well-typed are typically refused. The compilers of some programming

languages, such as ML or Haskell, go one step further and include a type infer-

ence algorithm. This allows programmers to write programs with no or very few

type annotations, and the compiler will figure out the types automatically. This

makes the programmer’s life much easier, especially in the case of higher-order

languages, where types such as ((A → B) → C) → D are not uncommon and

would be very cumbersome to write down. However, in the event that type in-

ference fails, it is not always easy for the compiler to issue a meaningful error

message that can help the human programmer fix the problem. Often, at least a

basic understanding of how the type inference algorithm works is necessary for

programmers to understand these error messages.

81

9.1 Principal types

A simply-typed lambda term can have more than one possible type. Suppose that

we have three basic types ι1, ι2, ι3 in our type system. Then the following are all

valid typing judgments for the term λx.λy.yx:

⊢ λxι1 .λyι1→ι1 .yx : ι1 → (ι1 → ι1) → ι1,

⊢ λxι2→ι3 .λy(ι2→ι3)→ι3 .yx : (ι2 → ι3) → ((ι2 → ι3) → ι3) → ι3,
⊢ λxι1 .λyι1→ι3 .yx : ι1 → (ι1 → ι3) → ι3,
⊢ λxι1 .λyι1→ι3→ι2 .yx : ι1 → (ι1 → ι3 → ι2) → ι3 → ι2,
⊢ λxι1 .λyι1→ι1→ι1 .yx : ι1 → (ι1 → ι1 → ι1) → ι1 → ι1.

What all these typing judgments have in common is that they are of the form

⊢ λxA.λyA→B.yx : A → (A → B) → B,

for certain types A and B. In fact, as we will see, every possible type of the term

λx.λy.yx is of this form. We also say that A → (A → B) → B is the most

general type or the principal type of this term, where A and B are placeholders

for arbitrary types.

The existence of a most general type is not a peculiarity of the term λxy.yx, but

it is true of the simply-typed lambda calculus in general: every typable term has a

most general type. This statement is known as the principal type property.

We will see that our type inference algorithm not only calculates a possible type

for a term, but in fact it calculates the most general type, if any type exists at all.

In fact, we will prove the principal type property by closely examining the type

inference algorithm.

9.2 Type templates and type substitutions

In order to formalize the notion of a most general type, we need to be able to speak

of types with placeholders.

Definition. Suppose we are given an infinite set of type variables, which we de-

note by upper case letters X,Y, Z etc. A type template is a simple type, built from

type variables and possibly basic types. Formally, type templates are given by the

BNF

Type templates: A,B ::= X ι A → B A×B 1

82

Note that we use the same letters A,B to denote type templates that we previously

used to denote types. In fact, from now on, we will simply regard types as special

type templates that happen to contain no type variables.

The point of type variables is that they are placeholders (just like any other kind of

variables). This means, we can replace type variables by arbitrary types, or even

by type templates. A type substitution is just such a replacement.

Definition. A type substitution σ is a function from type variables to type tem-

plates. We often write [X1 7→ A1, . . . , Xn 7→ An] for the substitution defined by

σ(Xi) = Ai for i = 1 . . . n, and σ(Y) = Y if Y 6∈ {X1, . . . , Xn}. If σ is a type

substitution, and A is a type template, then we define σ̄A, the application of σ to

A, as follows by recursion on A:

σ̄X = σX,
σ̄ι = ι,

σ̄(A → B) = σ̄A → σ̄B,
σ̄(A×B) = σ̄A× σ̄B,

σ̄1 = 1.

In words, σ̄A is simply the same as A, except that all the type variables have been

replaced according to σ. We are now in a position to formalize what it means for

one type template to be more general than another.

Definition. Suppose A and B are type templates. We say that A is more general

than B if there exists a type substitution σ such that σ̄A = B.

In other words, we consider A to be more general than B if B can be obtained

from A by a substitution. We also say that B is an instance of A. Examples:

• X → Y is more general than X → X .

• X → X is more general than ι → ι.

• X → X is more general than (ι → ι) → (ι → ι).

• Neither of ι → ι and (ι → ι) → (ι → ι) is more general than the other. We

say that these types are incomparable.

• X → Y is more general than W → Z , and vice versa. We say that X → Y
and W → Z are equally general.

83

We can also speak of one substitution being more general than another:

Definition. If τ and ρ are type substitutions, we say that τ is more general than ρ
if there exists a type substitution σ such that σ̄ ◦ τ = ρ.

9.3 Unifiers

We will be concerned with solving equations between type templates. The basic

question is not very different from solving equations in arithmetic: given an equa-

tion between expressions, for instance x+ y = x2, is it possible to find values for

x and y that make the equation true? The answer is yes in this case, for instance

x = 2, y = 2 is one solution, and x = 1, y = 0 is another possible solution. We

can even give the most general solution, which is x = arbitrary, y = x2 − x.

Similarly, for type templates, we might ask whether an equation such as

X → (X → Y) = (Y → Z) → W

has any solutions. The answer is yes, and one solution, for instance, is X = ι → ι,
Y = ι, Z = ι, W = (ι → ι) → ι. But this is not the most general solution; the

most general solution, in this case, is Y = arbitrary, Z = arbitrary, X = Y → Z ,

W = (Y → Z) → Y .

We use substitutions to represent the solutions to such equations. For instance, the

most general solution to the sample equation from the last paragraph is represented

by the substitution

σ = [X 7→ Y → Z,W 7→ (Y → Z) → Y].

If a substitution σ solves the equation A = B in this way, then we also say that σ
is a unifier of A and B.

To give another example, consider the equation

X × (X → Z) = (Z → Y)× Y.

This equation does not have any solution, because we would have to have both

X = Z → Y and Y = X → Z , which implies X = Z → (X → Z), which

is impossible to solve in simple types. We also say that X × (X → Z) and

(Z → Y)× Y cannot be unified.

In general, we will be concerned with solving not just single equations, but sys-

tems of several equations. The formal definition of unifiers and most general

unifiers is as follows:

84

Definition. Given two sequences of type templates Ā = A1, . . . , An and B̄ =
B1, . . . , Bn, we say that a type substitution σ is a unifier of Ā and B̄ if σ̄Ai =
σ̄Bi, for all i = 1 . . . n. Moreover, we say that σ is a most general unifier of Ā
and B̄ if it is a unifier, and if it is more general than any other unifier of Ā and B̄.

9.4 The unification algorithm

Unification is the process of determining a most general unifier. More specifically,

unification is an algorithm whose input are two sequences of type templates Ā =
A1, . . . , An and B̄ = B1, . . . , Bn, and whose output is either “failure”, if no

unifier exists, or else a most general unifier σ. We call this algorithm mgu for

“most general unifier”, and we write mgu(Ā; B̄) for the result of applying the

algorithm to Ā and B̄.

Before we state the algorithm, let us note that we only use finitely many type

variables, namely, the ones that occur in Ā and B̄. In particular, the substitutions

generated by this algorithm are finite objects that can be represented and manipu-

lated by a computer.

The algorithm for calculating mgu(Ā; B̄) is as follows. By convention, the al-

gorithm chooses the first applicable clause in the following list. Note that the

algorithm is recursive.

1. mgu(X ;X) = id, the identity substitution.

2. mgu(X ;B) = [X 7→ B], if X does not occur in B.

3. mgu(X ;B) fails, if X occurs in B and B 6= X .

4. mgu(A;Y) = [Y 7→ A], if Y does not occur in A.

5. mgu(A;Y) fails, if Y occurs in A and A 6= Y .

6. mgu(ι; ι) = id.

7. mgu(A1 → A2;B1 → B2) = mgu(A1, A2;B1, B2).

8. mgu(A1 ×A2;B1 ×B2) = mgu(A1, A2;B1, B2).

9. mgu(1; 1) = id.

10. mgu(A;B) fails, in all other cases.

85

11. mgu(A, Ā;B, B̄) = τ̄ ◦ ρ, where ρ = mgu(Ā; B̄) and τ = mgu(ρ̄A; ρ̄B).

Note that clauses 1–10 calculate the most general unifier of two type templates,

whereas clause 11 deals with lists of type templates. Clause 10 is a catch-all clause

that fails if none of the earlier clauses apply. In particular, this clause causes the

following to fail: mgu(A1 → A2;B1 ×B2), mgu(A1 → A2; ι), etc.

Proposition 9.1. If mgu(Ā; B̄) = σ, then σ is a most general unifier of Ā and B̄.

If mgu(Ā; B̄) fails, then Ā and B̄ have no unifier.

Proof. First, it is easy to prove by induction on the definition of mgu that if

mgu(Ā; B̄) = σ, then σ is a unifier of Ā and B̄. This is evident in all cases

except perhaps clause 11: but here, by induction hypothesis, ρ̄Ā = ρ̄B̄ and

τ̄ (ρ̄A) = τ̄(ρ̄B), hence also τ̄(ρ̄(A, Ā)) = τ̄ (ρ̄(B, B̄)). Here we have used

the evident notation of applying a substitution to a list of type templates.

Second, we prove that if Ā and B̄ can be unified, then mgu(Ā; B̄) returns a most

general unifier. This is again proved by induction. For example, in clause 2, we

have σ = [X 7→ B]. Suppose τ is another unifier of X and B. Then τ̄X = τ̄B.

We claim that τ̄ ◦ σ = τ . But τ̄(σ(X)) = τ̄(B) = τ̄(X) = τ(X), whereas if

Y 6= X , then τ̄ (σ(Y)) = τ̄ (Y) = τ(Y). Hence τ̄ ◦σ = τ , and it follows that σ is

more general than τ . The clauses 1–10 all follow by similar arguments. For clause

11, suppose that A, Ā and B, B̄ have some unifier σ′. Then σ′ is also a unifier for

Ā and B̄, and thus the recursive call return a most general unifier ρ of Ā and B̄.

Since ρ is more general than σ′, we have κ̄ ◦ ρ = σ′ for some substitution κ. But

then κ̄(ρ̄A) = σ̄′A = σ̄′B = κ̄(ρ̄B), hence κ̄ is a unifier for ρ̄A and ρ̄B. By

induction hypothesis, τ = mgu(ρ̄A; ρ̄B) exists and is a most general unifier for

ρ̄A and ρ̄B. It follows that τ is more general than κ̄, thus κ̄′ ◦ τ = κ̄, for some

substitution κ′. Finally we need to show that σ = τ̄ ◦ ρ is more general than σ′.

But this follows because κ̄′ ◦ σ = κ̄′ ◦ τ̄ ◦ ρ = κ̄ ◦ ρ = σ′. �

Remark 9.2. Proving that the algorithm mgu terminates is tricky. In particular,

termination can’t be proved by induction on the size of the arguments, because

in the second recursive call in clause 11, the application of ρ̄ may well increase

the size of the arguments. To prove termination, note that each substitution σ
generated by the algorithm is either the identity, or else it eliminates at least one

variable. We can use this to prove termination by nested induction on the number

of variables and on the size of the arguments. We leave the details for another

time.

86

9.5 The type inference algorithm

Given the unification algorithm, type inference is now relatively easy. We for-

mulate another algorithm, typeinfer, which takes a typing judgment Γ ⊢ M : B
as its input (using templates instead of types, and not necessarily a valid typing

judgment). The algorithm either outputs a most general substitution σ such that

σ̄Γ ⊢ σ̄M : σ̄B is a valid typing judgment, or if no such σ exists, the algorithm

fails. Here, we have written σ̄M for applying a type substitution to a term, i.e., to

all of the types appearing in the term.

In other words, the algorithm calculates the most general substitution that makes

the given typing judgment valid. It is defined as follows:

1. typeinfer(x1:A1, . . . , xn:An ⊢ xi : B) = mgu(Ai;B).

2. typeinfer(Γ ⊢ MN : B) = τ̄◦σ, whereσ = typeinfer(Γ ⊢ M : X → B),
τ = typeinfer(σ̄Γ ⊢ σ̄N : σ̄X), for a fresh type variable X .

3. typeinfer(Γ ⊢ λxA.M : B) = τ̄ ◦ σ, where σ = mgu(B;A → X) and

τ = typeinfer(σ̄Γ, x:σ̄A ⊢ σ̄M : σ̄X), for a fresh type variable X .

4. typeinfer(Γ ⊢ 〈M,N〉 : A) = ρ̄ ◦ τ̄ ◦ σ, where σ = mgu(A;X × Y),
τ = typeinfer(σ̄Γ ⊢ σ̄M : σ̄X), and ρ = typeinfer(τ̄ σ̄Γ ⊢ τ̄ σ̄N : τ̄ σ̄Y),
for fresh type variables X and Y .

5. typeinfer(Γ ⊢ π1M : A) = typeinfer(Γ ⊢ M : A × Y), for a fresh type

variable Y .

6. typeinfer(Γ ⊢ π2M : B) = typeinfer(Γ ⊢ M : X × B), for a fresh type

variable X .

7. typeinfer(Γ ⊢ ∗ : A) = mgu(A; 1).

Strictly speaking, the algorithm is non-deterministic, because some of the clauses

involve choosing one or more fresh type variables, and the choice is arbitrary.

However, the choice is not essential, since we may regard all fresh type variables

are equivalent. Here, a type variable is called “fresh” if it has never been used.

Note that the algorithm typeinfer can fail; this happens if and only if the call to

mgu fails in steps 1, 3, 4, or 7.

Also note that the algorithm obviously always terminates; this follows by induc-

tion on M , since each recursive call only uses a smaller term M .

87

Proposition 9.3. If there exists a substitution σ such that σ̄Γ ⊢ σ̄M : σ̄B is a

valid typing judgment, then typeinfer(Γ ⊢ M : B) will return a most general

such substitution. Otherwise, the algorithm will fail.

Proof. The proof is similar to that of Proposition 9.1. �

Finally, the question “is M typable” can be answered by choosing distinct type

variables X1, . . . , Xn, Y (and if necessarily, additional type variables for the type

annotations of bound variables in M) and applying the algorithm typeinfer to the

typing judgment x1:X1, . . . , xn:Xn ⊢ M : Y . Note that if the algorithm succeeds

and returns a substitution σ, then σY is the most general type of σM , and the free

variables have types x1:σX1, . . . , xn:σXn.

10 Denotational semantics

We introduced the lambda calculus as the “theory of functions”. But so far, we

have only spoken of functions in abstract terms. Do lambda terms correspond to

any actual functions, such as, functions in set theory? And what about the notions

of β- and η-equivalence? We intuitively accepted these concepts as expressing

truths about the equality of functions. But do these properties really hold of real

functions? Are there other properties that functions have that that are not captured

by βη-equivalence?

The word “semantics” comes from the Greek word for “meaning”. Denotational

semantics means to give meaning to a language by interpreting its terms as math-

ematical objects. This is done by describing a function that maps syntactic objects

(e.g., types, terms) to semantic objects (e.g., sets, elements). This function is

called an interpretation or meaning function, and we usually denote it by [[−]].
Thus, if M is a term, we will usually write [[M]] for the meaning of M under a

given interpretation.

Any good denotational semantics should be compositional, which means, the in-

terpretation of a term should be given in terms of the interpretations of its sub-

terms. Thus, for example, [[MN]] should be a function of [[M]] and [[N]].

Suppose that we have an axiomatic notion of equality ≃ on terms (for instance,

βη-equivalence in the case of the lambda calculus). With respect to a particular

class of interpretations, soundness is the property

M ≃ N ⇒ [[M]] = [[N]] for all interpretations in the class.

88

Completeness is the property

[[M]] = [[N]] for all interpretations in the class ⇒ M ≃ N.

Depending on our viewpoint, we will either say the axioms are sound (with respect

to a given interpretation), or the interpretation is sound (with respect to a given set

of axioms). Similarly for completeness. Soundness expresses the fact that our ax-

ioms (e.g., β or η) are true with respect to the given interpretation. Completeness

expresses the fact that our axioms are sufficient.

10.1 Set-theoretic interpretation

The simply-typed lambda calculus can be given a straightforward set-theoretic

interpretation as follows. We map types to sets and typing judgments to functions.

For each basic type ι, assume that we have chosen a non-empty set Sι. We can

then associate a set [[A]] to each type A recursively:

[[ι]] = Sι

[[A → B]] = [[B]][[A]]

[[A×B]] = [[A]] × [[B]]
[[1]] = {∗}

Here, for two sets X,Y , we write Y X for the set of all functions from X to Y ,

i.e., Y X = {f | f : X → Y }. Of course, X × Y denotes the usual cartesian

product of sets, and {∗} is some singleton set.

We can now interpret lambda terms, or more precisely, typing judgments, as cer-

tain functions. Intuitively, we already know which function a typing judgment

corresponds to. For instance, the typing judgment x:A, f :A → B ⊢ fx : B corre-

sponds to the function that takes an element x ∈ [[A]] and an element f ∈ [[B]][[A]] ,

and that returns f(x) ∈ [[B]]. In general, the interpretation of a typing judgment

x1:A1, . . . , xn:An ⊢ M : B

will be a function

[[A1]] × . . .× [[An]] → [[B]].

Which particular function it is depends of course on the term M . For convenience,

if Γ = x1:A1, . . . , xn:An is a context, let us write [[Γ]] = [[A1]] × . . .× [[An]]. We

now define [[Γ ⊢ M : B]] by recursion on M .

89

• If M is a variable, we define

[[x1:A1, . . . , xn:An ⊢ xi : Ai]] = πi : [[A1]] × . . .× [[An]] → [[Ai]],

where πi(a1, . . . , an) = ai.

• If M = NP is an application, we recursively calculate

f = [[Γ ⊢ N : A → B]] : [[Γ]] → [[B]][[A]] ,
g = [[Γ ⊢ P : A]] : [[Γ]] → [[A]].

We then define

[[Γ ⊢ NP : B]] = h : [[Γ]] → [[B]]

by h(ā) = f(ā)(g(ā)), for all ā ∈ [[Γ]].

• If M = λxA.N is an abstraction, we recursively calculate

f = [[Γ, x:A ⊢ N : B]] : [[Γ]] × [[A]] → [[B]].

We then define

[[Γ ⊢ λxA.N : A → B]] = h : [[Γ]] → [[B]][[A]]

by h(ā)(a) = f(ā, a), for all ā ∈ [[Γ]] and a ∈ [[A]].

• If M = 〈N,P 〉 is an pair, we recursively calculate

f = [[Γ ⊢ N : A]] : [[Γ]] → [[A]],
g = [[Γ ⊢ P : B]] : [[Γ]] → [[B]].

We then define

[[Γ ⊢ 〈N,P 〉 : A×B]] = h : [[Γ]] → [[A]] × [[B]]

by h(ā) = (f(ā), g(ā)), for all ā ∈ [[Γ]].

• If M = πiN is a projection (for i = 1, 2), we recursively calculate

f = [[Γ ⊢ N : B1 ×B2]] : [[Γ]] → [[B1]] × [[B2]].

We then define

[[Γ ⊢ πiN : Bi]] = h : [[Γ]] → [[Bi]]

by h(ā) = πi(f(ā)), for all ā ∈ [[Γ]]. Here πi in the meta-language denotes

the set-theoretic function πi : [[B1]] × [[B2]] → [[Bi]] given by πi(b1, b2) =
bi.

90

• If M = ∗, we define

[[Γ ⊢ ∗ : 1]] = h : [[Γ]] → {∗}

by h(ā) = ∗, for all ā ∈ [[Γ]].

To minimize notational inconvenience, we will occasionally abuse the notation

and write [[M]] instead of [[Γ ⊢ M : B]], thus pretending that terms are typing

judgments. However, this is only an abbreviation, and it will be understood that

the interpretation really depends on the typing judgment, and not just the term,

even if we use the abbreviated notation.

We also refer to an interpretation as a model.

10.2 Soundness

Lemma 10.1 (Context change). The interpretation behaves as expected under

reordering of contexts and under the addition of dummy variables to contexts.

More precisely, if σ : {1, . . . , n} → {1, . . . ,m} is an injective map, and if the

free variables of M are among xσ1, . . . , xσn, then the interpretations of the two

typing judgments,

f = [[x1:A1, . . . , xm:Am ⊢ M : B]] : [[A1]] × . . .× [[Am]] → [[B]],
g = [[xσ1:Aσ1, . . . , xσn:Aσn ⊢ M : B]] : [[Aσ1]] × . . .× [[Aσn]] → [[B]]

are related as follows:

f(a1, . . . , am) = g(aσ1, . . . , aσn),

for all a1 ∈ [[A1]], . . . , am ∈ [[Am]].

Proof. Easy, but tedious, induction on M . �

The significance of this lemma is that, to a certain extent, the context does not

matter. Thus, if the free variables of M and N are contained in Γ as well as Γ′,

then we have

[[Γ ⊢ M : B]] = [[Γ ⊢ N : B]] iff [[Γ′ ⊢ M : B]] = [[Γ′ ⊢ N : B]].

Thus, whether M and N have equal denotations only depends on M and N , and

not on Γ.

91

Lemma 10.2 (Substitution Lemma). If

[[Γ, x:A ⊢ M : B]] = f : [[Γ]] × [[A]] → [[B]] and

[[Γ ⊢ N : A]] = g : [[Γ]] → [[A]],

then

[[Γ ⊢ M [N/x] : B]] = h : [[Γ]] → [[B]],

where h(ā) = f(ā, g(ā)), for all ā ∈ [[Γ]].

Proof. Very easy, but very tedious, induction on M . �

Proposition 10.3 (Soundness). The set-theoretic interpretation is sound for βη-

reasoning. In other words,

M =βη N ⇒ [[Γ ⊢ M : B]] = [[Γ ⊢ N : B]].

Proof. Let us write M ∼ N if [[Γ ⊢ M : B]] = [[Γ ⊢ N : B]]. By the remark after

Lemma 10.1, this notion is independent of Γ, and thus a well-defined relation on

terms (as opposed to typing judgments). To prove soundness, we must show that

M =βη N implies M ∼ N , for all M and N . It suffices to show that ∼ satisfies

all the axioms of βη-equivalence.

The axioms (refl), (symm), and (trans) hold trivially. Similarly, all the (cong) and

(ξ) rules hold, due to the fact that the meaning of composite terms was defined

solely in terms of the meaning of their subterms. It remains to prove that each of

the various (β) and (η) laws is satisfied (see page 57). We prove the rule (β→) as

an example; the remaining rules are left as an exercise.

Assume Γ is a context such that Γ, x:A ⊢ M : B and Γ ⊢ N : A. Let

f = [[Γ, x:A ⊢ M : B]] : [[Γ]] × [[A]] → [[B]],
g = [[Γ ⊢ N : A]] : [[Γ]] → [[A]],

h = [[Γ ⊢ (λxA.M) : A → B]] : [[Γ]] → [[B]][[A]] ,
k = [[Γ ⊢ (λxA.M)N : B]] : [[Γ]] → [[B]],
l = [[Γ ⊢ M [N/x] : B]] : [[Γ]] → [[B]].

We must show k = l. By definition, we have k(ā) = h(ā)(g(ā)) = f(ā, g(ā)).
On the other hand, l(ā) = f(ā, g(ā)) by the substitution lemma. �

Note that the proof of soundness amounts to a simple calculation; while there are

many details to attend to, no particularly interesting new idea is required. This

is typical of soundness proofs in general. Completeness, on the other hand, is

usually much more difficult to prove and often requires clever ideas.

92

10.3 Completeness

We cite two completeness theorems for the set-theoretic interpretation. The first

one is for the class of all models with finite base type. The second one is for the

single model with one countably infinite base type.

Theorem 10.4 (Completeness, Plotkin, 1973). The class of set-theoretic models

with finite base types is complete for the lambda-βη calculus.

Recall that completeness for a class of models means that if [[M]] = [[N]] holds in

all models of the given class, then M =βη N . This is not the same as complete-

ness for each individual model in the class.

Note that, for each fixed choice of finite sets as the interpretations of the base

types, there are some lambda terms such that [[M]] = [[N]] but M 6=βη N . For

instance, consider terms of type (ι → ι) → ι → ι. There are infinitely many

βη-distinct terms of this type, namely, the Church numerals. On the other hand,

if Sι is a finite set, then [[(ι → ι) → ι → ι]] is also a finite set. Since a finite

set cannot have infinitely many distinct elements, there must necessarily be two

distinct Church numerals M,N such that [[M]] = [[N]].

Plotkin’s completeness theorem, on the other hand, shows that whenever M and

N are distinct lambda terms, then there exist some set-theoretic model with finite

base types in which M and N are different.

The second completeness theorem is for a single model, namely the one where Sι

is a countably infinite set.

Theorem 10.5 (Completeness, Friedman, 1975). The set-theoretic model with

base type equal to N, the set of natural numbers, is complete for the lambda-βη
calculus.

We omit the proofs.

11 The language PCF

PCF stands for “programming with computable functions”. The language PCF is

an extension of the simply-typed lambda calculus with booleans, natural numbers,

and recursion. It was first introduced by Dana Scott as a simple programming lan-

guage on which to try out techniques for reasoning about programs. Although PCF

is not intended as a “real world” programming language, many real programming

93

languages can be regarded as (syntactic variants of) extensions of PCF, and many

of the reasoning techniques developed for PCF also apply to more complicated

languages.

PCF is a “programming language”, not just a “calculus”. By this we mean, PCF

is equipped with a specific evaluation order, or rules that determine precisely how

terms are to be evaluated. We follow the slogan:

Programming language = syntax + evaluation rules.

After introducing the syntax of PCF, we will look at three different equivalence

relations on terms.

• Axiomatic equivalence =ax will be given by axioms in the spirit of βη-

equivalence.

• Operational equivalence =op will be defined in terms of the operational

behavior of terms. Two terms are operationally equivalent if one can be

substituted for the other in any context without changing the behavior of a

program.

• Denotational equivalence =den is defined via a denotational semantics.

We will develop methods for reasoning about these equivalences, and thus for

reasoning about programs. We will also investigate how the three equivalences

are related to each other.

11.1 Syntax and typing rules

PCF types are simple types over two base types bool and nat .

A,B ::= bool nat A → B A×B 1

The raw terms of PCF are those of the simply-typed lambda calculus, together

with some additional constructs that deal with booleans, natural numbers, and

recursion.

M,N,P ::= x MN λxA.M 〈M,N〉 π1M π2M ∗
T F zero succ (M) pred (M)

iszero (M) if M then N else P Y(M)

94

(true)
Γ ⊢ T : bool

(false)
Γ ⊢ F : bool

(zero)
Γ ⊢ zero : nat

(succ)
Γ ⊢ M : nat

Γ ⊢ succ (M) : nat

(pred)
Γ ⊢ M : nat

Γ ⊢ pred (M) : nat

(iszero)
Γ ⊢ M : nat

Γ ⊢ iszero (M) : bool

(fix)
Γ ⊢ M : A → A

Γ ⊢ Y(M) : A

(if)
Γ ⊢ M : bool Γ ⊢ N : A Γ ⊢ P : A

Γ ⊢ if M then N else P : A

Table 7: Typing rules for PCF

The intended meaning of these terms is the same as that of the corresponding

terms we used to program in the untyped lambda calculus: T and F are the

boolean constants, zero is the constant zero, succ and pred are the successor

and predecessor functions, iszero tests whether a given number is equal to zero,

if M then N else P is a conditional, and Y(M) is a fixed point of M .

The typing rules for PCF are the same as the typing rules for the simply-typed

lambda calculus, shown in Table 4, plus the additional typing rules shown in Ta-

ble 7.

11.2 Axiomatic equivalence

The axiomatic equivalence of PCF is based on the βη-equivalence of the simply-

typed lambda calculus. The relation =ax is the least relation given by the follow-

ing:

• All the β- and η-axioms of the simply-typed lambda calculus, as shown on

page 57.

• One congruence or ξ-rule for each term constructor. This means, for in-

stance
M =ax M ′ N =ax N ′ P =ax P ′

if M then N else P =ax if M ′ then N ′ else P ′
,

95

pred (zero) = zero

pred (succ (n)) = n
iszero (zero) = T

iszero (succ (n)) = F

if T then N else P = N
if F then N else P = P

Y(M) = M(Y(M))

Table 8: Axiomatic equivalence for PCF

and similar for all the other term constructors.

• The additional axioms shown in Table 8. Here, n stands for a numeral, i.e.,

a term of the form succ (. . . (succ (zero)) . . .).

11.3 Operational semantics

The operational semantics of PCF is commonly given in two different styles: the

small-step or shallow style, and the big-step or deep style. We give the small-step

semantics first, because it is closer to the notion of β-reduction that we considered

for the simply-typed lambda calculus.

There are some important differences between an operational semantics, as we

are going to give it here, and the notion of β-reduction in the simply-typed lambda

calculus. Most importantly, the operational semantics is going to be deterministic,

which means, each term can be reduced in at most one way. Thus, there will never

be a choice between more than one redex. Or in other words, it will always be

uniquely specified which redex to reduce next.

As a consequence of the previous paragraph, we will abandon many of the congru-

ence rules, as well as the (ξ)-rule. We adopt the following informal conventions:

• never reduce the body of a lambda abstraction,

• never reduce the argument of a function (except for primitive functions such

as succ and pred),

• never reduce the “then” or “else” part of an if-then-else statement,

• never reduce a term inside a pair.

96

Of course, the terms that these rules prevent from being reduced can neverthe-

less become subject to reduction later: the body of a lambda abstraction and the

argument of a function can be reduced after a β-reduction causes the λ to disap-

pear and the argument to be substituted in the body. The “then” or “else” parts

of an if-then-else term can be reduced after the “if” part evaluates to true or false.

And the terms inside a pair can be reduced after the pair has been broken up by a

projection.

An important technical notion is that of a value, which is a term that represents

the result of a computation and cannot be reduced further. Values are given as

follows:

Values: V,W ::= T F zero succ (V) ∗ 〈M,N〉 λxA.M

The transition rules for the small-step operational semantics of PCF are shown in

Table 9.

We write M → N if M reduces to N by these rules. We write M 6→ if there

does not exist N such that M → N . The first two important technical properties

of small-step reduction are summarized in the following lemma.

Lemma 11.1. 1. Values are normal forms. If V is a value, then V 6→.

2. Evaluation is deterministic. If M → N and M → N ′, then N ≡ N ′.

Another important property is subject reduction: a well-typed term reduces only

to another well-typed term of the same type.

Lemma 11.2 (Subject Reduction). If Γ ⊢ M : A and M → N , then Γ ⊢ N : A.

Next, we want to prove that the evaluation of a well-typed term does not get

“stuck”. If M is some term such that M 6→, but M is not a value, then we

regard this as an error, and we also write M → error . Examples of such terms

are π1(λx.M) and 〈M,N〉P . The following lemma shows that well-typed closed

terms cannot lead to such errors.

Lemma 11.3 (Progress). If M is a closed, well-typed term, then either M is a

value, or else there exists N such that M → N .

The Progress Lemma is very important, because it implies that a well-typed term

cannot “go wrong”. It guarantees that a well-typed term will either evaluate to a

value in finitely many steps, or else it will reduce infinitely and thus not terminate.

97

M → N
pred (M) → pred (N)

pred (zero) → zero

pred (succ (V)) → V

M → N
iszero (M) → iszero (N)

iszero (zero) → T

iszero (succ (V)) → F

M → N
succ (M) → succ (N)

M → N
MP → NP

(λxA.M)N → M [N/x]

M → M ′

πiM → πiM
′

π1〈M,N〉 → M

π2〈M,N〉 → N

M : 1, M 6= ∗
M → ∗

M → M ′

if M then N else P → if M ′ then N else P

if T then N else P → N

if F then N else P → P

Y(M) → M(Y(M))

Table 9: Small-step operational semantics of PCF

But a well-typed term can never generate an error. In programming language

terms, a term that type-checks at compile-time cannot generate an error at run-

time.

To express this idea formally, let us write M →∗ N in the usual way if M reduces

to N in zero or more steps, and let us write M →∗ error if M reduces in zero or

more steps to an error.

Proposition 11.4 (Safety). If M is a closed, well-typed term, then M 6→∗ error .

Exercise 38. Prove Lemmas 11.1–11.3 and Proposition 11.4.

11.4 Big-step semantics

In the small-step semantics, if M →∗ V , we say that M evaluates to V . Note that

by determinacy, for every M , there exists at most one V such that M →∗ V .

98

T ⇓ T

F ⇓ F

zero ⇓ zero

〈M,N〉 ⇓ 〈M,N〉

λxA.M ⇓ λxA.M

M ⇓ zero

pred (M) ⇓ zero

M ⇓ succ (V)

pred (M) ⇓ V

M ⇓ zero

iszero (M) ⇓ T

M ⇓ succ (V)

iszero (M) ⇓ F

M ⇓ V

succ (M) ⇓ succ (V)

M ⇓ λxA.M ′ M ′[N/x] ⇓ V

MN ⇓ V

M ⇓ 〈M1,M2〉 M1 ⇓ V

π1M ⇓ V

M ⇓ 〈M1,M2〉 M2 ⇓ V

π2M ⇓ V

M : 1

M ⇓ ∗

M ⇓ T N ⇓ V

if M then N else P ⇓ V

M ⇓ F P ⇓ V
if M then N else P ⇓ V

M(Y(M)) ⇓ V

Y(M) ⇓ V

Table 10: Big-step operational semantics of PCF

It is also possible to axiomatize the relation “M evaluates to V ” directly. This is

known as the big-step semantics. Here, we write M ⇓ V if M evaluates to V .

The axioms for the big-step semantics are shown in Table 10.

The big-step semantics satisfies properties similar to those of the small-step se-

mantics.

Lemma 11.5. 1. Values. For all values V , we have V ⇓ V .

2. Determinacy. If M ⇓ V and M ⇓ V ′, then V ≡ V ′.

3. Subject Reduction. If Γ ⊢ M : A and M ⇓ V , then Γ ⊢ V : A.

The analogues of the Progress and Safety properties cannot be as easily stated for

big-step reduction, because we cannot easily talk about a single reduction step or

about infinite reduction sequences. However, some comfort can be taken in the

fact that the big-step semantics and small-step semantics coincide:

99

Proposition 11.6. M →∗ V iff M ⇓ V .

11.5 Operational equivalence

Informally, two terms M and N will be called operationally equivalent if M and

N are interchangeable as part of any larger program, without changing the ob-

servable behavior of the program. This notion of equivalence is also often called

observational equivalence, to emphasize the fact that it concentrates on observable

properties of terms.

What is an observable behavior of a program? Normally, what we observe about a

program is its output, such as the characters it prints to a terminal. Since any such

characters can be converted in principle to natural numbers, we take the point of

view that the observable behavior of a program is a natural number that it evaluates

to. Similarly, if a program computes a boolean, we regard the boolean value as

observable. However, we do not regard abstract values, such as functions, as

being directly observable, on the grounds that a function cannot be observed until

we supply it some arguments and observe the result.

Definition. An observable type is either bool or nat . A result is a closed value

of observable type. Thus, a result is either T, F, or n. A program is a closed term

of observable type.

A context is a term with a hole, written C[−]. Formally, the class of contexts is

defined by a BNF:

C[−] ::= [−] x C[−]N MC[−] λxA.C[−] . . .

and so on, extending through all the cases in the definition of a PCF term.

Well-typed contexts are defined in the same way as well-typed terms, where it

is understood that the hole also has a type. The free variables of a context are

defined in the same way as for terms. Moreover, we define the captured variables

of a context to be those bound variables whose scope includes the hole. So for

instance, in the context (λx.[−])(λy.z), the variable x is captured, the variable z
is free, and y is neither free nor captured.

If C[−] is a context and M is a term of the appropriate type, we write C[M] for

the result of replacing the hole in the context C[−] by M . Here, we do not α-

rename any bound variables, so that we allow free variables of M to be captured

by C[−].

We are now ready to state the definition of operational equivalence.

100

Definition. Two terms M,N are operationally equivalent, in symbols M =op N ,

if for all closed and closing context C[−] of observable type and all values V ,

C[M] ⇓ V ⇐⇒ C[N] ⇓ V.

Here, by a closing context we mean that C[−] should capture all the free variables

of M and N . This is equivalent to requiring that C[M] and C[N] are closed terms

of observable types, i.e., programs. Thus, two terms are equivalent if they can be

used interchangeably in any program.

11.6 Operational approximation

As a refinement of operational equivalence, we can also define a notion of opera-

tional approximation: We say that M operationally approximates N , in symbols

M ⊑op N , if for all closed and closing contexts C[−] of observable type and all

values V ,

C[M] ⇓ V ⇒ C[N] ⇓ V.

Note that this definition includes the case where C[M] diverges, but C[N] con-

verges, for some N . This formalizes the notion that N is “more defined” than M .

Clearly, we have M =op N iff M ⊑op N and N ⊑op M . Thus, we get a partial

order ⊑op on the set of all terms of a given type, modulo operational equivalence.

Also, this partial order has a least element, namely if we let Ω = Y(λx.x), then

Ω ⊑op N for any term N of the appropriate type.

Note that, in general, ⊑op is not a complete partial order, due to missing limits of

ω-chains.

11.7 Discussion of operational equivalence

Operational equivalence is a very useful concept for reasoning about programs,

and particularly for reasoning about program fragments. If M and N are opera-

tionally equivalent, then we know that we can replace M by N in any program

without affecting its behavior. For example, M could be a slow, but simple sub-

routine for sorting a list. The term N could be a replacement that runs much faster.

If we can prove M and N to be operationally equivalent, then this means we can

safely use the faster routine instead of the slower one.

Another example are compiler optimizations. Many compilers will try to optimize

the code that they produce, to eliminate useless instructions, to avoid duplicate

101

calculations, etc. Such an optimization often means replacing a piece of code M
by another piece of code N , without necessarily knowing much about the context

in which M is used. Such a replacement is safe if M and N are operationally

equivalent.

On the other hand, operational equivalence is a somewhat problematic notion. The

problem is that the concept is not stable under adding new language features. It

can happen that two terms, M and N , are operationally equivalent, but when a

new feature is added to the language, they become nonequivalent, even if M and

N do not use the new feature. The reason is the operational equivalence is defined

in terms of contexts. Adding new features to a language also means that there will

be new contexts, and these new contexts might be able to distinguish M and N .

This can be a problem in practice. Certain compiler optimizations might be sound

for a sequential language, but might become unsound if new language features

are added. Code that used to be correct might suddenly become incorrect if used

in a richer environment. For example, many programs and library functions in C

assume that they are executed in a single-threaded environment. If this code is

ported to a multi-threaded environment, it often turns out to be no longer correct,

and in many cases it must be re-written from scratch.

11.8 Operational equivalence and parallel or

Let us now look at a concrete example in PCF. We say that a term POR imple-

ments the parallel or function if it has the following behavior:

POR TP → T, for all P
POR NT → T, for all N
POR FF → F.

Note that this in particular implies POR TΩ = T and POR ΩT = T, where Ω
is some divergent term. It should be clear why POR is called the “parallel” or:

the only way to achieve such behavior is to evaluate both its arguments in parallel,

and to stop as soon as one argument evaluates to T or both evaluate to F.

Proposition 11.7. POR is not definable in PCF.

We do not give the proof of this fact, but the idea is relatively simple: one proves

by induction that every PCF context C[−,−] with two holes has the following

property: either, there exists a term N such that C[M,M ′] = N for all M,M ′

(i.e., the context does not look at M,M ′ at all), or else, either C[Ω,M] diverges

102

for all M , or C[M,Ω] diverges for all M . Here, again, Ω is some divergent term

such as Y(λx.x).

Although POR is not definable in PCF, we can define the following term, called

the POR-tester:

POR-test = λx.if xTΩ then

if xΩT then

if xFF then Ω
else T

else Ω
else Ω

The POR-tester has the property that POR-test M = T if M implements the

parallel or function, and in all other cases POR-test M diverges. In particular,

since parallel or is not definable in PCF, we have that POR-test M diverges, for all

PCF terms M . Thus, when applied to any PCF term, POR-test behaves precisely

as the function λx.Ω does. One can make this into a rigorous argument that shows

that POR-test and λx.Ω are operationally equivalent:

POR-test =op λx.Ω (in PCF).

Now, suppose we want to define an extension of PCF called parallel PCF. It

is defined in exactly the same way as PCF, except that we add a new primitive

function POR , and small-step reduction rules

M → M ′ N → N ′

POR MN → POR M ′N ′

POR TN → T

POR MT → T

POR FF → F

Parallel PCF enjoys many of the same properties as PCF, for instance, Lem-

mas 11.1–11.3 and Proposition 11.4 continue to hold for it.

But notice that

POR-test 6=op λx.Ω (in parallel PCF).

This is because the context C[−] = [−]POR distinguishes the two terms: clearly,

C[POR-test] ⇓ T, whereas C[λx.Ω] diverges.

103

12 Complete partial orders

12.1 Why are sets not enough, in general?

As we have seen in Section 10, the interpretation of types as plain sets is quite

sufficient for the simply-typed lambda calculus. However, it is insufficient for a

language such as PCF. Specifically, the problem is the fixed point operator Y :
(A → A) → A. It is clear that there are many functions f : A → A from a set

A to itself that do not have a fixed point; thus, there is no chance we are going to

find an interpretation for a fixed point operator in the simple set-theoretic model.

On the other hand, if A and B are types, there are generally many functions f :
[[A]] → [[B]] in the set-theoretic model that are not definable by lambda terms.

For instance, if [[A]] and [[B]] are infinite sets, then there are uncountably many

functions f : [[A]] → [[B]]; however, there are only countably many lambda terms,

and thus there are necessarily going to be functions that are not the denotation of

any lambda term.

The idea is to put additional structure on the sets that interpret types, and to re-

quire functions to preserve that structure. This is going to cut down the size of

the function spaces, decreasing the “slack” between the functions definable in the

lambda calculus and the functions that exist in the model, and simultaneously in-

creasing the chances that additional structure, such as fixed point operators, might

exist in the model.

Complete partial orders are one such structure that is commonly used for this

purpose. The method is originally due to Dana Scott.

12.2 Complete partial orders

Definition. A partially ordered set or poset is a set X together with a binary

relation ⊑ satisfying

• reflexivity: for all x ∈ X , x ⊑ x,

• antisymmetry: for all x, y ∈ X , x ⊑ y and y ⊑ x implies x = y,

• transitivity: for all x, y, z ∈ X , x ⊑ y and y ⊑ z implies x ⊑ z.

The concept of a partial order differs from a total order in that we do not require

that for any x and y, either x ⊑ y or y ⊑ x. Thus, in a partially ordered set it is

104

1 2 3 4 nT F* 0
❜ ❜ ❜

❜

❜

❜

❜ ❜ ❜ ❜ ❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜ ❜

❜ ❜ ❜

❜

❜

❜

❜

❏
❏

✡
✡

◗
◗◗
❏
❏✡

✡
✑
✑✑

✏✏✏✏✏

...

...

... ...
...
...

✧
✧✧

✧
✧✧

❜
❜❜❜

❜❜
.❜

❜❜
✧
✧✧

❛❛❛❛
❡❡ ✪✪✦✦✦✦

.
.

1 B2 N

ω ω + 1 B
B

Figure 4: Some posets

permissible to have incomparable elements.

We can often visualize posets, particularly finite ones, by drawing their line dia-

grams as in Figure 4. In these diagrams, we put one circle for each element of

X , and we draw an edge from x upward to y if x ⊑ y and there is no z with

x ⊑ z ⊑ y. Such line diagrams are also known as Hasse diagrams.

The idea behind using a partial order to denote computational values is that x ⊑ y
means that x is less defined than y. For instance, if a certain term diverges, then

its denotation will be less defined than, or below that of a term that has a definite

value. Similarly, a function is more defined than another if it converges on more

inputs.

Another important idea in using posets for modelling computational value is that

of approximation. We can think of some infinite computational object (such as, an

infinite stream), to be a limit of successive finite approximations (such as, longer

and longer finite streams). Thus we also read x ⊑ y as x approximates y. A

complete partial order is a poset in which every countable chain of increasing

elements approximates something.

Definition. Let X be a poset and let A ⊆ X be a subset. We say that x ∈ X is

an upper bound for A if a ⊑ x for all a ∈ A. We say that x is a least upper bound

for A if x is an upper bound, and whenever y is also an upper bound, then x ⊑ y.

Definition. An ω-chain in a poset X is a sequence of elements x0, x1, x2, . . .

105

such that

x0 ⊑ x1 ⊑ x2 ⊑ . . .

Definition. A complete partial order (cpo) is a poset such that every ω-chain of

elements has a least upper bound.

If x0, x1, x2, . . . is an ω-chain of elements in a cpo, we write ❇❇✂✂✍i∈N
xi for the least

upper bound. We also call the least upper bound the limit of the ω-chain.

Not every poset is a cpo. In Figure 4, the poset labelled ω is not a cpo, because the

evident ω-chain does not have a least upper bound (in fact, it has no upper bound

at all). The other posets shown in Figure 4 are cpo’s.

12.3 Properties of limits

Proposition 12.1. 1. Monotonicity. Suppose {xi}i and {yi}i are ω-chains in

a cpo C, such that xi ⊑ yi for all i. Then

❇❇✂✂✍
i

xi ⊑ ❇❇✂✂✍
i

yi.

2. Exchange. Suppose {xij}i,j∈N is a doubly monotone double sequence of

elements of a cpo C, i.e., whenever i 6 i′ and j 6 j′, then xij ⊑ xi′j′ .

Then

❇❇✂✂✍
i∈N

❇❇✂✂✍
j∈N

xij = ❇❇✂✂✍
j∈N

❇❇✂✂✍
i∈N

xij = ❇❇✂✂✍
k∈N

xkk.

In particular, all limits shown are well-defined.

Exercise 39. Prove Proposition 12.1.

12.4 Continuous functions

If we model data types as cpo’s, it is natural to model algorithms as functions

from cpo’s to cpo’s. These functions are subject to two constraints: they have to

be monotone and continuous.

Definition. A function f : C → D between posets C and D is said to be mono-

tone if for all x, y ∈ C,

x ⊑ y ⇒ f(x) ⊑ f(y).

106

A function f : C → D between cpo’s C and D is said to be continuous if it is

monotone and it preserves least upper bounds of ω-chains, i.e., for all ω-chains

{xi}i∈N in C,

f(❇❇✂✂✍
i∈N

xi) = ❇❇✂✂✍
i∈N

f(xi).

The intuitive explanation for the monotonicity requirement is that information is

“positive”: more information in the input cannot lead to less information in the

output of an algorithm. The intuitive explanation for the continuity requirement is

that any particular output of an algorithm can only depend on a finite amount of

input.

12.5 Pointed cpo’s and strict functions

Definition. A cpo is said to be pointed if it has a least element. The least element

is usually denoted ⊥ and pronounced “bottom”. All cpo’s shown in Figure 4 are

pointed.

A continuous function between pointed cpo’s is said to be strict if it preserves the

bottom element.

12.6 Products and function spaces

If C and D are cpo’s, then their cartesian product C ×D is also a cpo, with the

pointwise order given by (x, y) ⊑ (x′, y′) iff x ⊑ x′ and y ⊑ y′. Least upper

bounds are also given pointwise, thus

❇❇✂✂✍
i

(xi, yi) = (❇❇✂✂✍
i

xi, ❇❇✂✂✍
i

yi).

Proposition 12.2. The first and second projections, π1 : C × D → C and π2 :
C ×D → D, are continuous functions. Moreover, if f : E → C and g : E → D
are continuous functions, then so is the function h : E → C ×D given by h(z) =
(f(z), g(z)).

If C and D are cpo’s, then the set of continuous functions f : C → D forms a cpo,

denoted DC . The order is given pointwise: given two functions f, g : C → D,

we say that

f ⊑ g iff for all x ∈ C, f(x) ⊑ g(x).

107

Proposition 12.3. The set DC of continuous functions from C to D, together with

the order just defined, is a complete partial order.

Proof. Clearly the set DC is partially ordered. What we must show is that least

upper bounds of ω-chains exist. Given an ω-chain f0, f1, . . . in DC , we define

g ∈ DC to be the pointwise limit, i.e.,

g(x) = ❇❇✂✂✍
i∈N

fi(x),

for all x ∈ C. Note that {fi(x)}i does indeed form an ω-chain in C, so that g is a

well-defined function. We claim that g is the least upper bound of {fi}i. First we

need to show that g is indeed an element of DC . To see that g is monotone, we

use Proposition 12.1(1) and calculate, for any x ⊑ y ∈ C,

g(x) = ❇❇✂✂✍
i∈N

fi(x) ⊑ ❇❇✂✂✍
i∈N

fi(y) = g(y).

To see that g is continuous, we use Proposition 12.1(2) and calculate, for any

ω-chain x0, x1, . . . in C,

g(❇❇✂✂✍
j

xj) = ❇❇✂✂✍
i
❇❇✂✂✍
j

fi(xj) = ❇❇✂✂✍
j
❇❇✂✂✍
i

fi(xj) = ❇❇✂✂✍
j

g(xj).

Finally, we must show that g is the least upper bound of the {fi}i. Clearly, fi ⊑ g
for all i, so that g is an upper bound. Now suppose h ∈ DC is any other upper

bound of {fi}. Then for all x, fi(x) ⊑ h(x). Since g(x) was defined to be the

least upper bound of {fi(x)}i, we then have g(x) ⊑ h(x). Since this holds for all

x, we have g ⊑ h. Thus g is indeed the least upper bound. �

Exercise 40. Recall the cpo B from Figure 4. The cpo B
B is also shown in

Figure 4. Its 11 elements correspond to the 11 continuous functions from B to B.

Label the elements of BB with the functions they correspond to.

Proposition 12.4. The application function DC × C → D, which maps (f, x) to

f(x), is continuous.

Proposition 12.5. Continuous functions can be continuously curried and un-

curried. In other words, if f : C × D → E is a continuous function, then

f∗ : C → ED , defined by f∗(x)(y) = f(x, y), is well-defined and continuous.

Conversely, if g : C → ED is a continuous function, then g∗ : C ×D → E, de-

fined by g∗(x, y) = g(x)(y), is well-defined and continuous. Moreover, (f∗)∗ = f
and (g∗)

∗ = g.

108

12.7 The interpretation of the simply-typed lambda calculus in

complete partial orders

The interpretation of the simply-typed lambda calculus in cpo’s resembles the set-

theoretic interpretation, except that types are interpreted by cpo’s instead of sets,

and typing judgments are interpreted as continuous functions.

For each basic type ι, assume that we have chosen a pointed cpo Sι. We can then

associate a pointed cpo [[A]] to each type A recursively:

[[ι]] = Sι

[[A → B]] = [[B]][[A]]

[[A×B]] = [[A]] × [[B]]
[[1]] = 1

Typing judgments are now interpreted as continuous functions

[[A1]] × . . .× [[An]] → [[B]]

in precisely the same way as they were defined for the set-theoretic interpretation.

The only thing we need to check, at every step, is that the function defined is

indeed continuous. For variables, this follows from the fact that projections of

cartesian products are continuous (Proposition 12.2). For applications, we use the

fact that the application function of cpo’s is continuous (Proposition 12.4), and for

lambda-abstractions, we use the fact that currying is a well-defined, continuous

operation (Proposition 12.5). Finally, the continuity of the maps associated with

products and projections follows from Proposition 12.2.

Proposition 12.6 (Soundness and Completeness). The interpretation of the simply-

typed lambda calculus in pointed cpo’s is sound and complete with respect to the

lambda-βη calculus.

12.8 Cpo’s and fixed points

One of the reasons, mentioned in the introduction to this section, for using cpo’s

instead of sets for the interpretation of the simply-typed lambda calculus is that

cpo’s admit fixed point, and thus they can be used to interpret an extension of the

lambda calculus with a fixed point operator.

Proposition 12.7. Let C be a pointed cpo and let f : C → C be a continuous

function. Then f has a least fixed point.

109

Proof. Define x0 = ⊥ and xi+1 = f(xi), for all i ∈ N. The resulting sequence

{xi}i is an ω-chain, because clearly x0 ⊑ x1 (since x0 is the least element), and

if xi ⊑ xi+1, then f(xi) ⊑ f(xi+1) by monotonicity, hence xi+1 ⊑ xi+2. It

follows by induction that xi ⊑ xi+1. Let x = ❇❇✂✂✍i xi be the limit of this ω-chain.

Then using continuity of f , we have

f(x) = f(❇❇✂✂✍
i

xi) = ❇❇✂✂✍
i

f(xi) = ❇❇✂✂✍
i

xi+1 = x.

To prove that it is the least fixed point, let y be any other fixed point, i.e., let

f(y) = y. We prove by induction that for all i, xi ⊑ y. For i = 0 this is trivial

because x0 = ⊥. Assume xi ⊑ y, then xi+1 = f(xi) ⊑ f(y) = y. It follows that

y is an upper bound for {xi}i. Since x is, by definition, the least upper bound, we

have x ⊑ y. Since y was arbitrary, x is below any fixed point, hence x is the least

fixed point of f . �

If f : C → C is any continuous function, let us write f † for its least fixed point.

We claim that f † depends continuously on f , i.e., that † : CC → C defines a

continuous function.

Proposition 12.8. The function † : CC → C, which assigns to each continuous

function f ∈ CC its least fixed point f † ∈ C, is continuous.

Exercise 41. Prove Proposition 12.8.

Thus, if we add to the simply-typed lambda calculus a family of fixed point op-

erators YA : (A → A) → A, the resulting extended lambda calculus can then be

interpreted in cpo’s by letting

[[YA]] = † : [[A]][[A]] → [[A]].

12.9 Example: Streams

Consider streams of characters from some alphabet A. Let A6ω be the set of finite

or infinite sequences of characters. We order A by the prefix ordering: if s and t
are (finite or infinite) sequences, we say s ⊑ t if s is a prefix of t, i.e., if there exists

a sequence s′ such that t = ss′. Note that if s ⊑ t and s is an infinite sequence,

then necessarily s = t, i.e., the infinite sequences are the maximal elements with

respect to this order.

Exercise 42. Prove that the set A6ω forms a cpo under the prefix ordering.

110

Exercise 43. Consider an automaton that reads characters from an input stream

and writes characters to an output stream. For each input character read, it can

write zero, one, or more output characters. Discuss how such an automaton gives

rise to a continuous function from A6ω → A6ω . In particular, explain the mean-

ing of monotonicity and continuity in this context. Give some examples.

13 Denotational semantics of PCF

The denotational semantics of PCF is defined in terms of cpo’s. It extends the cpo

semantics of the simply-typed lambda calculus. Again, we assign a cpo [[A]] to

each PCF type A, and a continuous function

[[Γ ⊢ M : B]] : [[Γ]] → [[B]]

to every PCF typing judgment. The interpretation is defined in precisely the same

way as for the simply-typed lambda calculus. The interpretation for the PCF-

specific terms is shown in Table 11. Recall that B and N are the cpo’s of lifted

booleans and lifted natural numbers, respectively, as shown in Figure 4.

Definition. Two PCF terms M and N of equal types are denotationally equiv-

alent, in symbols M =den N , if [[M]] = [[N]]. We also write M ⊑den N if

[[M]] ⊑ [[N]].

13.1 Soundness and adequacy

We have now defined the three notions of equivalence on terms: =ax, =op, and

=den. In general, one does not expect the three equivalences to coincide. For

example, any two divergent terms are operationally equivalent, but there is no

reason why they should be axiomatically equivalent. Also, the POR-tester and

the term λx.Ω are operationally equivalent in PCF, but they are not denotationally

equivalent (since a function representing POR clearly exists in the cpo semantics).

For general terms M and N , one has the following property:

Theorem 13.1 (Soundness). For PCF terms M andN , the following implications

hold:

M =ax N ⇒ M =den N ⇒ M =op N.

111

Types: [[bool]] = B

[[nat]] = N

Terms: [[T]] = T ∈ B

[[F]] = F ∈ B

[[zero]] = 0 ∈ N

[[succ (M)]] =

{

⊥ if [[M]] = ⊥,

n+ 1 if [[M]] = n

[[pred (M)]] =

⊥ if [[M]] = ⊥,

0 if [[M]] = 0,

n if [[M]] = n+ 1

[[iszero (M)]] =

⊥ if [[M]] = ⊥,

T if [[M]] = 0,

F if [[M]] = n+ 1

[[if M then N else P]] =

⊥ if [[M]] = ⊥,

[[N]] if [[M]] = F,

[[P]] if [[M]] = T,

[[Y(M)]] = [[M]]†

Table 11: Cpo semantics of PCF

112

Soundness is a very useful property, because M =ax N is in general easier to

prove than M =den N , and M =den N is in turns easier to prove than M =op N .

Thus, soundness gives us a powerful proof method: to prove that two terms are

operationally equivalent, it suffices to show that they are equivalent in the cpo

semantics (if they are), or even that they are axiomatically equivalent.

As the above examples show, the converse implications are not in general true.

However, the converse implications hold if the terms M and N are closed and

of observable type, and if N is a value. This property is called computational

adequacy. Recall that a program is a closed term of observable type, and a result

is a closed value of observable type.

Theorem 13.2 (Computational Adequacy). If M is a program and V is a result,

then

M =ax V ⇐⇒ M =den V ⇐⇒ M =op V.

Proof. First note that the small-step semantics is contained in the axiomatic se-

mantics, i.e., if M → N , then M =ax N . This is easily shown by induction on

derivations of M → N .

To prove the theorem, by soundness, it suffices to show that M =op V implies

M =ax V . So assume M =op V . Since V ⇓ V and V is of observable type, it

follows that M ⇓ V . Therefore M →∗ V by Proposition 11.6. But this already

implies M =ax V , and we are done. �

13.2 Full abstraction

We have already seen that the operational and denotational semantics do not co-

incide for PCF, i.e., there are some terms such that M =op N but M 6=den N .

Examples of such terms are POR-test and λx.Ω.

But of course, the particular denotational semantics that we gave to PCF is not the

only possible denotational semantics. One can ask whether there is a better one.

For instance, instead of cpo’s, we could have used some other kind of mathemati-

cal space, such as a cpo with additional structure or properties, or some other kind

of object altogether. The search for good denotational semantics is a subject of

much research. The following terminology helps in defining precisely what is a

“good” denotational semantics.

Definition. A denotational semantics is called fully abstract if for all terms M
and N ,

M =den N ⇐⇒ M =op N.

113

If the denotational semantics involves a partial order (such as a cpo semantics), it

is also called order fully abstract if

M ⊑den N ⇐⇒ M ⊑op N.

The search for a fully abstract denotational semantics for PCF was an open prob-

lem for a very long time. Milner proved that there could be at most one such

fully abstract model in a certain sense. This model has a syntactic description

(essentially the elements of the model are PCF terms), but for a long time, no

satisfactory semantic description was known. The problem has to do with sequen-

tiality: a fully abstract model for PCF must be able to account for the fact that

certain parallel constructs, such as parallel or, are not definable in PCF. Thus, the

model should consist only of “sequential” functions. Berry and others developed

a theory of “stable domain theory”, which is based on cpo’s with a additional

properties intended to capture sequentiality. This research led to many interesting

results, but the model still failed to be fully abstract.

Finally, in 1992, two competing teams of researchers, Abramsky, Jagadeesan and

Malacaria, and Hyland and Ong, succeeded in giving a fully abstract semantics

for PCF in terms of games and strategies. Games capture the interaction between

a player and an opponent, or between a program and its environment. By consid-

ering certain kinds of “history-free” strategies, it is possible to capture the notion

of sequentiality in just the right way to match PCF. In the last decade, game se-

mantics has been extended to give fully abstract semantics to a variety of other

programming languages, including, for instance, Algol-like languages.

Finally, it is interesting to note that the problem with “parallel or” is essentially

the only obstacle to full abstraction for the cpo semantics. As soon as one adds

“parallel or” to the language, the semantics becomes fully abstract.

Theorem 13.3. The cpo semantics is fully abstract for parallel PCF.

14 Acknowledgements

Thanks to Xiaoning Bian, Field Cady, Jean Gallier, Brendan Gillon, and Francisco

Rios for reporting typos.

114

15 Bibliography

Here are some textbooks and other books on the lambda calculus. [1] is a standard

reference handbook on the lambda calculus. [2]–[4] are textbooks on the lambda

calculus. [5]–[7] are textbooks on the semantics of programming languages. Fi-

nally, [8]–[9] are textbooks on writing compilers for functional programming lan-

guages. They show how the lambda calculus can be useful in a more practical

context.

[1] H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-

Holland, 2nd edition, 1984.

[2] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University

Press, 1989.

[3] J.-L. Krivine. Lambda-Calculus, Types and Models. Masson, 1993.

[4] G. E. Révész. Lambda-Calculus, Combinators and Functional Programming.

Cambridge University Press, 1988.

[5] G. Winskel. The Formal Semantics of Programming Languages. An Introduc-

tion. MIT Press, London, 1993.

[6] J. C. Mitchell. Foundations for Programming Languages. MIT Press, London,

1996.

[7] C. A. Gunter. Semantics of Programming Languages. MIT Press, 1992.

[8] S. L. Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice-Hall, 1987.

[9] A. W. Appel. Compiling with Continuations. Cambridge University Press,

1992.

115

